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Abstract: DNA microarray technologies have advanced rapidly and had a profound impact 

on examining gene expression on a genomic scale in research. This review discusses  

the history and development of microarray and DNA chip devices, and specific microarrays 

are described along with their methods and applications. In particular, microarrays have 

detected many novel cancer-related genes by comparing cancer tissues and non-cancerous 

tissues in oncological research. Recently, new methods have been in development, such as 

the double-combination array and triple-combination array, which allow more effective 

analysis of gene expression and epigenetic changes. Analysis of gene expression alterations 

in precancerous regions compared with normal regions and array analysis in drug-resistance 

cancer tissues are also successfully performed. Compared with next-generation sequencing, 

a similar method of genome analysis, several important differences distinguish these 

techniques and their applications. Development of novel microarray technologies is expected 

to contribute to further cancer research. 
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1. Introduction 

Microarray technology has been widely used for various fields such as medical science and basic 

biology. These methods allow the analysis of exhaustive gene expression changes in specimens which 

were carried out for their genome analysis. Over the last decade, the number of studies using DNA 
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microarray has rapidly increased, and a PubMed search for “DNA microarray” reveals more than 80,000 

publications in May 2015. In particular, many studies using this technology are in the field of oncology, 

and these studies have identified a number of critical genes in cancer progression. In this review, we 

provide an overview of the development of principle microarrays and the application of each array, and 

we introduce initial findings using the combination array. The last section describes the application, 

limitations, association with next-generation sequencing, and future prospects. 

2. The Initial History of Microarrays 

The original DNA array was created with the colony hybridization method of Grunstein and  

Hogness [1]. In this method, the DNA of interest is cloned into Escherichia coli plasmids, and E. coli 

colonies with different hybrid plasmids can be screened to determine a specified DNA sequence or gene. 

DNA prints of the colonies are then hybridized to radioactive RNA, and are analyzed by 

autoradiography. This method can be used to isolate any gene. 

Using this approach, Gergen et al. [2] reported a method for making paper filter replicas of such an 

ordered collection and developed a strategy for creating a high-density (10,000 colonies/petri) unordered 

collection. These different mixtures of probes could be used for nucleic acid hybridization screens of 

recombinant DNA colonies. 

In 1980, Crampton et al. [3] compared RNA populations derived from normal human lymphocytes 

and fibroblasts by hybridizing each RNA to cDNA derived from the other RNA population. The isolation 

of cloned cDNA sequences revealed the differentially expression between two samples. 

Schena et al. [4] published a high-capacity system that was developed to analyze the gene expression 

in parallel. Microarray technologies which were prepared by high-speed robotic printing of 

complementary DNAs on glass were useful for quantitative expression analysis of the corresponding 

genes. Differential gene expression measurements were obtained using simultaneous, two-color 

fluorescence hybridization. 

In 1996, DeRisi et al. [5] published a method describing very high density cDNA microarrays on 

glass substrates using fluorescent probes, and these arrays were used to search for differences in gene 

expression associated with tumor suppression. 

Since these initial studies, DNA microarray technologies have developed rapidly in a variety of fields. 

2.1. Microarray Devices (DNA Chip Synthesis) 

2.1.1. In Situ Synthesized Type 

The methods for preparing DNA chips combine photochemistry and photolithography with  

solid-phase DNA synthesis chemistry to generate a high-density oligonucleotide probe array in situ [6‒8]. 

These two-dimensional arrays containing hundreds or thousands of oligonucleotide probes provide  

a powerful DNA sequence analysis tool [6]. For example, this method is now used to produce the  

high-density gene chip probe arrays, which are used for the detection and analysis of point mutations 

and SNPs and for gene expression studies [9]. The change of the carried probe number in expression 

array by Affymetrix shows Table 1. 
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Table 1. The change Probe/GeneChip number in expression arrays by Affymetrix. 

Date Feature Size Probe/GeneChip 

1994 100 16,000 

1996 50 65,000 

1998 24 256,000 

2000 20 400,000 

2002 18 505,000 

2003 11 1,354,000 

2004 8 2,560,000 

2005 5 6,553,000 

2.1.2. Spotting Type 

Many microarray spotting technologies and techniques have been successfully developed. DNA chips 

can be produced using the spot method, in which cDNAs are selectively deposited on specific positions 

on a glass slide using a spotter. Two of the more important spotting techniques used are the pin-based 

fluid transfer systems [10‒13] and the piezo-based inkjet dispenser systems [14]. Table 2 shows the 

change of the coverage of genes and transcripts in expression array by Agilent. The microarray devices 

have rapidly developed. 

Table 2. The change of the coverage of the genes and transcripts in expression array by Agilent. 

Date Gene Transcript 

2000 12,814 

2002 15,217 

2006 20,356 

2010 41,000 

2014 56,689 

3. Microarray Types 

3.1. Expression Array 

The major application of DNA microarrays has been for the measurement of gene expression levels. 

RNA is extracted from cells, directly fluorescently labeled, and converted to labeled cDNA. The labeled 

cDNA is hybridized to the microarray, the array is washed, and the signal is detected by measuring 

fluorescence at each spot. The intensity of the signal on each spot is taken as a measure of the expression 

level of the corresponding gene [9,15]. 

Multiple studies have successfully used these techniques to evaluate gene expression levels in human 

diseases, including cancers. Shim et al. [16] performed an expression profile of genes associated with 

human cervical cancer using cDNA expression arrays. Rhee et al. [17] showed molecular evidence of 

the qualitative and quantitative high heterogeneity in gene expression among three human glioblastoma 

cell lines using cDNA expression arrays. 
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3.2. Methylation Array 

Cancers often exhibit aberrant methylation status of gene promoter regions associated with loss of 

gene function [18,19]. This epigenetic process acts as an alternative strategy to mutations to disrupt 

tumor suppressor gene function. CpG island hypermethylation has been shown to be a common event in 

cancers [20,21]. To detect hypermethylation status, the demethylating agent 5-Aza-2′-deoxycytidine is 

used [22] and gene expression changes are subsequently measured by microarrays [23]. Methylation 

arrays can also aid in the identification of three tumor suppressor genes including CRIP-1, 

Apolipoprotein D, and Neuromedin U by comparing the methylation of CpG islands of promoter regions 

in cancer tissue and corresponding normal tissue [24]. Notably, the demethylation status of particular 

genes is also related to carcinogenesis. Genes upregulated by demethylation can play a clinically 

significant role in cancer tissues [25]. 

3.3. Comparative Genomic Hybridization (CGH) Array 

The CGH method measures genomic changes such as deletions of chromosome copy number and 

amplification [26]. The CGH array was developed as a method to detect genome abnormalities such as 

the minute gene amplification, deletion, and DNA copy number alterations [27‒33]. 

3.4. Single Nucleotide Polymorphism (SNP) Array 

A SNP, a variation at a single site in DNA, is the most frequent type of variation in the genome [34,35], 

with an estimated 10 million SNPs in the human genome [36]. SNPs have been associated with disease 

and drug metabolism. The SNP array is a type of DNA microarray used to detect polymorphisms  

within a population [37‒40] and this array can detect SNPs associated with diseases [41,42],  

genotyping [40,43‒45], copy number variation [46], and loss of heterozygosity (LOH) [38,39]. 

3.5. MicroRNA(miRNA) Array 

In 1993, Lee et al. [47] discovered that lin-4, a gene known to control the timing of  

Caenorhabditis elegans larval development, does not code for a protein but instead produces a pair of 

small RNAs approximately 22 and 61 nt in length. The shorter lin-4RNA is now recognized as the 

founding member of an abundant class of short regulatory RNAs called microRNAs or miRNAs [48‒50]. 

The importance and the role of miRNA-directed gene regulation are coming into focus as their regulatory 

targets and functions [51]. Liu et al. [52] described the using of the first miRNA microarray. After that, 

the miRNA microarrays revealed their functions in control of cell proliferation, cell death associated 

with carcinogenesis [53,54], fat metabolism in flies [55,56], and modulation of hematopoietic lineage 

differentiation in mammals [57]. For example, miR-21 was detected by miRNA array in various  

cancers [58], and high miR-21 expression is associated with the poor survival and poor therapeutic 

outcome in colon cancer [59]. 
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3.6. Long-Noncoding RNA (LncRNA) Array 

More recently, lncRNAs, generally defined as short RNAs greater than 200 nt in length, have risen 

to prominence with important roles in a broad range of biological processes [60]. LncRNAs regulate 

gene expression at the level of post-transcriptional processing such as protein synthesis, RNA 

maturation, transport, cell differentiation, immune responses, and activity and localization of protein 

coding genes [61,62]. They also exert their effects in transcriptional gene silencing through the 

regulation of chromatin structure [60,63]. Dysregulation of lncRNAs is associated with many human 

diseases, including various types of cancers [64]. Many studies have used lncRNA microarrays to 

demonstrate lncRNA gene expression profiles and the prognostic potential of lncRNA profiles in various 

cancers [65,66]. 

3.7. Platform Description 

The presently available and most used platforms show Table 3. These platforms are used widely in 

many laboratories. 

Table 3. List of the main platforms ion the each microarrays. 

Vendor Expression Array Methylation Array SNP Array miRNA Array 

Affymerix 
Human GenomeU133 

Plus 2.0 Array 
- 

Genome-wide human  

SNP Array 6.0 

GeneChip® miRNA 

4.0 Array 

Illumina 

HumanHT-12 v4 

Expression  

BeadChip Array 

Human Menthylation450 

BeadChip 

HumanOmniExpress 

BeadChip Kit 
- 

Agilent 

SurePrint G3 Human 

Gene Expression v3  

8 × 60K Microarray Kit 

Human DNA Methylation 

Microarray 244K 

SurePrint G3 CGH + SNP 

Microarray Kit, 2 × 400K 

SurePrint G3  

Human miRNA 

Microarray 8 × 60K 

4. Applications of Microarrays 

4.1. Comparison with Cancer Tissue and Corresponding Normal Tissue 

Many studies have used microarrays to compare cancer regions with non-cancer regions and detected 

many cancer-related genes such as oncogenes and tumor suppressor genes [67‒69]. For example, 

expression arrays have been successfully used to examine esophageal cancer [70,71], gastric  

cancer [72,73], colorectal cancer [67], breast cancer [74], and HCC [75‒78], and methylation  

arrays were used in esophageal cancer [79], gastric cancer [80‒82], colorectal cancer [83], breast  

cancer [21,84], and HCC [85‒87]. 

4.2. Combination Array 

Recently, the new microarray methodology have reported more effective. Nomoto et al. [88] 

developed the “double-combination array” by combining expression array analysis and SNP array 

analysis to effectively gain whole genome information. The gene expression profile provides a snapshot 
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of the transcriptional state of noncancerous and tumor tissues. The SNP array is a useful tool for 

surveying LOH, a prominent characteristic of many human cancers. The authors combined the use of 

these two microarrays in one representative surgical sample and effectively identified several, novel 

tumor-specific gene alterations [89]. 

First, in one cancer sample, novel target genes that are downregulated in cancer regions are detected 

by expression array. The silencing mechanism is then analyzed using the SNP array, and the results 

confirm the absence of copy number variation and LOH. Assuming that the observed downregulation 

may be due to epigenetic changes, the target genes are validated in clinical specimens using  

methylation-specific polymerase chain reaction. Positive results can suggest that the gene is 

downregulated in cancer tissues through promoter hypermethylation and may have a role as a candidate 

tumor suppressor gene. This technique has detected many novel candidate tumor suppressor genes. 

Using this double-combination array, many important genes have been detected, including 

metallothionein 1G (MT1G), epidermal growth factor-containing fibulin-like extracellular matrix 

protein 1 (EFEMP1), A kinase anchor protein 12 (AKAP12), and leukemia inhibitory factor receptor 

(LIFR) genes as tumor suppressor genes in hepatocellular carcinoma, and reelin (RELN) as a key 

regulatory gene associated with the recurrence of HCC [88‒92]. Likewise, Kobayashi et al. [93] detected 

the suppressor of cytokine signaling 4 (SOCS4) as a novel gastric cancer suppressor gene using  

a double-combination array in gastric cancer. 

To further evaluate hypermethylation of the promoter CpG islands, methylation array can be added 

to complete the triple-combination array method, which is designed to more efficiently search for 

epigenetic alterations [94,95]. The triple-combination array has detected many genes, including 

bleomycin hydrolase gene (BLMH), estrogen receptor 1 gene (ESR1), dynamin 3 (DNM3), doublecortin 

domain-containing 2 (DCDC2), collagen type 1 alpha 1 gene (COL1A1), protein tyrosine kinase 7 

(PTK7), and cyclin J (CCNJ) as candidate cancer-related genes in HCC [94‒100]. 

4.3. Combination Array in other Groups 

Other studies have successfully used the combination of expression array and SNP array in examining 

infiltrating ductal carcinoma of the breast [101], the combination of methylation array and expression 

array in prostate cancer [102], and the combination of expression array and CGH array in renal cell 

carcinoma [103]. 

4.4. Selection of Comparison Samples 

In general, microarrays are typically used to compare tumor tissue and corresponding normal tissue. 

However, when used to compare precancerous tissue with the corresponding normal tissue, it can 

identify alterations in gene expression and methylation events that lead to carcinogenesis, and thus may 

have the potential to evaluate the risk of carcinogenesis and recurrence. 

Nomoto et al. [104] examined adjacent nonneoplastic liver tissue from a patient with hepatocellular 

carcinoma comparing with supernormal liver (SN) samples taken from metastatic secondary 

malignancies of the liver. The tissue of SN was actual normal liver. Therefore, it seemed that there was 

no molecule which showed fundamentally abnormal. However, it could not be denied that there was the 

individual feature. Then they thought that this individual projection was erased by mixing 11 SN 
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samples. Expression profiling and methylation arrays revealed that expression of the thimet 

oligopeptidase (THOP1) gene in the background liver of HCC is likely to be a good biomarker for risk 

of HCC development. 

To validate genome-wide DNA methylation profiles during multistage hepatocarcinogenesis, 

Ammerpohl et al. [105] revealed that the methylation status have changed gradually from normal to 

cirrhosis and further to HCC using a methylation array. Nagashiro et al. [106] established criteria for 

carcinogenetic risk estimation based on DNA methylation array profiling to compare samples of 

noncancerous liver tissue obtained from HCC patients with normal liver tissue samples. Arai et al. [85] 

performed bacterial artificial chromosome (BAC) array-based methylated CpG island amplification 

using a microarray of 4361 BAC clones in normal liver tissue obtained from patients without HCC, 

noncancerous liver tissue obtained from patients with HCC, and HCC samples. The DNA methylation status 

of the 41 BAC clones was correlated with the cancer-free and overall survival rates of patients with HCC. 

Okamoto et al. [107] classified patients with hepatitis C-positive HCC into two groups: the single 

nodular HCC group and multicentric (MC) HCC group. The authors compared gene expression patterns 

of the noncancerous liver tissue specimens using cDNA microarrays, and created a scoring system to 

estimate the risk for MC hepatocarcinogenesis. Utsunomiya et al. [108] performed miRNA microarrays 

to compare the miRNA expression patterns in the non-cancerous liver tissues between the MC recurrence 

group and no MC recurrence group to identify miRNAs related to MC recurrence. The authors detected 

20 differently expressed miRNAs, 18 of which were downregulated in the MC group and 2 of which 

were upregulated. 

Sato et al. [109] performed genome-wide DNA methylation array analysis in normal lung tissue 

obtained from patients without any primary lung tumor, non-cancerous lung tissue obtained from 

patients with lung adenocarcinomas, and tumorous tissue. DNA hypermethylation at precancerous 

tissues was strengthened during progression to lung adenocarcinomas. 

4.5. Analysis of Drug-Resistant Cancer Tissues 

Microarray technology has been successfully used to define the molecular changes associated with 

the drug-resistant phenotype in drug-resistant cancer cells [110]. These changes may be useful as 

biomarkers of drug sensitivity, molecular target medicines and prediction factors of chemotherapy response. 

Duan et al. [110] showed that paclitaxel- and adriamycin-resistant ovarian cancer cell lines had 

significant overexpression of at least one cytokine/chemokine compared with their drug-sensitive parent 

line. Liu et al. [111] detected that maternally expressed gene 3 (MEG3) expression was markedly 

decreased in cisplatin-resistant A549/DDP cells compared with parental A549 cells as shown by an 

lncRNA microarray. Patients with lower levels of MEG3 expression also showed worse responses to 

cisplatin-based chemotherapy. Thus, MEG3 may represent a new marker of poor response to cisplatin 

and could be a potential therapeutic target for lung cell adenocarcinoma chemotherapy. Gao et al. [112] 

showed that cluster of differentiation 44 (CD44) was overexpressed in drug-resistant ovarian cancer cell 

lines, and the authors performed a unique ovarian cancer tissue microarray constructed with paired 

primary, metastatic, and recurrent tumor tissues from individual patients. Both the metastatic and 

recurrent ovarian cancer tissues expressed higher levels of CD44 than the primary tumor. Additionally, 

CD44 knockdown in ovarian cancer cells increased sensitivity to the anticancer drug paclitaxel. Thus, 

these findings demonstrated that upregulation of CD44 was a crucial event in the development of the 
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recurrence, metastasis, and acquisition of drug resistance in ovarian cancer. Fang et al. [113] studied 

miRNA expression profiles in colorectal cancer, comparing chemoresistant and chemosensitive groups 

by microarray analysis. Overexpression of miRNA-17-5p was found in chemoresistant patients. The 

authors also found that PTEN was a target of miR-17-5p in colon cancer cells, and their context-specific 

interactions were responsible for multiple drug resistance. Akcakaya et al. [114] performed a miRNA 

array in drug-resistant gastrointestinal stromal tumors, and Maeda et al. [115] validated the gene 

alterations in drug-resistant gastric cancer by expression and methylation arrays.  

5. The Present and Future of Microarrays 

5.1. Effective use of Public Databases for Microarray Data 

Microarray expression studies are producing massive quantities of gene expression and other 

functional genomic data, which will help provide key insights into gene function. It is widely 

acknowledged that there is a need for public repositories for microarray data [116] whose functions 

would include providing free access to supporting data for publications based on microarray 

experiments. Such repositories are under development by the National Center for Biotechnology 

Information (which has developed the Gene Expression Omnibus) [117], the DNA Database of Japan [118], 

and the European Bioinformatics Institute (which has developed ArrayExpress) [119]. The miRBase 

database is also a searchable database of published miRNA sequences and annotation [120]. 

In addition, the system can search for a specific gene and a specific disease and use properly for each 

purpose. It is necessary for other researchers to be careful to have access to the underlying data. Even 

the most carefully conducted studies should require intensive review and consideration of previously 

published data before embarking on new studies [121]. 

Although many microarray results have been derived from public databases, one problem was the 

lack of standards for presenting and exchanging such databases. To address these issues, the members 

of the Function Genomics Data Society created the MIAME (Minimum Information About a Microarray 

Experiment) standards for the description of microarray experiments [122]. Making microarray data 

public in a MIAME-compliant manner has become a precondition for publication for many journals [117]. 

Publishing original data and protocols facilitates independent evaluation of results and re-analysis, and 

maintains the spirit of open access [123]. 

5.2. The Relevance of Microarray Quality Control 

DNA microarray technologies have had some problems regarding reproducibility and comparability 

between laboratories and across inter- and intra-platforms of gene expression measurements [124‒130]. 

The MicroArray Quality Control (MAQC) project was initiated to address these concerns and showed 

intra-platform consistency across test sites as well as a high level of inter-platform concordance in terms 

of genes identified as differentially expressed by microarray methods. This study provides a resource 

that represents an important first step toward establishing a framework for the use of microarrays in 

clinical and regulatory settings [131,132]. International organizations such as External RNA Control 

Consortium [133], the Microarray Gene Expression Data Society [123], and the MAQC project are 

providing the microarray community with standardization of data reporting, common analysis tools, and 
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useful controls that can help provide confidence in the consistency and reliability of these gene 

expression platforms [131]. 

5.3. Next-Generation Sequencing (NGS) Compared with Microarrays 

Recently, the advent of NGS, or massively parallel sequencing, has precipitated the discovery of 

variants in the human genome [134], allowed whole-genome sequencing of microorganisms [135], and 

has led the way towards novel applications in the fields of human genetics [136], cancer [137,138], and 

infectious diseases [139,140]. NGS technologies have had a great impact on the field of expression 

research. Compared to microarray technology, the NGS method has several distinct advantages. The 

detection range of NGS is not limited to a set of predetermined probes as with the microarray technology, 

therefore NGS is capable of identifying new genes. And, the analysis of a microarray is limited to the 

gene level for most arrays, whereas NGS can detect expression at the gene, transcript, and coding DNA 

sequence levels. Finally, NGS can be used for traditional transcriptome profiling [141,142], 

identification of novel transcripts [143], identification of expressed SNPs [144,145], alternative splicing, 

and for the detection of gene fusion events [146‒149]. However, in comparison with a microarray, NGS 

provides enormous gene information and thus requires significant costs for analysis [132,150,151]. 

Therefore, it will be necessary to use each characteristic effectively. 

6. Conclusions 

Development of microarray technologies and their applications have been rapidly advancing, and 

significant amounts of raw data have already been generated. Using these data effectively will enable 

researchers to further studies in the areas of understanding human disease, with the aim of improving 

diagnosis and developing effective treatments for many diseases, including cancer. 
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