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This work is devoted for establishing adequate results for the qualitative theory as well as 
approximate solution of “fractal-fractional order differential equations” (F-FDEs). For the required 
numerical results, we use Haar wavelet collocation (H-W-C) method which has very rarely utilized 
for F-FDEs. We establish the general algorithm for F-FDEs to compute numerical solution for the 
considered class. Also, we establish a result devoted to the qualitative theory via Banach fixed 
point result. A results devoted to Ulam-Hyers (U-H) stability are also included. Two pertinent 
examples are given along with the comparison and different norms of errors displayed in figures 
as well as tables.

1. Introduction

Fractal calculus is currently a popular area of study. This is because fractal calculus can more effectively describe phenomena 
involving complex geometry and irregular forms. The aforementioned calculus is also a relatively straightforward but incredibly 
effective tool for describing such phenomena in porous or hierarchical media. During Newton’s lifetime, the area’s foundation was 
set. Later, it developed into a fascinating issue in a variety of disciplines, such as mathematics and bio-engineering for porous media 
(see [1,2]). The groundwork for fractional calculus was also set at the same period. Fractal-fractional calculus is a later development 
that combines the fields of fractal and fractional calculus. The calculus discussed earlier has received a lot of focus, given that, where 
classic fractal-fractional calculus serves crucial roles in describing phenomena on the porous size scale, where mechanics becomes 
useless. In light of this significance, the aforementioned calculus was initiated. Actually, the field in question is rather recent and is 
capable of handling kinetics. Fractal fractional kinetics is the name given to the aforementioned operators. For additional background 
information and specifics on fractal derivatives (see [3]).

Sometimes, when describing a variety of real-world issues, it is important to understand how much data the system can hold. 
F-FDEs are being employed more frequently recently to deal with such descriptions. We quote [4] for a few important conclusions 
about fractal-fractional calculus. Here, we note that very good research has been done on FDEs in the area of fractional calculus 
devoted to existence theory, numerical analysis, and stability analysis (see [5]). He claimed that the area is a just emerging subject of 
study. There are several uses for the aforementioned operator in day-to-day activities. Fractal-fractional derivatives are increasingly 
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used in modeling for applications involving material phase shift, according to research. In this paragraph, we note that authors 
[6] developed an HIV/AIDS model using a fractal-fractional derivative and a nonlocal kernel. The developers of [7] have created a 
kernel basis approach to compute numerical solutions to various F-FDEs in a similar manner. Researchers also created a numerical 
method for the fractal-fractional Klein-Gordon equation. Additionally, utilizing the aforementioned idea, authors explored the fractal-

fractional Malkus waterwheel model. The authors explored the bright soliton behaviors of the excellent Boussinesq equation with 
fractal-fractional nonlinear kernels. Following the same steps, researchers have produced a thorough analysis of the fractal order 
cancer model including chemotherapeutic effects (see details [8–10]).

In order to establish qualitative results for the existence theory and approximation solution, authors have employed some methods 
from nonlinear analysis, fixed point theory, as well as numerical analysis. Researchers have employed perturbation techniques to 
explore some problems in order to compute solutions. Researchers have developed an effective technique for resolving the first-order 
hyper singular integral equations in replicating kernel spaces (see [11,12]). Similar to this, authors discovered a technique based 
on quasi-affine bi-orthogonal mappings to construct a numerical solution for weakly singular Volterra - Fredholm (V-F) issues, we 
refer [13]. Additionally, authors focused on using B-spline functions to numerically approximate nonlinear V-F integro-differential 
equations by using the fractional derivative of Atangana-Baleanu (A-B). The concept of fractal-fractional calculus was taken into 
consideration when developing a few new operators. Fractal-fractional operators combined with standard Caputo and A-B Caputo 
derivative were the names given to the novel operators that were suggested. F-FDEs, on the other hand, have not been adequately 
researched for both quantitative and qualitative findings. Recently published works that are pertinent to the existence theory and 
analytical findings are cited as [14].

For numerical or semi-analytical results, researchers have typically used standard numerical techniques such the Adam Bashforth 
methodology, Euler, RKM methods, and integral transform tools (see [15]). Since wavelets are effective numerical tools, they can be 
used in a variety of applied mathematics issues to approximate solutions. In the literature, various wavelets have been introduced. 
One of the wavelets that has recently seen the most use in the field of signal and image processing is the Haar wavelet. Haar 
developed the wavelet concept in 1908. Since his creation, researchers have used the aforementioned strategies to solve a wide range 
of issues. H-W-C approaches, the Legendre wavelet, the Hermit wavelet, etc. are some well-known wavelet-based techniques [16]. 
The wavelet methods mentioned above, however, have not been properly used to compute the numerical solution of F-FDEs.

The problems in question include two orders, one of which indicates the problem’s order and the other of which indicates its 
fractal dimension. In order to close this gap, we used the H-W-C approach to create a numerical scheme for solving the following 
class of F-FDEs for the following at 𝑡 ∈ℑ = [0, 1] as

𝐶𝐹𝐹D
𝓁,§
0,𝑡 y(𝑡) =𝑎y

′(𝑡) + 𝑏y(𝑡) + f(𝑡), 𝓁 ≤,§ ∈ (0,1],

y(0) =℘,
(1)

𝐶𝐹𝐹D
𝓁,§
0,𝑡 y(𝑡) = f (𝑡,y(𝑡)) , (2)

with f ∶ℑ →R, 𝑎, 𝑏 are fixed real numbers. Here 𝓁 is used for fractional order and § for fractal dimension. We expand the previously 
mentioned H-W-C approach to provide an algorithm that computes the numerical solution to the Eqn. (1) and Eqn. (2). Additionally, 
we offer certain examples with a graphical presentation for testimony. Also developed are certain conclusions supporting the existence 
of a solution following the definitions given in [17–19].

2. Fundamental and qualitative results

Here, we recollect some basic results from [17].

Definition 2.1. If y is defined on (0, 1) with order 𝓁, such that y is fractal differentiable and continuous, then the said operator in 
Caputo sense over y with order 𝓁 is described as

𝐶𝐹𝐹D
𝓁,§
0,𝑡 y(𝑡) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
Γ(1 − 𝓁)

𝑡

∫
0

𝑑𝑦

𝑑£§
(𝑡− £)−𝓁𝑑£, 0 < 𝓁,§ < 1,

𝑡

∫
0

𝑑𝑦

𝑑£
(𝑡− £)−𝓁

Γ(1 − 𝓁)
𝑑£, § = 1, 0 < 𝓁 < 1,

𝑑y
𝑑𝑡

, § = 1, 𝓁 = 1,

(3)

where the fractal fractional derivative in Eqn. (3) is defined as

𝑑𝑦(£) 1 𝑑y(£)
2

𝑑£§
=

§£§−1 𝑑£
.
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Definition 2.2. In the same line, fractal-fractional integral is defined in Eqn. (4) as

𝐶𝐹𝐹 I𝓁,§0,𝑡 y(𝑡) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

§
Γ(𝓁)

𝑡

∫
0

(𝑡− £)𝓁−1£§−1y(£)𝑑£, 0 < 𝓁,§ < 1,

𝑡

∫
0

(𝑡− £)𝓁−1

Γ(𝓁)
y(£)𝑑£, 0 < 𝓁 < 1, § = 1,

𝑡

∫
0

y(£)𝑑£, 𝓁 = 1, § = 1.

(4)

Let us write Eqn. (1) in Eqn. (5) as

𝐶𝐹𝐹D
𝓁,§
0,𝑡 y(𝑡) =𝜙(𝑡,y,y

′), 0 < 𝓁, § ≤ 1, 𝑡 ∈ℑ,

𝑦(0) =℘,
(5)

where 𝜙 ∶ℑ ×R2 → R. The Banach space B = 𝐶(ℑ) with norm ‖y‖∞ = max𝑡∈[0,1]
{|y(𝑡)|, |y′(𝑡)|}. The following assumption, we need 

to prove the required result.

(𝑄1) For y, ̄y ∈B, ∃ H𝜙 > 0, with

|𝜙(𝑡,y, z) − 𝜙(𝑡, ȳ, z̄)| ≤H𝜙

[|y|+ |y′|] .
In integral form, one may write Eqn. (5) also as

y(𝑡) =℘+ §
Γ(𝓁)

𝑡

∫
0

£§−1(𝑡− £)𝓁−1𝜙(£,y(£),y′(£))𝑑£. (6)

Suppose define Q ∶B →B via Eqn. (6) as

Qy(𝑡) =℘+ §
Γ(𝓁)

𝑡

∫
0

£§−1(𝑡− £)𝓁−1𝜙(£,y(£),y′(£))𝑑£. (7)

Theorem 2.3. In view of hypothesis (𝑄1), if the condition H𝜙Γ(§+1)
Γ(𝓁+§−1) < 1 holds, then problem Eqn. (1) has a unique solution.

Proof. Let y, ̄y ∈B, then using Eqn. (7), we have

‖Qy −Qȳ‖ = max
𝑡∈[0,1]

||||| §
Γ(𝓁)

𝑡

∫
0

£§−1(𝑡− £)𝓁−1[𝜙(£,y(£),y′(£)) −𝜙(£, ȳ(£), ȳ′(£))]𝑑£
|||||

≤ §
Γ(𝓁)

1

∫
0

£§−1(1 − £)𝓁−1H𝜙[|y − ȳ|+ |y′ − ȳ′|]𝑑£
≤ H𝜙Γ(§+ 1)

Γ(𝓁 + §)

[‖y − ȳ‖+ ‖y′ − ȳ′‖]. (8)

In the same way, we have from Eqn. (6) by following the properties of aforesaid operators given in [17], the integral form given in 
as

y′(𝑡) = §
Γ(𝓁 − 1)

𝑡

∫
0

£§−1(𝑡− £)𝓁−2𝜙(£,y(£),y′(£))𝑑£. (9)

Hence, we have from Eqn. (9) using y, ̄y ∈B, that

‖(Qy)′ − (Qȳ)′‖ ≤ H𝜙Γ(§+ 1)

Γ(𝓁 + §− 1)

[‖y − ȳ‖+ ‖y′ − ȳ′‖]. (10)
3

Now from Eqn. (8) and Eqn. (10), one has
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‖Qy −Qȳ‖∞ =max
𝑡∈ℑ

[‖Qy −Qȳ‖,‖(Qy)′ − (Qȳ)′‖]
≤ H𝜙Γ(§+ 1)

Γ(𝓁 + §− 1)
‖y − ȳ‖∞.

Hence the result arrived for uniqueness. □

Remark 2.4. Let there exists a function 𝜓 independent of y, such that

|𝜓(𝑡)| ≤ 𝜀, 𝑡 ∈ [0,1].

The solution of

𝐶𝐹𝐹D
𝓁,§
0,𝑡 y(𝑡) = 𝜙(𝑡,y,y′) +𝜓(𝑡), 0 < 𝓁, § ≤ 1, 𝑡 ∈ℑ,

y(0) =℘,
(11)

can be deduced as

y(𝑡) =℘+ §
Γ(𝓁)

𝑡

∫
0

£§−1(𝑡− £)𝓁−1𝜙(£,y(£),y′(£))𝑑£+ §
Γ(𝓁)

𝑡

∫
0

£§−1(𝑡− £)𝓁−1𝜓(£)𝑑£

y(𝑡) =Qy(𝑡) + §
Γ(𝓁)

𝑡

∫
0

£§−1(𝑡− £)𝓁−1𝜓(£)𝑑£.

(12)

The solution Eqn. (12) of Eqn. (11) in view of Remark 2.4 yields

|y(𝑡) −Qy(𝑡)| ≤ + Γ(§+ 1)
Γ(𝓁 + §)

𝜀 = §§,𝓁𝜀. (13)

Theorem 2.5. The solution of Eqn. (1) is U-H stable if the condition 1 > H𝜙Γ(§+1)
Γ(𝓁+§) holds.

Proof. Assume y is general, and ȳ be at most one solution of Eqn. (1) respectively, then we derive the result of stability via Eqn. (13), 
and Remark 2.4.

‖ȳ − y‖∞ = max
𝑡∈[0,1]

|||||ȳ(𝑡) −Qy(𝑡)
|||||

≤ max
𝑡∈[0,1]

|||||ȳ −Qȳ(𝑡)
|||||+ max

𝑡∈[0,1]

|||||Qȳ −Qy(𝑡)
|||||

≤ §§,𝓁𝜀+
H𝜙Γ(§+ 1)

Γ(𝓁 + §)
‖ȳ − y‖∞.

(14)

Hence, one has from Eqn. (14)

‖ȳ − y‖∞ ≤ §§,𝓁𝜀
1 −H𝜙§§,𝓁

.

Hence, the result of Eqn. (1) is U-H stable. □

3. Numerical scheme

H-W is a powerful tool to compute numerical solutions of many problems in applied analysis. It has been used very well to 
deal various problems of fractional calculus as well as of ordinary differential equations problems. Researchers have used the Haar 
wavelet method to compute numerical solutions of Lane-Emden equations with various boundary conditions in [18]. In addition, 
fractional order delay problems have been solved by the afore said scheme recently. For more frequent results can be read in [19] in 
which the said technique has been used to study various problems.

For Haar family, the scaling function on [0, 1) is given by ♭1(𝑥) = 1, while the other terms of the said family can be expressed as

♭𝑖(𝑡) =
⎧⎪⎨⎪⎩
1.0 with 𝑡 ∈ [𝓁1,𝓁2),
− 1.0 with 𝑡 ∈ [𝓁2,𝓁3),
0.0 otherwise,

where 𝓁1 =
£
𝑑

, 𝓁2 =
1∕2+£

𝑑
, and 𝓁3 =

1+£
𝑑

, 𝑑 = 2𝑗 , 𝑗 = 0, 1, … , 𝐽 , £ = 0, 1, … , 𝑑 − 1. The formula 𝑖 = 𝑑 + £ + 1 is to calculate index 𝑖. We 
4

use the symbol
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𝑝𝑖,1(𝑡) =

𝑡

∫
0

♭𝑖(𝑥)𝑑𝑥, (15)

and the value of the integral Eqn. (15) is

𝑝𝑖,1(𝑡) =
⎧⎪⎨⎪⎩

𝑡− 𝓁1, if 𝑡 ∈ [𝓁1,𝓁2),
𝓁3 − 𝑡, if 𝑡 ∈ [𝓁2,𝓁3),
0 elsewhere.

For H-W-C technique, [𝑎, 𝑏] can be discretized by

𝑡𝑗 = 𝑎+ (𝑏− 𝑎) 𝑗 − 0.5
2M

𝑗 = 1,2,… ,2M, (16)

where Eqn. (16) gives the collocation points (CPs) or nodal points.

Here, H-W-C method is extended for the solution of F-FDEs given in Eqn. (1). Consider 𝑑y(£)
𝑑£§

be square integrable function, then 
we can approximate in truncated series form as

𝑑y
𝑑𝑡§

= Σℵ
𝑖=1𝑎𝑖♭𝑖(𝑡), (17)

we can also express Eqn. (17) as

1
§𝑡§−1

𝑑y
𝑑£

= Σℵ
𝑖=1𝑎𝑖♭𝑖(𝑡). (18)

Hence, from Eqn. (18), one has

𝑑y
𝑑𝑡

= §𝑡§−1Σℵ
𝑖=1𝑎𝑖♭𝑖(𝑡). (19)

Integrate Eqn. (19) from 0 to 𝑡 and after rearranging, we obtain the results given in Eqn. (20) as

y(𝑡) =℘+ §Σℵ
𝑖=1𝑎𝑖𝑝𝑖,1(𝑡). (20)

Here, it should be kept in mind that if we take 𝓁 = 1, then from the definitions given Eqn. (3), and Eqn. (4), we will obtain 
usual fractal differential equations problem. We can then express the approximation as we do for usual problems. Therefore, we can 
express Eqn. (1) as

1
Γ(1 − 𝓁)

𝑡

∫
0

𝑑y(£)
𝑑£§

(𝑡− £)−𝓁𝑑£ = 𝑎y′(𝑡) + 𝑏y(𝑡) + f(𝑡). (21)

Applying Haar approximation to Eqn. (21), we get

1
Γ(1 − 𝓁)

𝑡

∫
0

Σℵ
𝑖=1𝑎𝑖♭𝑖(£)(𝑡− £)−𝓁𝑑£=

(
𝑎Σℵ

𝑖=1𝑎𝑖♭𝑖(𝑡) + 𝑏
(
℘+ §Σℵ

𝑖=1𝑎𝑖𝑝𝑖,1(𝑡)
)
+ f(𝑡)

)
.

This implies

1
Γ(1 − 𝓁)

𝑡

∫
0

Σℵ
𝑖=1𝑎𝑖♭𝑖(£)(𝑡− £)−𝓁𝑑£−

(
𝑎Σℵ

𝑖=1𝑎𝑖♭𝑖(𝑡) + 𝑏§Σℵ
𝑖=1𝑎𝑖𝑝𝑖,1(𝑡)

)
= (𝑏℘+ f(𝑡)) . (22)

Putting nodal points 𝑡𝑗 in Eqn. (22), one has the result given in Eqn. (23) as

1
Γ(1 − 𝓁)

𝑡𝑗

∫
0

Σℵ
𝑖=1𝑎𝑖♭𝑖(£)(𝑡𝑗 − £)−𝓁𝑑£−

(
𝑎Σℵ

𝑖=1𝑎𝑖♭𝑖(𝑡𝑗 ) + 𝑏§Σℵ
𝑖=1𝑎𝑖𝑝𝑖,1(𝑡𝑗 )

)
=
(
𝑏℘+ f(𝑡𝑗 )

)
. (23)

On using the notion in Eqn. (23) as given by

℧(𝑖, 𝑗) = 1
Γ(1 − 𝓁)

𝑡𝑗

∫
0

♭𝑖(£)(𝑡𝑗 − £)−𝓁𝑑£−
(
𝑎♭𝑖(𝑡𝑗 ) + 𝑏§𝑝𝑖,1(𝑡𝑗 )

)
, 𝑖, 𝑗 = 1,2,3,… ,𝑁. (24)

By using Eqn. (24), we get

Σℵ
𝑖=1𝑎𝑖℧(𝑖, 𝑗) =

(
𝑏℘+ f(𝑡𝑗 )

)
.

5

Using the Lepik [19] method, the integral on the right side of equation Eqn. (24) is evaluated, and for 𝑖 = 1, one has
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℧(𝑗,1) =
𝑡1−𝓁
𝑗

Γ(1 − 𝓁)(1 − 𝓁)
− 𝑎− 𝑏𝑝1,1(𝑡𝑗 ),

likewise, we have for the remaining values of 𝑖

℧( 𝑗, 𝑖) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0, for 𝑡𝑗 < 𝓁1,
1

Γ(1 − 𝓁) (1 − 𝓁)
(
𝑡𝑗 − 𝓁1

)1−𝓁 −
(
𝑎♭𝑖(𝑡𝑗 ) + 𝑏§𝑝𝑖,1(𝑡𝑗 )

)
, for 𝑡𝑗 ∈ [𝓁1,𝓁2],

1
Γ(1 − 𝓁)(1 − 𝓁)

(
(𝑡𝑗 − 𝓁1)1−𝓁 − 2(𝑡𝑗 − 𝓁2)1−𝓁

)
−
(
𝑎♭𝑖(𝑡𝑗 ) + 𝑏§𝑝𝑖,1(𝑡𝑗 )

)
, for 𝑡𝑗 ∈ [𝓁2,𝓁3],

1
Γ(1 − 𝓁)(1 − 𝓁)

(
(𝑡𝑗 − 𝓁1)1−𝓁 − 2(𝑡𝑗 − 𝓁2)1−𝓁 − (𝑡𝑗 − 𝓁3)1−𝓁

)
−
(
𝑎♭𝑖(𝑡𝑗 ) + 𝑏§𝑝𝑖,1(𝑡𝑗 )

)
, for 𝑡𝑗 > 𝓁3.

In matrix notation, one can write

G𝑨 = C,

where

G = [℧𝑖𝑗 ]𝑁×𝑁, 𝑨 = [𝑎𝑖]𝑁×1, C = [𝐶𝑖]𝑁×1,

and

𝐶𝑗 =
(
𝑏℘+ f(𝑡𝑗 )

)
.

Thus 𝑎𝑖’s is obtained as

𝑨 = G−1C.

By putting 𝑎𝑖 in Eqn. (20) one can obtain the solution at nodal points.

For the nonlinear case a similar method can be developed for the solution of F-FDEs Eqn. (2). Using the adopted operator 
definition in Eqn. (2), one has

1
Γ(1 − 𝓁)

𝑡

∫
0

𝑑y(£)
𝑑£§

(𝑡− £)−𝓁𝑑£ = f(𝑡,y).

Therefore

1
Γ(1 − 𝓁)

𝑡

∫
0

𝑑y
𝑑£§

(𝑡− £)−𝓁𝑑£ = (𝑓 (𝑡,y)) ,

applying H-W-C, one has

1
Γ(1 − 𝓁)

𝑡

∫
0

ℵ∑
𝑖=1

𝑎𝑖♭𝑖(£)(𝑡− £)−𝓁𝑑£ =

(
f(𝑡,℘+ §

ℵ∑
𝑖=1

℘𝑖𝑝𝑖,1(𝑡))

)
,

yields the given system by utilizing CPs 𝑡𝑗 .

𝔉𝑗 =
1

Γ(1 − 𝓁)

𝑡𝑗

∫
0

ℵ∑
𝑖=1

𝑎𝑖♭𝑖(£)(𝑡𝑗 − £)−𝓁𝑑£ =

(
f(𝑡𝑗 ,℘+ §

ℵ∑
𝑖=1

℘𝑖𝑝𝑖,1(𝑡𝑗 ))

)
.

The 𝐵𝑟𝑜𝑦𝑑𝑒𝑛 method is used to solve this system. In addition, 𝑎𝑖 unknown coefficients are deduced from solution.

Remark 3.1. Let y𝑎𝑝 be approximate and y𝑒𝑥 is the exact solution at ℵ CPs, then maximum absolute error E𝑐𝑝(ℵ) and root mean 
square error M𝑐𝑝(ℵ) are computed in Eqn. (25), and Eqn. (26) as

E𝑐𝑝(ℵ) = max |||y𝑒𝑥(𝑡) − y𝑎𝑝(𝑡)
||| , (25)

and √
§ ( )
6

M𝑐𝑝(ℵ) = ℵ
Σℵ
𝑖=1 y𝑒𝑥(𝑡𝑖) − y𝑎𝑝(𝑡𝑖)

2
. (26)
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Table 1

E𝑐𝑝(ℵ) and M𝑐𝑝(ℵ) errors for Experiment 4.1.

J ℵ = 21+𝐽 E𝑐𝑝(ℵ) M𝑐𝑝(ℵ)

0 2 0.023959 0.022441

1 4 0.012017 0.008414

2 8 0.005354 0.003559

3 16 0.002259 0.001475

4 32 0.001004 6.264275e-004

5 64 5.262736e-004 2.993843e-004

6 128 3.496090e-004 1.786014e-004

7 256 2.855276e-004 1.354213e-004

8 512 2.625619e-004 1.201709e-004

Fig. 1. Exact and numerical solution comparison at ℵ = 32, for Experiment 4.1 at 𝓁 = 0.5, § = 0.4.

4. Numerical experiments

Current part is related to some numerical problems and their graphical presentation.

Example 4.1. Consider the following F-FDE

𝐶𝐹𝐹D
𝓁,§
0,𝑡 y(𝑡) − y′(𝑡) + y(𝑡) − 𝑡2 = 0,

y(0) = 0.
(27)

Let 𝑦(𝑡) = 𝑡2 be the exact solution of equation Eqn. (27) for 𝓁 = 0.5 and = § = 0.4. We compute different norms in the Table 1 by using 
𝓁 = 0.5, § = 0.4. Here in Fig. 1, we present the comparison between exact and approximate solution.

Example 4.2. Consider the following F-FDE

𝐶𝐹𝐹D
𝓁,§
0,𝑡 y(𝑡) − y′(𝑡) −

35
√
𝜋𝑡2

16
√
y(𝑡) + 4𝑡3 = 0,

y(0) − 1 = 0.
(28)

The exact solution at 𝓁 = § = 0.5 of Eqn. (28) is given by

y(𝑡) = 𝑡4.

The absolute error at different collocations points is displayed in Table 2. In addition, the comparison between exact and approximate 
solution in Fig. 2.

5. Conclusion

This work has been devoted to establish some existence and numerical results for classes of F-FDEs. We have used Banach theorem 
7

to prove the qualitative theory of existence of solution to the problem under our investigation. Also, a result devoted to stability 
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Table 2

E𝑐𝑝(ℵ) and M𝑐𝑝(ℵ) errors for Experiment 4.2.

J ℵ = 21+𝐽 E𝑐𝑝(ℵ) M𝑐𝑝(ℵ)

0 2 0.085267 0.071418

1 4 0.003622 0.002625

2 8 7.235680e-004 3.818012e-004

3 16 2.976669e-004 1.781525e-004

4 32 2.869805e-005 1.857655e-005

5 64 6.004042e-006 4.902165e-006

6 128 1.289139e-006 1.172551e-006

Fig. 2. Exact and numerical solution comparison at ℵ = 32, for Experiment 4.2 at 𝓁 = 0.5, § = 0.5.

has been included. Further, on using H-W-C method, we have designed a scheme to deduce approximate results to the proposed 
problem. The results revealed that H-W-C technique can also be extended to F-FDEs to find the numerical solution to the mentioned 
problem. Some examples have treated by the said method and results been created graphically. In future, we will extend the aforesaid 
technique to study complex dynamical systems under fractal fractional derivatives of different type.
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