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ABSTRACT
Background. Although straight ahead running appears to be faster, distance running
races are predominately contested on tracks or roads that involve curves. How much
faster could world records be run on straight courses?
Methods. Here,we propose a model to explain the slower times observed for races
involving curves compared to straight running. For a given running velocity, on a
curve, the average axial leg force (Fa) of a runner is increased due to the need to exert
centripetal force. The increased Fa presumably requires a greater rate of metabolic
energy expenditure than straight running at the same velocity.We assumed that distance
runners maintain a constant metabolic rate and thus slow down on curves accordingly.
We combined published equations to estimate the change in the rate of gross metabolic
energy expenditure as a function of Fa, where Fa depends on curve radius and velocity,
with an equation for the gross rate of oxygen uptake as a function of velocity. We
compared performances between straight courses and courses with different curve radii
and geometries.
Results. The differences between our model predictions and the actual indoor world
records, are between 0.45% in 3,000m and 1.78% in the 1,500m formales, and 0.59% in
the 5,000 m and 1.76% in the 3,000 m for females. We estimate that a 2:01:39 marathon
on a 400 m track, corresponds to 2:01:32 on a straight path and to 2:02:00 on a 200 m
track.
Conclusion. Our model predicts that compared to straight racecourses, the increased
time due to curves, is notable for smaller curve radii and for faster velocities. But, for
larger radii and slower speeds, the time increase is negligible and the general perception
of the magnitude of the effects of curves on road racing performance is not supported
by our calculations.

Subjects Anatomy and Physiology, Kinesiology
Keywords Energetics, Bend, Running ecomomy, Marathon

INTRODUCTION
Although straight ahead running appears to be faster, distance running races are
predominately contested on tracks or roads that involve curves. How much faster could
world records be run on straight courses? Could the 2-hour marathon barrier be broken
without pacers or drafting if the course was perfectly straight? Could women break the
4-minute mile barrier?
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Previous analysis of curve running has focused on sprinting. Coherent explanations
for slower human sprint performances on curves, based on physics and biomechanics,
are supported by substantial empirical evidence. The requirement to exert centripetal
force (Greene, 1985), and more specifically the force generated by the inside leg (Chang
& Kram, 2007; Churchill et al., 2016), adequate friction/traction (Alexander, 2002; Luo &
Stefanyshyn, 2011; Luo & Stefanyshyn, 2012), and ankle inversion/eversion torques (Greene,
1987; Luo & Stefanyshyn, 2012) have all been implicated as explanations for reduced sprint
velocity along curves. Quadrupedal (greyhound) sprint performance on curves is less
explored and more controversial (Usherwood & Wilson, 2005;Hayati et al., 2017). A sizable
body of scientific research articles also exist regarding the mechanics and energetics of
small radius turns executed by humans and other animals (e.g., Wilson et al., 2013) but
such turns do not involve substantial centripetal forces.

Here, we focus on how curves affect the middle- and long-distance running performance
of human athletes. Performances on standard indoor tracks (200 m/lap with curve radii of
17.2m (IAAF, 2008a)) are generally slower than on tracks with larger radii. For example, the
National Collegiate Athletics Association (NCAA) equates a 4:03.07 mile on a standard 200
m indoor track to a 4:00.00 mile on an ‘‘oversized’’ track (i.e., >300 m/lap) (Pederson et al.,
2012) (NCAA, 2012). What are the physiological/biomechanical mechanisms responsible
for this effect?

A fundamental physiological limit to distance running performance is the ability to
generate adequate energy (i.e., ATP) from aerobic metabolism. Three physiological factors
determine distance running performance: maximal aerobic capacity (V̇O2 max), the
submaximal rate of oxygen uptake required to run at a specified velocity (aka ‘‘running
economy’’) and the % or fraction of the maximal aerobic capacity that can be sustained
(Bassett Jr & Howley, 2000; Coyle, 1995; Joyner & Coyle, 2008; Ferretti, Bringard & Perini,
2011). For example, an elite male marathon runner might have a V̇O2 max of 86
mlO2/kg/min and the physiology to sustain 85% of that V̇O2 max (71ml O2/kg/min)
for more than 2 h at a velocity of 5.55 m/s in a straight line (Joyner, 1991).

The rates of oxygen uptake or metabolic energy required to run straight-ahead at a
specified velocity are proportional to the force applied to the ground (Arellano & Kram,
2014; Kipp, Grabowski & Kram, 2018; Kram & Taylor, 1990). During distance running, the
vertical ground reaction force (GRF) vs. time pattern resembles a half-sine wave with a
peak magnitude of 2.5 to 4 x body weight depending on velocity. During straight-line
running, the vertical GRF averaged over a complete stride is equal to 1.0 x body weight
(BW). But, when a person runs along a curved path on a flat surface, they lean in towards
the center of the curve and the required average force axial to the leg is greater than 1.0 BW
due to the need to exert a centripetal force. The greater average axial leg force presumably
requires a greater rate of metabolic energy expenditure than straight running. Centripetal
force is equal to mv2/r, where m is body mass, v is tangential velocity and r is the curve
radius. Hamill, Murphy & Sussman (1987) have measured GRF during distance running
on curves equivalent to an outdoor 400 m track and for v = 6.3 m/s (corresponding to a
mile time of 4:15.00) the peak centripetal GRF is ∼0.6 BW. Accordingly, an athlete must
run slower on a curved path to maintain the same metabolic energy expenditure.
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Overall, our objective was to combine physics and physiology to model the energetics
of running on curved paths. From these energetic cost estimates, we then calculated race
time differentials for various race distances and velocities. A few distance running races
occur along straight paths (e.g., the Fifth Avenue Mile in New York City) but most involve
at least one turn. We begin our analysis by modelling an out-and-back racecourse with a
single 180◦ turn.We thenmove to the muchmore common track races which are contested
on standard 200 m indoor oval tracks (inner edge radius = 17.2 m) and standard 400 m
outdoor oval tracks (inner edge radius = 36.5 m). According to the rules of the governing
body for athletics, the IAAF (IAAF, 2008a; IAAF, 2008b), both indoor and outdoor tracks
must be measured 0.3 m from the raised curb positioned at the inner edge of lane 1. The
added 0.3 m takes in account the theoretical line of running (IAAF, 2008b) of athletes who
will run on curves with actual radii of 17.5 m (IAAF, 2008a) and 36.8 m (IAAF, 2008b)
on indoor and outdoor tracks respectively. We then consider races longer than 10,000 m
which are predominately conducted on road surfaces. Road-racing courses typically involve
multiple turns of different radii and we demonstrate how we can apply our model to any
course configuration. Finally, urban races often involve negotiating city blocks comprising
90 degree angles. According to the IAAF, road racing courses must be measured 0.3 m from
the curb (IAAF) which equates to 0.3 m radius. In the appendix, we consider the special
case of running races on rectangular city blocks.

METHODS
Gross metabolic energy expenditure as a function of body weight
Using a spring and harness system, Teunissen, Grabowski & Kram (2007) quantified how
simulated reduced gravity decreased the gross rate of metabolic energy expenditure during
treadmill running. We utilized their data to calculate the fractional change in the rate of
gross metabolic energy expenditure f as a function of the average axial leg force (Fa)

f = 0.6234Fa+0.3766 (1)

where Fa is expressed as multiples of body weight (BW) and is calculated over an entire
stride cycle (from touch down of one leg to the next touch down of the same leg). While
Teunissen, Grabowski & Kram (2007) only measured metabolic energy expenditure in
normal and simulated reduced gravity (Fa ≤ 1BW ), we assume that the slope in Eq. (1)
extrapolates to Fa> 1BW . According to Eq. (1), when a person is running in a straight line
(Fa=1 BW), f = 1 (i.e., no change). If Fa= 1.25 (a 25% increase in average axial force),
f = 1.16 (a 16% increase in gross metabolic energy expenditure). Note that we calculated
Eq. (1) based on the data of Teunissen, Grabowski & Kram (2007) but to calculate the
gross rate of metabolic energy expenditure, we added Teunissen et al.’s standing metabolic
rate value of 1.87 W/kg to the net values reported in their tables. Further, we forced the
regression to have an exact value of f =1 when Fa=1.

Axial leg force as a function of velocity and curve radius
A person with a body mass m (kg), running with a tangential velocity v (m/s) on a curve
of radius r (m) is subject to two forces in the frontal plane (Greene, 1985): F v the average
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force in the vertical direction due to gravity,

F v =mg (2)

where g is gravitational acceleration, and F c the average centripetal force,

F c =
mv2

r
(3)

The vector sum of Fv and Fc is the average axial leg force:

Fa=

√
F2
v+F

2
c (4)

where Fa is measured in newtons (N). Dividing Eq. (4) by the body weight of the runner
(1 BW =mg ) and combining it with Eqs. (2) and (3), the average axial force Fa can be
calculated in multiples of body weight:

Fa=

√
1+

v4

(gr)2
(5)

Gross rate of metabolic energy expenditure during curve running
By inserting Eq. (5) into Eq. (1), it is possible to calculate the fractional increase, f , in the
gross rate of metabolic energy expenditure for a runner with a tangential velocity v, on a
curve of radius r compared to running straight-ahead at the same velocity:

f = 0.6234

√
1+

v4

(gr)2
+0.3766 (6)

As r→∞ (straight running), Fa→ 1 in Eq. (5) (Fig. 1A) and therefore Eq. (6) reduces to
f → 1 (Fig. 1C) irrespective of running velocity v . At slower velocities, as v→ 0, Fa→ 1
in Eq. (5) (Fig. 1B) and therefore Eq. (6) reduces to f → 1 (Fig. 1D) irrespective of curve
radius r .

Running velocity on straight and curved paths
The following equation, derived by Kipp, Kram & Hoogkamer (2019), expresses the
relationship between gross rate of oxygen uptake (V̇O2s) and overground running velocity
(vs) on a straight path:

V̇O2s= 0.02724v3s +1.7321v
2
s −0.4538vs+18.91 (7)

where V̇O2s is measured in mlO2/min/kg. The cubic term in Eq. (7) takes into account
air resistance (Pugh, 1970). The Kipp, Kram & Hoogkamer (2019) equation is based
on submaximal (below lactate threshold, LT), steady state measurements of oxidative
metabolic rates. Beyond the lactate threshold, indirect calorimetry calculations (derived
from oxygen uptake and carbon dioxide production rates) do not represent all of the
metabolic energy required. However, we believe that extrapolating to faster speeds (beyond
LT) provides a reasonable measure of the total metabolic energy required even though in
reality that energy is supplied by both oxidative and non-oxidative metabolism.
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Figure 1 Axial leg force F a as a function of curve radius r (A), and running velocity v (B); fractional
increase in gross rate of metabolic energy expenditure f as a function of curve radius r (C), and veloc-
ity v (D). The standard radii for indoor and outdoor running tracks, are r = 17.5 m and r = 36.8 m re-
spectively. Inset figure representing centripetal (F c ), vertical (F v) and axial (F a) forces. Values of F a and f
when running at fast velocities (>8 m/s) on small radii (<6 m) are not physiological, we depict them only
to illustrate the effects of velocity and radius in extreme conditions.

Full-size DOI: 10.7717/peerj.8222/fig-1

To calculate the gross rate of oxygen uptake of a person running on a curve (V̇O2c) with
a tangential velocity along the curve vc , we can combine Eqs. (6) and (7):

V̇O2c = (0.6234

√
1+

v4c(
gr
)2 +0.3766)(0.02724v3c +1.7321v2c −0.4538vc+18.911) (8)

where V̇O2c is measured in mlO2/min/kg. Note: we and others prefer to express running
economy in units of energy or power (e.g., W/kg or kcals/min/kg) (Beck et al., 2018;
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Fletcher, Esau & Macintosh, 2009; Kipp, Byrnes & Kram, 2018; Shaw, Ingham & Folland,
2014) to account for differences in substrate utilization and therefore, in the amount of
energy liberated per liter of oxygen uptake. However, Pugh (1970) used oxygen uptake
rates. For our purpose here, assuming equivalence between rates of metabolic energy
utilization and oxygen uptake incurs an insignificant error because we are only considering
small changes in metabolic rate between curve and straight-line running.

A runner maintaining a constant velocity on both straight and curved portions (vs= vc),
would therefore alternate their gross rates of metabolic energy expenditure according to
Eqs. (7) and (8) respectively, where V̇O2c>V̇O2s. A runner performing at the maximal
sustainable percentage of their aerobic capacity on the straight portion of a race cannot
sustain an equal tangential velocity on the curve, since this would increase their rate of
metabolic energy expenditure. Rather, in order to maintain the same metabolic energy
expenditure throughout the race, running velocity on the curve must be reduced (vc < vs)
so that V̇O2c= V̇O2s.

To calculate the running velocity on the curve (vc) for a given velocity on the straight (vs),
we used numerical approximationmethods (see Appendix for algorithm 1). To calculate the
increased time during a single gradual 180◦ turn in an out-and-back race, we first used Eq.
(7) to calculate the required V̇O2s for a straight racecourse. We then calculated the running
velocity vc on the curved portion according to Eq. (8) given the same metabolic energy
expenditure (V̇O2c = V̇O2s) for a range of radii from 0.3 m (minimum radius according
to IAAF rules (IAAF)) up to 36.8 m (outdoor track (IAAF, 2008b)). The increased time
during the curved portion is calculated as:

1t180◦ =
dc
vc
−

dc
vs

(9)

where dc is the distance run in the 180◦ turn, corresponding to πr .
In order to calculate the time difference between a straight race course (tstraight ) and the

same racing distance on indoor or outdoor tracks, we used the same approach described
above, i.e.: we assumed that an athlete maintains the same metabolic energy expenditure
on the straight and on the curved portion of the track (V̇O2c = V̇O2s), with the curve
radii set at 17.5 m for indoor track (IAAF, 2008a) and 36.8 m for the outdoor track (IAAF,
2008b). The total time (ttrack) on the track is then calculated as:

ttrack =
ds
vs
+

dc
vc

(10)

where ds and dc are the total distances run on the straight and curved portions of the track,
respectively, and the total racing distance is dtot = ds+dc .

Vice-versa, when a certain time ttrackon the track is known, assuming that V̇O2c = V̇O2s,
it is possible to calculate the respective velocities on the straight and curved paths, vs and
vc , that satisfy Eq. (10) (see Appendix for algorithm 2). The respective time on a straight
racecourse would then be:

tstraight =
dtot
vs

(11)
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The same procedure can be used to convert times between tracks with different curve
radii and/or sizes: for example between indoor (rindoor = 17.5 m, distance of one lap
dlap,indoor=200 m) vs. outdoor tracks (routdoor = 36.8 m, dlap,outdoor=400 m).

For a given racing distance, it is possible to calculate the time difference 1t as follows:

1t = tindoor− toutdoor (12)

to compare indoor vs. outdoor tracks,
and:

1t = tstraight − toutdoor (13)

to compare straight racecourses vs. outdoor tracks.
Given that rindoor < routdoor , 1t > 0 in Eq. (12) represents the increased amount of time

for running on an indoor track while keeping the same rate of oxygen uptake maintained
on the outdoor track. On the other hand, given that rstraight→∞, 1t < 0 in Eq. (13)
represents the increased amount of time for running on a straight racecourse while keeping
the same rate of oxygen uptake maintained on the outdoor track. We used the outdoor 400
m track as a reference because the majority of racing distances (1,500 m, 3,000 m, 5,000 m
and 10,000 m) are commonly run on outdoor tracks, compared to indoor tracks (1,500 m,
3,000 m and 5,000 m) and very few races are contested on straight racecourses.

We also determined the ideal geometry of an outdoor track, where we kept the track lap
distance constant (dlap,outdoor=400 m) and changed curve radii from r=6 m, corresponding
to an oval track with a total straight portion of 362.3 m and a total curved portion of 37.7
m per lap, to r = 63.66 m, corresponding to a perfectly circular track with all 400 m run
on the curved portion.

We selected the world record times tWR on a standard outdoor track for 1,500 m, 3,000
m, 5,000 m and 10,000 m as a reference and then calculated the total racing time t (r) as a
function of the different curve radii r according to Eq. (10). The time difference 1t :

1t = t (r)− tWR (14)

is the increased time (1t> 0) or decreased time (1t< 0) as a function of radius r compared
to the respective world record. The ideal track geometry corresponds to the curve radius
that allows the biggest time savings.

More generally, these algorithms can be used to convert times between straight
racecourses and the same distance run on a path with a series of curves with different
radii:

tpath=
ds
vs
+

∑ dc,i
vc,i

(15)

where dc,i is the distance ran on the i-th curve, with a given radius ri, and vc,i is the velocity
on the i-th curve.

Breaking 2 on a straight path
Using Eq. (15), we analyzed the racetrack in Monza, Italy used for the ‘‘Breaking 2’’
marathon exhibition (https://en.wikipedia.org/wiki/Breaking2). We divided the total
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Figure 2 Outline of standard outdoor and indoor tracks (A) and of the Monza racetrack utilized dur-
ing the ‘‘Breaking 2’’ project (B). For indoor track: rindoor = 17.5 m and the distance of one lap dlap,indoor =
200 m. For outdoor track: routdoor = 36.8 m and dlap,outdoor = 400 m. We divided the south curve (‘‘Curva
parabolica’’) into three different portions (labeled 4, 5 and 6) in order to account for the non-constant ra-
dius of this specific section. A and B have different scales.

Full-size DOI: 10.7717/peerj.8222/fig-2

lap distance, dlap,Monza = 2424.4 m (17.4 laps to run a full marathon: 42,195 m) into
a straight portion ds=1907 m and 6 different curves (see Fig. 2, racetrack blueprints:
personal communication, Brett Kirby, Ph.D.). We divided the ‘‘Curva parabolica’’ into
three different portions in order to account for the non-constant radius of this specific
section. All other curves were assumed to have a fixed radius throughout each section. We
then applied the same algorithm described in the previous paragraph: we calculated the
running velocities on the straight and on each of the curved portions of the track assuming
that Eliud Kipchoge maintained a constant V̇O2s = V̇O2c . We then converted the total
time tMonza=7225 s (2 h and 25 s) to the time tstraight that Kipchoge might have run on a
straight path with a length dtot=42195 m, while maintaining all the other factors (drafting,
shoes, hydration etc.) adopted during the Breaking 2 attempt.

RESULTS
Increased time for a single 180◦ turn
We report the increased time1t180◦ as a function of radius r according to Eq. (9) for three
different representative velocities (v1= 7.3 m/s, corresponding to Hicham el Guerrouj’s
1,500 m world record; v2=6 m/s, corresponding to the men’s half marathon world record;
and a recreational running velocity, v3 =4 m/s) in Fig. 3. The radius r influences both
the distance run on the curve dc and the velocity on the curve vc in Eq. (9). As r→∞,
dc→∞, but given that vc→ vs (Eq. (8)), the increased time 1t180◦→ 0. As r decreases,
vc < vs and 1t180◦ starts to increase up to a specific radius r̂ , different for each velocity. In
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Figure 3 Increased time for a 180◦ turn as a function of radius.We selected three velocities: v1 = 7.3
m/s (dashed line, corresponding to Hicham el Guerrouj’s 1,500 m world record), v2 = 6.1 m/s (continu-
ous line, corresponding to men’s half marathon world record) and v3 = 4 m/s (dash-dotted line). For each
line, the maximum Delta t is located at r1 = 2.8 m, r2 = 1.9 m and r3 = 0.8 m for v1, v2 and v3 respectively.
Caution should be used when applying our model at very small radii (<6 m). Chang & Kram (2007)report
a maximum sprinting velocity v = 5.66 m/s for r = 6 m, while our model predicts an unrealistic sustained
velocity vc = 6.71 m/s.

Full-size DOI: 10.7717/peerj.8222/fig-3

particular r̂1= 2.7 m and 1t180◦ = 0.261 s for v1; r̂2= 1.9 m and 1t180◦ = 0.232 s for v2;
r̂3= 0.8 m and 1t180◦ = 0.193 s for v3. r̂ , therefore, represents the worst radius in terms of
velocity reduction (vc < vs) and non-trivial distance run on the curve (dc > 0). As r further
decreases (r < r̂), dc→ 0, leading to an overall decrease in 1t180◦ .

Outdoor tracks vs. indoor tracks vs. straight races
We report the time difference 1t a function of running velocity v in Fig. 4A (1,500
m, 5,000 m and 10,000 m) and Fig. 4B (half marathon and marathon) respectively, the
maximum velocity v for each distance corresponds to the respective current men’s world
record. In both figures, 1t > 0 represents the increased amount of time for running on
an indoor track (r = 17.5 m) compared to the outdoor track (r = 36.8 m), while 1t < 0
represents the decreased amount of time for running on a straight racecourse compared
to an outdoor track. The increased or decreased amount of time compared to an outdoor
track increases non-linearly with velocity v and is inversely proportional to the curve radius
r (see Appendix for step-by-step algorithms). In addition, we selected four racing distances
commonly contested on outdoor oval tracks (1,500 m, 3,000 m, 5,000 m and 10,000 m).
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Figure 4 Time difference (delta t) for a given racing distance (1,500 m, 5,000 m and 10,000 m in panel
A, half marathon andmarathon in panel B) as a function of velocity (v). For a given racing distance, run
on a 400 m outdoor track (curve radius routdoor = 36.8 m), we calculated how much time would increase
(delta t > 0) on a 200 m indoor track (curve radius rindoor = 17.5 m), or decrease (delta t < 0) on a straight
path. For each racing distance, the maximum velocity corresponds to the respective current men’s world
record.

Full-size DOI: 10.7717/peerj.8222/fig-4

Based on the actual outdoor 400 m track world records for both males and females, we
calculated the respective time the same athlete would have run on an indoor track and
on a straight racecourse, while keeping the same rate of oxygen uptake maintained on the
outdoor track (Table 1). For comparison, we report the actual world record on the indoor
track for 1,500 m, 3,000 m and 5,000 m distances. 10,000 m is not officially run on an
indoor track (IAAF, 2018).

According to our model, an athlete running a marathon in 2:01:39 (corresponding to
the actual world record, v = 5.78 m/s) on an outdoor track, would run 2:01:32 on a straight
path and 2:02:00 on an indoor track. According to our model, an athlete running a half
marathon in 58:01 (corresponding to the actual world record, v = 6.06 m/s) on an outdoor
track, could run 57:57 on a straight path and 58:13 on an indoor track (Fig. 4B).

Ideal geometry of 400 m track
For a track constrained to comprise a 400m lap, we report the time difference1t a function
of curve radius r in Fig. 5 for 1,500 m, 3,000 m, 5,000 m, and 10,000 m respectively. The
plots intersect at (r = 36.8 m,1t=0 s), where t (r)= tWR. For r<36.8 m,1t>0 s, indicating
that a reduction in curve radius, compared to standard outdoor tracks, is detrimental for
performance. For example, when r=6 m, 1t values range between +1.18 s for 1,500 m
and +7.14 s for 10,000 m. On the other hand, for r > 36.8 m, 1t < 0 s for all distances,
indicating that an increase in curve radius, compared to standard outdoor tracks, favors
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Table 1 Actual and predicted world records at various racing distances for males (A) and females (B). A 400 m outdoor track is used as the base-
line reference for the record predictions on a 200 m indoor track and straight path races. The curve radii are the actual radii run by athletes for in-
door (r = 17.5 m, (IAAF, 2008a)) and outdoor tracks (r = 36.8 m, (IAAF, 2008b)) respectively. 10,000 m is not officially run on an indoor track
(IAAF, 2018).

A
Males 1,500 m 3,000 m 5,000 m 10,000 m

Indoor track
(r = 17.5 m)

Actual
record:
3:31.04

Predicted
record:
3:27.32

Actual
record:
7:24.90

Predicted
record:
7:22.88

Actual
record:
12:49.60

Predicted
record:
12:40.78

Actual
record:
N.A.

Predicted
record:
26:23.78

Outdoor Track
(r = 36.8 m)

3:26.00 7:20.67 12:37.35 26:17.53

Straight Predicted
record:
3:25.59

Predicted
record:
7:19.93

Predicted
record:
12:36.20

Predicted
record:
26:15.47

B
Females 1,500 m 3,000 m 5,000 m 10,000 m

Indoor track
(r = 17.5 m)

Actual
record:
3:55.17

Predicted
record:
3:51.09

Actual
record:
8:16.60

Predicted
record:
8:07.87

Actual
record:
14:18.86

Predicted
record:
14:13.77

Actual
record:
N.A.

Predicted
record:
29:22.32

Outdoor Track
(r = 36.8 m)

3:50.07 8:06.11 14:11.15 29:17.45

Straight Predicted
record:
3:49.76

Predicted
record:
8:05.53

Predicted
record:
14:10.30

Predicted
record:
29:15.88

performance; in particular, at the maximum radius (r = 63.66 m) 1t equals −0.15 s for
1,500 m, −0.31 s for 3,000 m, −0.48 s for 5,000 m and −0.86 s for 10,000 m

Breaking 2 on a straight path
We report the velocities vc on each of the curve portions and the velocity vs on the straight
portions, calculated assuming that Kipchoge maintained a constant oxygen uptake (V̇O2c

= V̇O2s) in Table 2. Note that combining each velocity with the respective distance, the
time for a full lap (2424.4 m) is tlap,Monza= 415.1s, and the total time for a full marathon
(17 full laps plus the remaining 0.4 laps, i.e., 980.2 m on the last straight portion) coincides
with tMonza=7225 s.

To calculate the time tstraight that Kipchoge could have run on a straight marathon
course, it is sufficient to divide the total distance by the velocity on the straight:

tstraight =
d
vs
=

42195
5.8414

= 7223.48s (16)

leading to an overall time difference of only 1t = 1.52 s.

DISCUSSION
According to our model, the increased time 1t180◦ for an out-and-back race course (i.e.:
with a single 180◦ turn) is less than 0.27 s even in the worst-case scenario (high velocity, 7.3
m/s, and small curve radius, 2.7 m). Nevertheless, race organizers trying to keep 1t180◦ to
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Figure 5 Time difference (delta t ) for various racing distances (1,500 m, 3,000 m, 5,000 m, and 10,000
m) as a function of radius (r) for tracks constrained to be 400 m lap distance. When r = 36.8 m, delta
t = 0 s corresponding to the respective world records on a standard 400 m outdoor track. delta t > 0 in-
dicates that any radius r < 36.8 m is detrimental for performance, while delta t < 0 indicates that any ra-
dius r > 36.8 m favors performance. The ideal geometry for a 400 m track is a perfect circle with radius
r = 63.66 m. (Note: r is the actual radius that includes the 0.3 m offset from the inner edge of the curb, to
take in account the theoretical line of running according to IAAF rules (IAAF, 2008b).

Full-size DOI: 10.7717/peerj.8222/fig-5

Table 2 Radii and distances of each of the six curves we identified for the Monza racetrack. The
Straight row represents the sum of all the straight portions of the racetrack. For each portion, we
calculated the running velocities on the straight and on each of the curved portions of the track assuming
that Eliud Kipchoge maintained a constant VO2c = VO2s (see algorithm 2 in Appendix for details).

Curve # Radius (m) Distance (m) Velocity (m/s)

1 23 32 5.8165
2 24 21 5.8185
3 25 62 5.8202
4 350 116.7 5.8413
5 164 151 5.8409
6 80 134.7 5.8393
Straight 1,907 5.8414

a minimum, should aim for the largest curve radius allowed by road widths, the presence
of buildings/sidewalks, median strip etc.

IAAF rules 2018 require that, in order for a race course to be record-eligible, the start and
finish points of any road race shall not be further apart than 50% of the total race distance
(Rule 260.21), making the presence of at least one curve mandatory for all record-eligible
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courses. While having the largest possible radius is still a valid recommendation, in races
measuring 5,000 m and longer, athletes can maintain a lower velocity compared to the
scenario described above (6.6 m/s being the average velocity for Bekele’s 5,000 m world
record), and would therefore experience even lower values for 1t180◦ . In addition, 1t180◦
becomes trivial in terms of percentage of the total race time especially in races like the
half marathon or the marathon, while other factors, like change in elevation (Giovanelli
et al., 2016; Hoogkamer, Taboga & Kram, 2014), surface type (Kerdok et al., 2002), drafting
(Hoogkamer, Snyder & Arellano, 2019) etc., have amuch greater effect on running energetics
and therefore on the overall time (Hoogkamer et al., 2016). For example,Hoogkamer, Kram
& Arellano (2017) estimated that the maximum allowable downhill elevation drop (42 m)
in a marathon could save 28 s, and a legal tailwind could save ∼3 min. More economical
running shoes should save roughly 3 min (Kipp, Kram & Hoogkamer, 2019).

Lacking empirical data from a controlled study, we can only evaluate the validity of
our model by comparing our predictions to actual race performances. Starting with the
outdoor 400 m track records, our model predicts faster indoor world records compared to
the actual record times in all distances for both males (Table 1A) and females (Table 1B).

The differences between our model predictions and the actual indoor world records,
based on the times run on 400 m outdoor tracks, are 3.75 s (1.78%) in the 1,500, 2.2 s
(0.45%) in 3,000 m, and 8.82 s (1.14%) 5,000 m for males (Table 1A), and 4.1 s (1.74%)
in the 1,500, to 8.73 s (1.76%) in the 3,000 m and 5.09 (0.59%) in the 5,000 m for females
(Table 1B). It must be noted that multiple factors can contribute to these differences
between predicted and actual times. Indoor races are typically run in winter, while outdoor
races are run in spring/summer and athletes tend to reach peak fitness for outdoor races
when major international competitions (Olympics, World Championship etc.) are held.
Only themen’s 5,000m indoor and outdoor records were run by the same athlete (Kenenisa
Bekele) in the same year. All other indoor and outdoor records were run by the same athlete,
but in different years, or by different athletes. Pacing and drafting play important roles
when trying to run a world record time (Hoogkamer, Snyder & Arellano, 2019); it is likely
more difficult for athletes on indoor tracks to negotiate the smaller curve radiuses while
following or overtaking other competitors, compared to outdoor tracks.

Our model, and Table 1, can be used to identify which, among the actual indoor
world records, is the hardest or easiest to break, assuming the outdoor world record is a
‘‘benchmark performance’’ corresponding to the current ‘‘physiological limits’’ of males
and female athletes respectively. Our model, in fact, calculates what time an athlete with the
exact same fitness level and all the conditions (drafting, motivation etc.) found during the
outdoor world record could run on tracks with different curve radiuses or on the straight.
For males, it is evident that Daniel Komen’s 3,000 m indoor world record is only 0.45%
slower compared to the ‘‘physiological limit’’ he himself reached on the outdoor track two
years earlier. In order for an athlete to break the indoor world record, they must be close to
being able to run under the current outdoor world record. On the other hand, the current
1,500 m indoor world record is 1.78% slower compared to the ‘‘physiological limit’’ set by
Hicham el Guerrouj on an outdoor track and seems therefore relatively easier to break. In
order to break the current indoor world record by 0.01 s, an athlete must be able to run
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3:29.80 on a 400 m outdoor track. For females, the 5,000 m indoor world record is only
0.59% slower compared to the ‘‘physiological limit’’ set by Tirunesh Dibaba on an outdoor
track. The women’s outdoor 5,000 m record is relatively harder to break compared to the
3,000 m indoor world record, 1.76% slower compared to the ‘‘physiological limit’’ set by
Junxia Wang on a 400 m outdoor track.

Our prediction that a perfectly circular track is optimal for distance running performance
concurs with Greene’s model for sprint running (Greene & Monheit, 1990). This is true
for all racing distances. A 1,500 m runner is more affected by the velocity reduction on
the curve (vc<<vs) because of their faster average velocity compared to longer distances.
However, runners competing in longer events have to perform more laps around the
track (up to 25 laps for the 10,000 m). The number of laps seems therefore the dominant
factor on the overall increased/decreased time as a function of curve radius. The time
difference between a standard outdoor track (r = 36.8 m) and a perfectly circular 400m
track (r = 63.66 m) according to our model ranges between−0.15 s for 1,500 m, and−0.86
for 10,000 m. When designing a stadium, an efficient use of the available space is critical: a
standard track allows for a rectangular field in the center that can be used formultiple sports
(football, soccer etc.) with a trivial sacrifice in terms of running performance. Interestingly,
Australian football is played on an oval field that could accommodate a perfectly circular
track on the outside and provide a direct confirmation of our predictions. It would also
be interesting to see if and how a circular track, compared to the standard track, could
influence race tactics.

Some insight into the validity of our model can also be gained by comparing the best
performances of two world-class athletes (Jenny Simpson and Sydney Maree) when racing
one mile (1,609 m) indoors, outdoors and on a straight racecourse (5th Avenue Mile, NY).
Considering their outdoor personal best as their ‘‘benchmark performance’’ (4:17.30 for
Simpson, 3:48.83 for Maree), our model predicts times on a 200 m indoor track of 4:18.27,
2.87% faster than the time of 4:25.91 run by Simpson, and 3:50.10, 0.99% faster compared
to the time of 3:52.40 run byMaree. For a straight race, our model predicts times of 4:16.98,
only 0.14% slower compared to the actual time of 4:16.6 run by Simpson and 3:48.40,
only 0.39% slower compared to 3:47.52 run by Maree. While the same considerations
highlighted above must be taken in account when comparing different races (different
years or racing seasons, different fitness levels), we must also take in account that the 5th
Avenue Mile is slightly net downhill which may explain why both our predictions seem
slower than the actual race times.

The NCAA indoor track time conversion system provides another validity test. The
NCAAconversion factorswere developedusing thousands of race performances, comparing
times of the same athlete in different indoor facilities (Pederson et al., 2012). However, these
conversions do not specifically take in account the exact curve radius of each indoor track.
Rather, the NCAA categorizes them as ‘‘undersized’’ (<200 m per lap, like the Madison
Square Garden track, which is 146.3 m per lap (Attwood, 2012), ‘‘standard’’ (200 m per lap)
and ‘‘oversized’’ (>200m per lap, typically 300m (Pederson et al., 2012). In addition, racing
velocity is accounted for only in terms of male vs. female athletes and in terms of racing
distances. For example, as the racing distance increases from 200 m to 5,000 m, the NCAA

Taboga and Kram (2019), PeerJ, DOI 10.7717/peerj.8222 14/21

https://peerj.com
http://dx.doi.org/10.7717/peerj.8222


Table 3 Comparison of the NCAA conversion factors vs. the current proposed model for 3,000 m and 5,000 m racing distances for males (A)
and females (B). For each distance and for each sex, we identified sample performances on a standard indoor track (200 m per lap, curve radius r =
17.5 m) and converted them to an undersized track (corresponding to the Madison Square Garden indoor track, 146.3 m per lap and r = 11.7 m
(Attwood, 2012) and to an oversized track (300 m per lap, r = 35 m, https://www.pl-linemarking.co.uk/300-metre-track-line-marking.html) using
NCAA conversion tables and our model. Performances are reported in minutes:seconds.hundredths.

A
Males 3,000 m 5,000 m

Undersized indoor track
(1 lap 146.3 m, r = 11.7 m)

NCAA:
8:02.27

Current model:
8:02.28

NCAA:
14:03.29

Current model:
14:03.45

Standard indoor track
(1 lap= 200 m, r = 17.5 m)

8:00.00 14:00.00

Oversized indoor track
(1 lap= 300 m, r = 35 m)

NCAA:
7:54.50

Current model:
7:58.40

NCAA:
13:51.11

Current model:
13:57.63

B
Females 3,000 m 5,000 m

Undersized indoor track
(1 lap 146.3 m, r = 11.7 m)

NCAA:
9:01.03

Current model:
9:01.79

NCAA:
16:01.06

Current model:
16:02.60

Standard indoor track
(1 lap= 200 m, r = 17.5 m)

9:00.00 16:00.00

Oversized indoor track
(1 lap= 300 m, r = 35 m)

NCAA:
8:55.40

Current model:
8:58.79

NCAA:
15:52.66

Current model:
15:58.25

conversion factor from ‘‘oversized’’ to ‘‘standard’’ indoor tracks decreases from 1.0179 to
1.0107 for males, and from 1.0155 to 1.0077 for females. Despite these limitations, we can
compare the NCAA conversions with our model predictions for 3,000 m and 5,000 m for
male (Table 3A) and female (Table 3B) athletes.

Comparing standard 200 m vs. undersized indoor tracks, the difference between our
model and NCAA conversions range from 0.01 s (<0.01%) for males in the 3,000 m, to
1.54 s (0.2%) for females in the 5,000 m. Comparing standard vs. oversized indoor tracks,
the differences between the current model and NCAA conversions range from 3.39 s
(0.63%) for females in the 3,000 m, to 6.52 s (0.78%) for males in the 5,000 m. While both
NCAA conversion tables and our models agree on the overall effect of smaller vs larger
radii on performance (i.e., the larger the radius, the better the overall time), our model
predicts a slightly greater time when going from standard to undersized tracks, while it
predicts smaller time reductions when going from standard to oversized tracks compared
to NCAA conversion tables. These differences could be explained by the fact that NCAA
tables provide an average conversion factor for a given race, independent of the actual
performance of the athlete in that race, while in our model, velocity has a non-linear effect
on the decreased or increased time on tracks of different radii (see Fig. 4).

When Eliud Kipchoge participated in the Breaking 2 attempt, he completed 17.4
laps around the Monza racetrack, totaling 105 curves (note that we divided the ‘‘Curva
parabolica’’ into three sections, but even considering it as one single curve the total
number of curves would still be 71). Our model predicts a trivial 1.52 s time difference
between the Breaking 2 attempt and a marathon run on a straight racecourse. This is
due to the fact that the smallest radius on the Monza racetrack is still 23 m (curve #
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1), a value 31% bigger than the radius of indoor tracks (17.5 m), therefore the velocity
reduction on curves is hardly noticeable. A similar number of curves can be counted
for two of the most famous marathon racecourses: ∼50 curves for the Berlin marathon
(https://www.bmw-berlin-marathon.com/en/your-race/start-course-finish/course/) and
∼70 for the London marathon (https://www.virginmoneylondonmarathon.com/en-
gb/event-info/runner-info/). Even though we could not measure the radii of these curves,
our model predicts that the increased time due to curve negotiation, compared to a straight
racecourse, is negligible and the general perception of the magnitude of the effects of curves
on road racing performance is not supported by our calculations.

Limitations and future studies
Running economy is affected by a multitude of biomechanical factors. In combination
with the axial leg force that drives our model, contact time of the foot with the ground
and the rate of force production (Roberts et al., 1998), antero-posterior ground reaction
forces (Chang & Kram, 1999), stride length (Cavanagh & Kram, 1989) and stride frequency
(Snyder & Farley, 2011) all affect the energetic cost of running. When running at maximum
speed on curves with small radii (r ≤ 6 m), runners increase their contact time, decrease
antero-posterior ground reaction forces and stride length compared to straight running
(Chang & Kram, 2007). It is unclear if these biomechanical differences are maintained
at sub-maximal speeds and at the larger radii. We have no knowledge of studies that
measured biomechanics and/or, more crucially, energetics of curve running that could
validate our model. In the future, we intend to empirically test a key assumption of our
model - that athletes run slower on curves compared to straight portions of a track during
races. Indeed, it is not clear if athletes can accurately sense their speed and metabolic rate
with the precision and time resolution required. It may be that athletes run at the same
speed on straight and curved sections and thus do not maintain a constant metabolic rate.

The data collected by Teunissen, Grabowski & Kram (2007) that allowed us to derive
Eq. (1) were collected at one fairly slow velocity (3m/s) on a treadmill, but to our knowledge
there are no equivalent data for faster running velocities and none for overground running
under different gravity conditions. In addition, we extrapolated Eq. (1) beyond normal
gravity, assuming the same slope is maintained when the average axial force acting on
the runner is increased (Fa> 1BW ). Additional experiments are needed to quantify the
effects of different velocities and increased gravity on Eq. (1) and verify our assumption. In
addition, our model does not distinguish between male and female athletes. While Eq. (1)
can be applied to both male and female athletes, given that Teunissen, Grabowski & Kram
(2007) included both sexes in their study, Eq. (7) was derived for male runners only (Kipp,
Kram & Hoogkamer, 2019). Generally, studies find that males are slightly more economical
than females atmatched absolute running velocities (Daniels & Daniels, 1992). Equation (7)
should therefore be adapted for female athletes with a different set of parameters that take
in account these differences.

Our extrapolation of the Kipp, Kram & Hoogkamer (2019) equation seems reasonable
but it would be preferable to obtain empirical measurements of oxygen uptake or
metabolic rate for elite athletes at faster running speeds that are closer to the world
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record performances. In order to run 42,195 m on the Monza racetrack in a total time
tMonza =7225 s or 5.84 m/s, Eq. (7) predicts that Eliud Kipchoge sustained a rate of
oxygen uptake V̇O2s= 80.87 mlO2/min/kg (see algorithm 2 in Appendix for details). This
incredible value suggests that either that the Pugh (1970) factor for air resistance is too
large or that Kipchoge is much more economical runner that the subjects tested by Kipp,
Kram & Hoogkamer (2019). Fortunately, the absolute value does not affect our calculations
of the effects of curve running.

When we model an athlete transitioning from straight to curved running, such as when
running on a track or on a non-straight road race, we assume that the change in velocity
(from vs to vc and vice-versa) is instantaneous, i.e., there is no deceleration or acceleration
phase between straight and curved portions. This assumption may be reasonable for larger
radii, such as outdoor or indoor racing tracks. If r = 17.5 m, when the velocity on the
straight is vs= 7.00 m/s, the velocity on the curve is reduced to vc = 6.91 m/s, allowing
an athlete to decelerate and re-accelerate in one single step. But, for much smaller radii
(e.g., r = 1 m) when the velocity on the straight is vs= 7.00 m/s, the velocity on the curve
is vc = 4.69 m/s, an athlete would likely need more than one step to decelerate and then
re-accelerate). Non-trivial decelerations and accelerations increase the metabolic cost
of running (Di Prampero et al., 2005) and should therefore be factored into our model,
especially for smaller (<6m) curve radiuses. This approach, while theoretically possible, can
lead to accurate calculations only if the exact values of deceleration and accelerations are
known. Future studies (from video and/or from lab-based measurements) could provide
such information and fill this gap to create a more realistic model.

When an athlete is running on a curve with large radius, even for faster (>7 m/s)
velocities, the increase in axial force Fa is relatively small (see Fig. 1B) and it is reasonable
to assume that, as modeled in this paper, the limiting factor on vc is mainly the metabolic
cost of running. However, at smaller radii the increase in Fa is muchmoremarked (for r = 1
m, when vs= 7.00 m/s and vc = 4.69 m/s, Fa= 2.45 BW). Fa is the axial force calculated
over a full step, assuming a duty factor of 45% (Chang & Kram, 2007) the average force
during contact reaches an even higher value of 2.72 BW. Chang & Kram (2007) measured
velocities and ground reaction forces of recreational athletes sprinting on the straight and
on curves of small (6 m or less) radii. While subjects were able to reach vs= 7.70 m/s on
the straight, the maximum velocity on a curve when r = 1 m was only 2.99 m/s, well below
the velocity predicted by our model. In addition, the peak axial forces reached only 1.87
BW for the inside leg and 2.25 BW for the outside leg. In the Chang & Kram (2007) study,
subjects were instructed to run as fast as possible but only for a very limited amount of
time. Therefore, the maximum velocity they were able to attain on curves was not limited
by metabolic cost, but by other constraints. Chang & Kram (2007) concluded that during
small radius curve sprinting, the ability to generate force, in particular from the inside
leg, limits maximum curve velocity. When athletes run on curves at sub-maximal speeds
(i.e., for a prolonged period of time), it is likely that both mechanisms play roles. When
transitioning from straight to curved running, at larger radii, the main driving factor in the
velocity reduction is maintaining a constant metabolic rate. But, at progressively smaller
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radii, the increase of centripetal, and therefore axial forces, is amplified and velocity is
further reduced as the athlete is limited by his/her ability to generate forces.

A third effect not included in our model is the difference between flat and banked curves.
Equations (1) and (7), in particular, apply only to straight running. When we calculate
the average axial leg force Fa of an athlete running on a curve, we assume that the body
is aligned with Fa (see Fig. 1, inset) and the ankle remains in the sagittal plane, similar to
straightline running. In other words, we assume that the curve is banked and Fa is always
perpendicular to the running surface. Greene (1987) provided evidence that this is the
ideal condition for sprint running and showed that any deviation of the banking angle,
resulting in a misalignment of Fa and the running surface, results in a further reduction of
velocity on the curve vc . For example, if vc=10 m/s and r = 17.5 m, the angle of Fa with the
vertical is 30◦. A sprinter running on a flat (unbanked) curve would slow down by 1.1 m/s
compared to a curve with a 30◦ bank (Greene, 1987). Since this effect is much less important
at distance running velocities (<7 m/s) and for large radii (e.g., Monza racetrack), we did
not account for this further reduction in vc on flat, or non ideally-banked, curves.

CONCLUSIONS
Our model assumes that runners reduce their velocity on curves, compared to straight
running, to maintain a constant metabolic rate for the whole duration of the event. This
reduction is marked for smaller curve radii, such as indoor tracks, and at faster velocities.
The effect becomes negligible, in terms of overall performance, for larger radii and slower
speeds, such as those seen in city marathons. The general perception of the magnitude of
the effects of curves on road racing performance is not supported by our calculations

ACKNOWLEDGEMENTS
The authors thank Brett Kirby, Ph.D. for providing the blueprints of Monza racetrack, and
Owen Beck, Ph.D. and Shalaya Kipp, M.S. for their helpful critiques of an earlier version
of this manuscript.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The University of Colorado Boulder Libraries funded the open access fee through the
institutional arrangement with PeerJ. The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
The University of Colorado Boulder Libraries.

Competing Interests
The authors declare there are no competing interests.

Taboga and Kram (2019), PeerJ, DOI 10.7717/peerj.8222 18/21

https://peerj.com
http://dx.doi.org/10.7717/peerj.8222


Author Contributions
• Paolo Taboga performed the calculations, analyzed the data, contributed materials/-
analysis tools, prepared figures and/or tables, authored or reviewed drafts of the paper,
approved the final draft.
• Rodger Kram conceived as the approach, analyzed the data, authored or reviewed drafts
of the paper, approved the final draft.

Data Availability
The following information was supplied regarding data availability:

Matlab codes to calculate velocity on the curves and to convert from outdoor track to
straight races and indoor tracks are available in the Supplemental Files.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.8222#supplemental-information.

REFERENCES
Alexander RM. 2002. Stability and manoeuvrability of terrestrial vertebrates. Integrative

and Comparative Biology 42:158–164 DOI 10.1093/icb/42.1.158.
Arellano CJ, Kram R. 2014. Partitioning the metabolic cost of human running: a task-by-

task approach. Integrative Biology 54:1084–1098 DOI 10.1093/icb/icu033.
Attwood E. 2012. NCAA institutes indexing system for 2012-13 indoor track and field.

Available at https://www.athleticbusiness.com/ college/ncaa-institutes-indexing-system-
for-2012-13-indoor-track-and-field.html (accessed on 03 January 2019).

Bassett Jr DR, Howley ET. 2000. Limiting factors for maximum oxygen uptake and
determinants of endurance performance.Medicine and Science in Sports and Exercise
32:70–84.

Beck ON, Kipp S, ByrnesWC, Kram R. 2018. Use aerobic energy expenditure instead
of oxygen uptake to quantify exercise intensity and predict endurance performance.
Journal of Applied Physiology 125:672–674 DOI 10.1152/japplphysiol.00940.2017.

Cavanagh PR, Kram R. 1989. Stride length in distance running: velocity, body di-
mensions, and added mass effects.Medicine and Science in Sports and Exercise
21:467–479.

Chang YH, Kram R. 1999.Metabolic cost of generating horizontal forces during human
running. Journal of Applied Physiology 86:1657–1662.

Chang YH, Kram R. 2007. Limitations to maximum running speed on flat curves.
Journal of Experimental Biology 210:971–982 DOI 10.1242/jeb.02728.

Churchill SM, Trewartha G, Bezodis IN, Salo AI. 2016. Force production during
maximal effort bend sprinting: Theory vs reality. Scandinavian Journal of Medicine
& Science in Sports 26:1171–1179 DOI 10.1111/sms.12559.

Coyle EF. 1995. Integration of the physiological factors determining endurance perfor-
mance ability. Exercise and Sport Sciences Reviews 23:25–63.

Taboga and Kram (2019), PeerJ, DOI 10.7717/peerj.8222 19/21

https://peerj.com
http://dx.doi.org/10.7717/peerj.8222#supplemental-information
http://dx.doi.org/10.7717/peerj.8222#supplemental-information
http://dx.doi.org/10.7717/peerj.8222#supplemental-information
http://dx.doi.org/10.1093/icb/42.1.158
http://dx.doi.org/10.1093/icb/icu033
https://www.athleticbusiness.com/college/ncaa-institutes-indexing-system-for-2012-13-indoor-track-and-field.html
https://www.athleticbusiness.com/college/ncaa-institutes-indexing-system-for-2012-13-indoor-track-and-field.html
http://dx.doi.org/10.1152/japplphysiol.00940.2017
http://dx.doi.org/10.1242/jeb.02728
http://dx.doi.org/10.1111/sms.12559
http://dx.doi.org/10.7717/peerj.8222


Daniels J, Daniels N. 1992. Running economy of elite male and elite female runners.
Medicine and Science in Sports and Exercise 24:483–489.

Di Prampero PE, Fusi S, Sepulcri L, Morin JB, Belli A, Antonutto G. 2005. Sprint
running: a new energetic approach. Journal of Experimental Biology 208:2809–2816
DOI 10.1242/jeb.01700.

Ferretti G, Bringard A, Perini R. 2011. An analysis of performance in human lo-
comotion. European Journal of Applied Physiology and Occupational Physiology
111:391–401 DOI 10.1007/s00421-010-1482-y.

Fletcher JR, Esau SP, Macintosh BR. 2009. Economy of running: beyond the mea-
surement of oxygen uptake. Journal of Applied Physiology 107:1918–1922
DOI 10.1152/japplphysiol.00307.2009.

Giovanelli N, Ortiz AL, Henninger K, Kram R. 2016. Energetics of vertical kilome-
ter foot races; is steeper cheaper? Journal of Applied Physiology 120:370–375
DOI 10.1152/japplphysiol.00546.2015.

Greene PR. 1985. Running on flat turns: experiments, theory, and applications. Journal of
Biomechanical Engineering 107:96–103 DOI 10.1115/1.3138542.

Greene PR. 1987. Sprinting with banked turns. Journal of Biomechanics 20:667–680
DOI 10.1016/0021-9290(87)90033-9.

Greene PR, Monheit MA. 1990. Optimal geometry for oval sprint tracks. Journal of
Biomechanics 23:447–452 DOI 10.1016/0021-9290(90)90300-R.

Hamill J, MurphyM, Sussman D. 1987. The effects of track turns on lower extremity
function. Journal of Applied Biomechanics 3:276–286.

Hayati H, Eager D, Jusufi A, Brown T. 2017. A study of rapid tetrapod running and
turning dynamics utilizing inertial measurement units in greyhound sprinting.
ASME DETC 67691, V003T13A006.

HoogkamerW, Kipp S, Spiering BA, Kram R. 2016. Altered running economy directly
translates to altered distance-running performance.Medicine and Science in Sports
and Exercise 48:2175–2180 DOI 10.1249/MSS.0000000000001012.

HoogkamerW, Kram R, Arellano CJ. 2017.How biomechanical improvements in
running economy could break the 2-hour marathon barrier. Sports Medicine
47(2017):1739–1750 DOI 10.1007/s40279-017-0708-0.

HoogkamerW, Snyder KL, Arellano CJ. 2019. Reflecting on Eliud Kipchoge’s
marathon world record: an update to our model of cooperative drafting and
its potential for a sub-2-hour performance. Sports Medicine 49:167–170
DOI 10.1007/s40279-019-01056-2.

HoogkamerW, Taboga P, Kram R. 2014. Applying the cost of generating force hypothe-
sis to uphill running. PeerJ 2:e482 DOI 10.7717/peerj.482.

IAAF. 0000. The measurement of road race courses. Available at https://www.iaaf.org/
download/download?filename=1d445793-24b4-4821-98e4-38fc55b9f8ef.pdf&urlslug=
IAAF%20Road%20Running%20Manual .

IAAF. 2008a. IAAF Track and Field Facilities Manual 2008—chapters 4-8.
IAAF. 2008b. Track and field facilities manual—chapters 1-3.
IAAF. 2018. IAAF Competition Rules 2018-2019.

Taboga and Kram (2019), PeerJ, DOI 10.7717/peerj.8222 20/21

https://peerj.com
http://dx.doi.org/10.1242/jeb.01700
http://dx.doi.org/10.1007/s00421-010-1482-y
http://dx.doi.org/10.1152/japplphysiol.00307.2009
http://dx.doi.org/10.1152/japplphysiol.00546.2015
http://dx.doi.org/10.1115/1.3138542
http://dx.doi.org/10.1016/0021-9290(87)90033-9
http://dx.doi.org/10.1016/0021-9290(90)90300-R
http://dx.doi.org/10.1249/MSS.0000000000001012
http://dx.doi.org/10.1007/s40279-017-0708-0
http://dx.doi.org/10.1007/s40279-019-01056-2
http://dx.doi.org/10.7717/peerj.482
https://www.iaaf.org/download/download?filename=1d445793-24b4-4821-98e4-38fc55b9f8ef.pdf&urlslug=IAAF%20Road%20Running%20Manual
https://www.iaaf.org/download/download?filename=1d445793-24b4-4821-98e4-38fc55b9f8ef.pdf&urlslug=IAAF%20Road%20Running%20Manual
https://www.iaaf.org/download/download?filename=1d445793-24b4-4821-98e4-38fc55b9f8ef.pdf&urlslug=IAAF%20Road%20Running%20Manual
http://dx.doi.org/10.7717/peerj.8222


Joyner MJ. 1991.Modeling: optimal marathon performance on the basis of physiological
factors. Journal of Applied Physiology 70:683–687 DOI 10.1152/jappl.1991.70.2.683.

Joyner MJ, Coyle EF. 2008. Endurance exercise performance: the physiology of champi-
ons. Journal de Physiologie 586:35–44 DOI 10.1113/jphysiol.2007.143834.

Kerdok AE, Biewener AA, McMahon TA,Weyand PG, Herr HM. 2002. Energetics and
mechanics of human running on surfaces of different stiffnesses. Journal of Applied
Physiology 92:469–478 DOI 10.1152/japplphysiol.01164.2000.

Kipp S, ByrnesWC, Kram R. 2018. Calculating metabolic energy expenditure across a
wide range of exercise intensities: the equation matters. Applied Physiology, Nutrition,
and Metabolism’’ 43:639–642 DOI 10.1139/apnm-2017-0781.

Kipp S, Grabowski AM, Kram R. 2018.What determines the metabolic cost of human
running across a wide range of velocities? Journal of Experimental Biology 221
DOI 10.1242/jeb.184218.

Kipp S, Kram R, HoogkamerW. 2019. Extrapolating metabolic savings in run-
ning: implications for performance predictions. Frontiers in Physiology 10:79
DOI 10.3389/fphys.2019.00079.

Kram R, Taylor CR. 1990. Energetics of running: a new perspective. Nature 346:265–267
DOI 10.1038/346265a0.

Luo G, Stefanyshyn D. 2011. Identification of critical traction values for maximum ath-
letic performance. Footwear Science 3:127–138 DOI 10.1080/19424280.2011.639807.

Luo G, Stefanyshyn D. 2012. Limb force and non-sagittal plane joint moments during
maximum-effort curve sprint running in humans. Journal of Experimental Biology
215:4314–4321 DOI 10.1242/jeb.073833.

Pederson K, Larson G, Jones S, Podkaminer B. 2012. Indoor facility indexing for NCAA
running events performances.

Pugh LG. 1970. Oxygen intake in track and treadmill running with observations on the
effect of air resistance. Journal de Physiologie 207:823–835
DOI 10.1113/jphysiol.1970.sp009097.

Roberts TJ, Kram R,Weyand PG, Taylor CR. 1998. Energetics of bipedal running. I.
Metabolic cost of generating force. Journal of Experimental Biology 201:2745–2751.

Shaw AJ, Ingham SA, Folland JP. 2014. The valid measurement of running econ-
omy in runners.Medicine and Science in Sports and Exercise 46:1968–1973
DOI 10.1249/MSS.0000000000000311.

Snyder KL, Farley CT. 2011. Energetically optimal stride frequency in running: the
effects of incline and decline. Journal of Experimental Biology 214:2089–2095
DOI 10.1242/jeb.053157.

Teunissen LP, Grabowski A, Kram R. 2007. Effects of independently altering body
weight and body mass on the metabolic cost of running. Journal of Experimental
Biology 210:4418–4427 DOI 10.1242/jeb.004481.

Usherwood JR,Wilson AM. 2005. Biomechanics: no force limit on greyhound sprint
speed. Nature 438:753–754 DOI 10.1038/438753.

Wilson R, Griffiths I, Legg P, Friswell M, Bidder OR, Halsey LG, Lambertucci EL,
Shepard E. 2013. Turn costs change the value of animal search paths. Ecology Letters
16:1145–1150 DOI 10.1111/ele.12149.

Taboga and Kram (2019), PeerJ, DOI 10.7717/peerj.8222 21/21

https://peerj.com
http://dx.doi.org/10.1152/jappl.1991.70.2.683
http://dx.doi.org/10.1113/jphysiol.2007.143834
http://dx.doi.org/10.1152/japplphysiol.01164.2000
http://dx.doi.org/10.1139/apnm-2017-0781
http://dx.doi.org/10.1242/jeb.184218
http://dx.doi.org/10.3389/fphys.2019.00079
http://dx.doi.org/10.1038/346265a0
http://dx.doi.org/10.1080/19424280.2011.639807
http://dx.doi.org/10.1242/jeb.073833
http://dx.doi.org/10.1113/jphysiol.1970.sp009097
http://dx.doi.org/10.1249/MSS.0000000000000311
http://dx.doi.org/10.1242/jeb.053157
http://dx.doi.org/10.1242/jeb.004481
http://dx.doi.org/10.1038/438753
http://dx.doi.org/10.1111/ele.12149
http://dx.doi.org/10.7717/peerj.8222

