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ABSTRACT

The UCSC Cancer Genomics Browser (https://
genome-cancer.ucsc.edu) comprises a suite of
web-based tools to integrate, visualize and analyze
cancer genomics and clinical data. The browser
displays whole-genome views of genome-wide
experimental measurements for multiple samples
alongside their associated clinical information.
Multiple data sets can be viewed simultaneously as
coordinated ‘heatmap tracks’ to compare across
studies or different data modalities. Users can
order, filter, aggregate, classify and display data
interactively based on any given feature set including
clinical features, annotated biological pathways and
user-contributed collections of genes. Integrated
standard statistical tools provide dynamic quantita-
tive analysis within all available data sets. The
browser hosts a growing body of publicly available
cancer genomics data from a variety of cancer types,
including data generated from the Cancer Genome
Atlas project. Multiple consortiums use the browser
on confidential prepublication data enabled by
private installations. Many new features have been
added, including the hgMicroscope tumor image
viewer, hgSignature for real-time genomic signature
evaluation on any browser track, and ‘PARADIGM’
pathway tracks to display integrative pathway
activities. The browser is integrated with the UCSC
Genome Browser; thus inheriting and integrating the
Genome Browser’s rich set of human biology and
genetics data that enhances the interpretability of
the cancer genomics data.

INTRODUCTION

Cancer is a disease with both genetic and epigenetic
causes. Cancer-associated alterations exploit many differ-
ent molecular mechanisms that disrupt cellular pathways
and result in uncontrolled cell proliferation (1–10). In
recent years, development of high-throughput genomic
technologies has propelled the cancer genomics field into
a rapidly evolving discipline. Large genomic projects,
such as The Cancer Genome Atlas (TCGA, http://
cancergenome.nih.gov/) (11), generate comprehensive
genome-wide data sets including DNA sequence
variants, copy-number alterations (CNA), epigenetic and
transcriptomic changes. Investigators attempt to combine
genomics with clinical information on cancer samples to
catalog genome alterations associated with human
cancers, describe the genomic fingerprints associated
with specific cancer types (12–18), predict response to
therapies (19,20), and develop adaptive strategies to
improve patient care (21,22).
Cancer genomics resources are growing at an unprece-

dented pace (23). However, a comprehensive analysis of
the cancer genome remains a daunting challenge. This is in
part due to the limitations in current technologies to visu-
alize, integrate, compare and analyze cancer genomics
data. Such limitations prevent investigators from truly
appreciating the breadth and depth of these genomics
and epigenomics resources. Just like cancer itself, cancer
genomics data are complex and heterogeneous. Careful
statistical and algorithmic considerations are required to
integrate the information provided by the large volume
and variety of data alongside clinical annotations.
Ultimately, these data and the specific conclusions they
support must be presented in a coherent system for
display and analysis accessible to the scientific and
medical communities.

*To whom correspondence should be addressed. Tel: +831 459 5232; Fax: +831 459 1809; Email: jzhu@soe.ucsc.edu
Correspondence may also be addressed to David Haussler. Tel: +831 459 2105; Fax: +831 459 1809; Email: haussler@soe.ucsc.edu

The authors wish it to be known that, in their opinion, the first four authors should be regarded as joint First Authors.

Published online 8 November 2010 Nucleic Acids Research, 2011, Vol. 39, Database issue D951–D959
doi:10.1093/nar/gkq1113

� The Author(s) 2010. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.



We have developed an open-access web-based
tool called the UCSC Cancer Genomics Browser to facili-
tate the integrative, interactive and versatile display and
the comprehensive analysis of cancer genomics and
clinical data (24). This browser displays a whole-
genome-oriented view of genome-wide experimental meas-
urements for individual and sets of samples/patients as
heatmaps. Clinical features are displayed alongside
the genomics data in a separate but coordinated
heatmap. Investigators interact with the browser to
order, filter, aggregate and display data according to
clinical features, annotated biological pathways or
user-contributed collections of genes. Statistical analyses
can be applied within data sets and displayed graphically
on the browser. A rapidly expanding body of publicly
available cancer genomics studies are organized into
tracks of data on our public website. Investigators may
use the browser over the web or install it locally on
their servers, where security access controls allow user
authentication and restricted access to underlying
features of data sets when it is appropriate to protect
patient privacy or when investigators wish to control
access to their data.
An increasing number of public data sets are curated

and hosted on the website. A significant proportion of
new genomics data comes from the TCGA project,
which is producing a comprehensive knowledge base of
cancer-specific genomic aberrations for the oncology
community. These data will facilitate novel transla-
tional approaches and ultimately accelerate the
development of new cancer diagnostic, prevention and
treatment strategies. The full-scale project aims to
generate data on approximately 25 different types of
cancers. Currently, we host data from the open access
tier consisting of gene expression, DNA copy number,
DNA methylation, miRNA, somatic mutation tracks as
well as the associated clinical data for 467 TCGA
glioblastoma multiforme (GBM) samples (282 tumor,
149 blood-normal, 36 solid-normal) and 1081 serous
ovarian cystadenocarcinoma (OV) samples (543 tumor,
410 blood-normal, 128 solid-normal). PARADIGM
pathway analysis was developed at UCSC (25) to inte-
grate multi-dimensional data such as those from
TCGA. The cancer browser hosts PARADIGM
pathway tracks for TCGA GBM and OV samples on
the public portal.
Since the cancer browser’s initial launch, we have

implemented several new features and upgrades to
enable a more in-depth investigation of additional data
linked to the cancer samples. These features include
an image viewer called hgMicroscope and a genomic
signature calculator and visualization feature called
hgSignature. Several visualization improvements are also
implemented to provide more versatile browsing
capabilities such as a drag-to-zoom chromosomal view,
probe-level mean normalization, a new summary view
and custom tracks.
A video tutorial and user’s guide provide an introduc-

tion on using the UCSC Cancer Genomics Browser, both
accessible on the browser web site.

NEW DATA

TCGA open-access data tracks

The UCSC Cancer Genomics Browser provides a public
portal to visualize, analyze and access TCGA data. We
obtain Level 3 genomic data as well as associated
clinical information from the TCGA Data Repository
(http://tcga-data.nci.nih.gov/tcga/). These data are pro-
cessed and stored in the UCSC Cancer Genomics
Database from which cancer browser tracks are built.
After quality assurance evaluation, the tracks are pub-
lished on the cancer browser portal. We are working
towards an automated processing pipeline that will
support monthly data updates from TCGA Data
Repository.

Each cancer browser track has two components: a
single type of genomic data, such as array-based gene
expression measurements, on a set of samples and the
associated sample clinical information. For example, the
‘TCGA OV Hudson Alpha 1M Duo Copy Number’ track
is the copy number variation data of 512 TCGA ovarian
tumor samples assayed using the Illumina 1M-Duo DNA
Analysis BeadChip at Hudson Alpha and accompanied by
the corresponding clinical information for these samples
(Figure 1). The public browser as of September 2010 hosts
TCGA data consisting of 14 ovarian tracks (2 gene expres-
sion, 4 gene expression tumor versus normal, 5 copy
number variation, 1 DNA methylation, 1 miRNA, 1
PARADIGM activities and 42 clinical variables) and 7
GBM tracks (1 gene expression tumor, 1 gene expression
tumor versus normal, 2 copy number variation, 1 DNA
methylation, 1 miRNA, 1 PARADIGM activities and 26
clinical variables). The information is summarized in
Table 1. Detailed information about each track, such as
source data, sample number and available clinical data,
can be viewed on the track detail page accessed by follow-
ing the track’s hyperlink. All available tracks are listed at
the bottom of the browser page in a fashion similar to the
UCSC Genome Browser, where individual tracks can be
toggled on and off manually.

In addition to displaying TCGA Level 3 genomic data,
we also produce tumor versus normal gene expression
data tracks. For each tumor type, the TCGA project has
transcriptomic data on a handful of adjacent normal
samples that match the tissue of origin of the tumor
type. For ovarian tumor and GBM, these normal
samples are designated as ‘solid tissue normal’ (code 11
in tcga-data.nci.nih.gov/datareports/codeTablesReport
.htm#codeTables). Gene expression data on both types
of samples are generated by the same technology (e.g.
array platform) and by the same genome characterization
center (GCC). By removing the tissue-specific gene expres-
sion pattern, we can focus on the transcriptional differ-
ences in the tumor. To accomplish this, we first generate a
normal expression profile for each gene expression
profiling method (same platform and GCC) by taking
the median of each gene’s expression level measured in
the solid tissue normal data set. Then, we use the appro-
priate normal profile to normalize the tumor expression
data for each gene. Five tumor versus normal gene expres-
sion tracks for ovarian tumor and one for GBM are
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TCGA OV Hudson Alpha 1M Duo Copy Number (N=512)

TCGA OV Integrated Gene Expression (versus normal) (N=524)

Harvard Segmented GBM CGH (N=478)

Broad Affy U133A GBM Expression Tumor versus Normal (N=274)

A

B

C

D

tumor

blood

normal

Figure 1. TCGA GBM and ovarian tumor gene expression and DNA copy number tracks. Copy number tracks by default use red and blue to
represent amplification and deletion, respectively. Gene expression tracks by default use red and green to represent over- and under-expression,
respectively. (A) TCGA ovarian copy number. (B) Ovarian tumor gene expression normalized by solid normal controls. (C) GBM copy number.
(D) GBM gene expression normalized by solid normal controls. Accompanying clinical information is shown on the right of each genomics heatmap.
Clinical values are coded in color and displayed as a yellow-black heatmap. The user can sort samples according to either the genomic or clinical
heatmap by clicking on the feature of interest. For example, in (C) GBM copy number track, GBM samples are sorted by sample type in the order:
blood normal, tumor and solid normal. The GBM genomic heatmap is organized according to the same clinical order, showing copy number
abnormality in tumors, while such abnormality is mostly absent in blood normals and solid normals.
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available on the cancer browser. Figure 1 illustrates the
whole-genome view for the DNA copy number and gene
expression (tumor versus normal) data on TCGA ovarian
and GBM tumor samples. The genome-wide copy number
profile is strikingly different between the two types of
cancers: the ovarian tumor shows large-scale copy
number abnormalities distributed over the entire
genome, while in GBM such abnormalities are largely
localized to certain arms, especially chromosome 7, 10,
13q, 14q and 9p (11). DNA copy number and gene expres-
sion data are visibly correlated at the level of whole
chromosomal arms in ovarian tumor samples. This can
be seen as an amplification/deletion pattern (red/blue) in
the copy number track correlated with the over/under
expression pattern (red/green) in the gene expression
track.
The browser will be updated with data from several

other cancer types as they are generated by TCGA. The
next several cancer types expected are acute myeloid
leukemia, breast carcinoma, colon adenocarcinoma, lung
adenocarcinoma and lung squamous cell carcinoma.

PARADIGM pathway analysis tracks

A major challenge in interpreting high-throughput
multianalyte genomic data sets such as those produced
by TCGA is data integration and/or data interpretation
in the context of biological pathways. In this context,
PARADIGM (PAthway Recognition Algorithm using
Data Integration on Genomic Models) was developed to
infer the activities of genetic pathways by integrating any
number of functional genomic data sets in a patient
sample in the context of genetic pathways (25). Using
the PARADIGM framework one can virtually encode
any genetic pathway and its underlying interactions.
Multianalyte genomics data within each gene are then
integrated by statistical modeling of the central dogma,
i.e. DNA copy number controls RNA expression, which
in turn controls protein level and activity. Genetic inter-
actions between genes and complexes are also encoded to

capture the information flow between molecular entities.
PARADIGM implements a standard factor graph infer-
ence method to compute sample-specific activities for each
pathway entity.

We have developed an automated pipeline to run
PARADIGM analyses using data stored in the cancer
browser database. The activities from each
PARADIGM analysis are stored in a database and repre-
sented as an individual track in the cancer browser. On the
public portal, we currently host two PARADIGM activity
tracks for the TCGA project, one GBM and one OV,
which were generated using copy number and gene expres-
sion (tumor versus normal) data sets as input data. Each
track has around 8000 activities computed from 135
pathways derived from the NCI Pathway Interaction
Database (26). Currently, PARADIGM tracks can be
viewed using specialized PARADIGM genesets that list
all entities in a pathway. Users can find all
PARADIGM genesets by searching for the keyword
‘paradigm’ in the existing genesets search interface. Red
or blue color is used to represent active or repressed
activity levels, respectively. For example,
‘paradigm44_HIF-1-alpha transcription factor network’
is shown to be highly active in a large number of the
TCGA GBM tumor samples (Supplementary Figure
S1A).

Efforts are currently underway to further automate this
pipeline enabling all appropriate data sets to be processed
by PARADIGM on a regular basis as the software and
pathway database are updated.

Additional tracks

The public cancer browser hosts a large collection of data
tracks in addition to the TCGA data sets. Breast cancer
studies are currently the most prevalent in our collection
(14 tracks), including three multianalyte studies each with
a pair of copy number and gene expression tracks on the
sample cell lines or tumor samples (27–30). Other tracks of
note include the ‘Hess Chemo Gene Exp’ study that

Table 1. UCSC Cancer Genomics Browser data track summary

Cancer type Gene
expression

Tumor versus
normal gene
expression

Copy
number

Somatic
mutation

DNA
methylation

miRNA exp PARADIGM
pathway

TCGA GBM 1 (274) 1 (274) 2 (911) 1 (265) 1 (228) 1 (230)
TCGA ovarian 2 (1050) 4 (2104) 5 (3685) 1 track to be released 1 (563) 1 (295) 1 (489)
Breast 5 (514)
Brain 9 (1584) 2 (217)
Colon 1 (105)
Leukemia/Lymphoma 2 (432) 3 (363)
Lung 2 (205) 1 (383)
Melanoma 1 (95) 1 (101)
Ovarian 1 (285) 1 (118)
Pancreas 1 (107) 2 (52)
Multi-tissue 1 (302)
COSMIC 2 (76 tissues)
NCI60 1 (60) 1 (60)
Mouse 2 (142)

Number of tracks by cancer type and data type; number of samples is in parenthesis.
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focuses on chemotherapy response prediction (20), the
‘Miller TP53 Gene Exp’ study on TP53 mutation
associated gene expression profiles (31), and five studies
on breast cancer prognostic predictions (31–35). The
public portal also hosts a number of lung, blood, skin,
brain, ovarian, pancreatic cancer tracks, two COSMIC
tracks (mutation frequency and count per tissue), a pair
of NCI60 tracks (gene expression and copy number) and
two mouse study tracks where the mouse genomics data
were translated into human coordinates for display and
analysis. The detailed summary of tracks and samples by
cancer type and data type is described in Table 1.

NEW FEATURES

hgMicroscope

hgMicroscope a large tumor image viewer based on
VisiGene from the UCSC Genome Browser (36).
hgMicroscope allows users to zoom and pan across
detailed tumor histology images interactively in real time
by preprocessing the large tumor section images into
layered tiles and using a javascript website to provide
tiles on a service-on-demand basis. This provides a
Google Maps-like browsing experience of pathology
samples to enable real-time inspection of high-resolution
images over the web. The novelty of hgMicroscope
compared to other image viewers is its capability to
search and view tumor images according to clinical vari-
ables. All images that fit the search criteria are listed, and
users can quickly click through to view an individual
image. Our image database stores these high-resolution
pathology images as a set of image tiles across seven
levels of abstraction, from low-resolution single image
tiles all the way to full-resolution image tiles. We currently
process all TCGA GBM and OV tumor images
(Aperio-compatible files) downloadable from the TCGA
DCC and store image tiles locally in our database. Users
can access hgMicroscope and the TCGA images by
clicking the ‘Tumor Images’ button at browser top
banner. In addition, these TCGA tumor images can be
accessed from any TCGA genomics track. After a user
defines a subset of samples in the cancer browser, a
single click takes the user to hgMicroscope displaying hist-
ology images from that specific subset of samples.

hgSignature

Genomic technologies such as DNA microarrays measure
levels of tens of thousands of genes in a single experiment.
Results from such experiments have been used to uncover
molecular signatures that could influence clinical care such
as those for disease subtype, response to chemotherapy or
disease outcome. Breast cancer researchers have developed
multiple genomic signatures, mostly identified by micro-
array gene expression profiling (20,31–35,37,38). Many of
these signatures are further developed into commercial
products, such as Oncotype DX (Genomic Health) and
MammaPrint (Agendia) (38).

hgSignature is a new cancer browser feature driven by
the need to evaluate genomic signatures in real-time on
any sample or study of interest. Genomic signatures are

entered by users as mathematical formulas, such as
‘0.83*TP53—2*ESR10. Here the gene names represent
numerical values associated with these genes in a
user-specified data set that is currently being displayed
on the browser. Mathematical operators such as
addition, subtraction, multiplication, division, power and
inverse are implemented enabling a wide range of algebra-
ic expressions. hgSignature computes the signature value
on the fly for all samples in tracks that are being displayed
in the cancer browser. The signature becomes a new
clinical feature that can be sorted, grouped and analyzed
by statistical tests or compared to other clinical features
and genomic data. Figure 2 shows a browser screen shot
of a chemotherapy response signature (supplementary
data), derived from the Hess et al. study (20), and
applied to two gene expression tracks. As a positive
control, when we applied this signature to data from the
original publication (Hess track, 2A), the signature score
is highly correlated with path CR (pathologic complete
response) in 2H, I. When applied to a second track, the
Miller track in 2B (31), the derived signature feature also
visually correlates with the TP53 mutation status (2H, I).
The signature scores also correlate well with estrogen
receptor status in both studies (2J). A quick browser ex-
ploration strongly indicates that these clinical variables
(TP53 somatic mutations, chemo response, ER status
and the genomic signature) are highly correlated. One
can further subgroup the patients into high and low sig-
nature score subgroups, and use the statistical tools on the
browser to ask what genes are differentially expressed
between the two subgroups (Supplementary Figure S2).
hgSignature achieves four goals. First, it provides users

with the capability to upload and evaluate a genomic sig-
nature in real-time without the burden of tedious bioinfor-
matics data preprocessing. Second, it allows exploration
of relationships between signatures and other clinical vari-
ables, e.g. the correlation of a prognostic signature with
TP53 mutation status. Third, it facilitates comparisons of
different signatures on the same samples or the same sig-
nature across multiple studies. Finally, it assists in
genome-wide identification of differential genes based on
a signature.
Genomic signature predictions have been shown to be

sensitive to assay platform, experimental protocol, patient
cohort and data processing methods (39). Signatures that
are used commercially or are under clinical investigation
typically use strict protocols to control for systematic
biases as much as possible, from sample preparation to
data preprocessing, before signature values are
computed. For this reason, caution must be used when
interpreting the results from user-defined signatures.
They are not intended to be a replacement for
well-developed, carefully controlled and clinically
validated diagnostic signatures. Instead they provide a
convenient, fast and interactive means to formulate and
explore hypotheses prior to a more rigorous validation,
taking advantage of the genomics data that are already
curated on the browser portal. As hgSignature is
expanded to interact with various statistical and machine
learning methods that can refine existing signatures or
build their own signatures according to user-defined
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Neoadjuvant Therapy Gene Expression (Hess K. et al. JCO 2006) (N=133)

Gene Expression (Miller et al. 2005) (N=251)

D
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Figure 2. hgSignature screen shot showing application of a user-defined signature to two gene expression tracks in the browser. (A) Hess track.
(B) Miller track. (C) hgSignature user interface, under Genesets view. (D) Clicking the ‘Create Signature’ tab to enter hgSignature. (E) Text input
signature, showing an example. (F) Naming the signature and clicking ‘Validate and add’ to add the signature. (G) List of available signatures,
clicking to recall the content of a specific signature. (H) Chemo response signature score is automatically computed and added to the track clinical
heatmap, and used as a clinical feature. (I) Signature score in H correlates with pathologic complete response (top) and TP53 status (bottom).
(J) Signature score correlates with ER status (top and bottom). (K) Use hgSignature (signature=ERBB2) to pull out ERBB2 gene expression as a
new clinical variable, which can be used to substitute Her2 Status when clinical status is not available. One can also subgroup samples based on
ERBB2 gene expression or any genomic data.
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goals, we expect this facility to become a powerful tool for
cancer genome data exploration.

Proportional summary view

The browser provides three display modes for each data
track: heatmap view, box plot summary view and propor-
tional summary view. In proportional summary view,
genomic data under each probe/gene or clinical feature
are sorted in ascending order (Supplementary Figure
S3A). Proportion view is a simple yet powerful visualiza-
tion modality. For example, the focal amplification on
chromosomal 7 is readily visible in TCGA GBM copy
number data under the whole genomic view, and
zooming to chr7p11 confirms that it is in fact the focal
amplification of the region containing EGFR
(Supplementaary Figure S3B).

Chromosomal view navigation

Exploring data in chromosomal view has been improved
by replacing the previous click-to-zoom method with
drag-to-zoom that allows users to quickly zoom to a
region of interest (Supplementary Figure S3A). The
clicking operation is now reserved for sorting genomic
data. We also provide a search by gene name to jump to
the gene’s locus within chromosome view (Supplementary
Figure S3C).

Heatmap view customization

We have implemented two new heatmap settings to assist
users in customizing track visualization. The ‘gain’ setting
allows the user to change the heatmap color saturation in
real time. Each track begins at an optimized gain setting
determined during data wrangling and curation, but users
may adjust the gain to produce brighter or dimmer
heatmaps. As an added benefit, the gain parameter can
be used to gauge the overall genomic signal for each
study: arrays with less overall signal tend to produce
dimmer heatmap images relative to others with equal
gain settings. The second display setting is a probe-level
data normalization. A subset of microarray gene expres-
sion data available in the public domain is provided
without probe-level normalization, in particular studies
that utilize the Affymetrix array platform. Without
probe normalization, gene expression tracks often show
vertical red and green stripes, representing both biological
and array probe biases. Without appropriate control
samples such as the solid normal samples used in the
TCGA project, one cannot differentiate biologically
relevant patterns from patterns introduced by probe
design or hybridization efficiency. A commonly used
practice to remove these biases is probe-level normaliza-
tion. To this end, we have implemented the ability to
perform dynamic mean-normalization across each probe.
Probe-level normalization provides a simple way for users
to more accurately compare data between data sets on the
browser. These heatmap settings are easily accessed by
clicking on a gear symbol next to the track title
(Supplementary Figure S3D).

Statistical tests

Eight statistical tests are now available for comparing
genomic data between two subgroups of samples,
including student’s t-test, Wilcoxon test and Fisher’s
Exact Test. Detailed information on each statistical test
can be found at https://genome-cancer.soe.ucsc.edu/
cancerGenomics/stats-info/. In association with these
tests, multiple hypotheses P-value adjustments have been
implemented including Bonferonni and Benjamini-
Hochberg false discovery rate (FDR) correction.

Custom tracks

The cancer browser now provides custom track support
via the integrated UCSC Human Genome Browser
custom track mechanism. Users can upload their own
genomic data in UCSC microarray data format
(BED15) by clicking on the ‘Custom Tracks’ tab on the
top banner. After reloading the cancer browser, the
custom data track is automatically displayed as one of
the tracks in the cancer browser. An example custom
track BED15 file is in the supplementary data. Due to
patient privacy concerns, custom clinical data cannot be
uploaded to the public portal at this time.

Architecture of combined common and local databases

In addition to the public portal, the browser can be in-
stalled for confidential or private data for controlled, col-
laborative access. As examples, the browser has been
deployed for the Stand Up to Cancer (SU2C) breast
cancer dream team (https://genome-cancer-su2c.soe.ucsc
.edu/) and the I-SPY consortium (http://tr.nci.nih.gov/
iSpy). Potentially patient-identifiable information such as
germline mutations, confidential clinical information and
the nature of pre-publication data makes such private in-
stallations inevitable. The proliferation of private installa-
tions makes administration of databases supporting each
private browser increasingly impractical. We have imple-
mented a new distributed database architecture that stores
public browser data in a centralized database accessible by
all private cancer browser installations at UCSC while still
allowing private data to be stored in separate, secure data-
bases. On each private cancer browser, all public portal
tracks are displayed seamlessly next to private data,
allowing users to compare their data to the genomics
data sets available on the public browser.

FUTURE DIRECTIONS

We will continue to incorporate new and updated data
from TCGA project and other studies. We will develop
the cancer browser to meet the need to efficiently store,
view and analyze next-generation sequencing data
including those generated by the TCGA project. We will
also develop new viewing capabilities that integrate data
across tracks for multianalyte data, for example view copy
number, gene expression, somatic mutation, DNA methy-
lation and clinical data from the same set of samples side
by side. We will implement additional statistical tools such
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as generation of Kaplan–Meier survival plots for selected
subsets of patients.

CONTACTING US

We have one public moderated mailing list for user
support of the UCSC cancer browser: genome-cancer@
soe.ucsc.edu

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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