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Leveraging a Multi-Omics Strategy 
for Prioritizing Personalized 
Candidate Mutation-Driver Genes: 
A Proof-of-Concept Study
Keyue Ding1,*, Songfeng Wu2,*, Wantao Ying2,*, Qi Pan1, Xiaoyuan Li3, Dachun Zhao4, 
Xianyu Li2, Qing Zhao2, Yunping Zhu2, Hong Ren1 & Xiaohong Qian2

The expression of mutant forms of proteins (e.g., oncogenes and tumor suppressors) has implications 
in cancer biology and clinical practice. Initial efforts have been made to characterize the transcription 
of tumor-mutated alleles; however, few studies have been reported to link tumor-mutated alleles 
to proteomics. We aimed to characterize the transcriptional and translational patterns of tumor-
mutated alleles. We performed whole-exome sequencing, RNA-seq, and proteome profiling in a 
hyper-mutated patient of hepatocellular carcinoma. Using the patient as a model, we show that 
only a small proportion of tumor-mutated alleles were expressed. In this case, 42% and 3.5% of 
the tumor-mutated alleles were identified to be transcribed and translated, respectively. Compared 
with genes with germline variations or without mutations, somatic mutations significantly reduced 
protein expression abundance. Using the transcriptional and translational patterns of tumor-mutated 
alleles, we classified the mutations into four types, and only one type may be associated with the 
liver cancer and lead to hepatocarcinogenesis in the patient. Our results demonstrate how tumor-
mutated alleles are transcribed and translated, and how the expression enables the classification of 
somatic mutations that cause cancer. Leveraging multiple ‘omics’ datasets provides a new avenue for 
understanding patient-specific mutations that underlie carcinogenesis.

With the advent of next-generation sequencing, many cancer-genome sequencing studies have been con-
ducted, e.g., the Cancer Genome Atlas (TCGA), which focused on charactering somatic mutations in 
the cancer genome. One specific aim of these studies is to discover driver genes and mutations that are 
responsible for tumor initiation, maintenance, progression, and metastasis1. However, the process that 
genome protein-coding alterations are transmitted from the genome to the proteome remains unclear, 
which has important implications for cancer-genome sequencing studies; because the mutant forms of 
proteins may be considered as candidate driver mutations/genes and as potential therapeutic targets.

Thus, from multiple omics viewpoints, the processes by which tumor-mutated alleles are transcribed 
from DNA to mRNA and translated from mRNA to protein must be fully characterized. According 
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to previous studies, the proportions that DNA mutations could be transmitted to RNA products were 
similar: 36% in triple-negative breast cancer2, 41% in non-Hodgkin lymphoma3, and 32% in T-cell acute 
lymphoblastic leukemia4. At the protein level, a very low ratio of mutated amino acids was identified in 
86 colorectal tumors5, in which 796 single amino acid variants were detected. Of these variants, only 64 
corresponded to somatic variants reported by TCGA.

Mutated driver genes contain a sufficient number and type of driver gene mutations6. Relatively few 
driver genes/mutations provide selective advantages to tumor cells (i.e., tumor survival and propagation); 
a tumor typically contains two to eight of ‘driver gene’ mutations6. Existing approaches6–9 require a large 
cohort to identify significantly mutated genes. However, individual tumors of the same type have diverse 
genomic architectures due to tumor heterogeneity; therefore, there is an urgent need to classify somatic 
mutations and identify personalized molecular drivers. The challenge remains to discover personalized 
driver genes in cancers and to assess their impact in a patient-specific manners. It is unknown whether 
the expressed somatic mutations at the protein level (i.e., the mutant forms of protein) can be used to 
classify somatic mutations and prioritize personalized candidate driver genes.

In the present study, using a hyper-mutated hepatocellular carcinoma (HCC) patient as a model and 
deep-sequencing of the patient’s exome, transcriptome and proteome, we aimed to investigate 1) how 
tumor-mutated alleles are qualitatively and quantitatively transcribed and translated, 2) how mutant 
allelic fractions are dynamically changed if they are expressed, and 3) the feasibility of classifying somatic 
mutations and prioritizing personalized candidate mutated driver genes in cancer.

Results
The expression of tumor-mutated alleles has implications for cancer biology (e.g., identification of cancer 
driver genes) and clinical practice (e.g., personalized cancer therapy). Here, a hyper-mutated HCC patient 
was used as a model to characterize the transcriptional and translational patterns of tumor-mutated 
alleles.

A hyper-mutated HCC patient. The patient was a 71-year-old man who presented with ‘liver masses’ 
at the Peking Union Medical College Hospital. The patient had a history of hepatitis B virus (HBV) infec-
tion for over 30 years (Table 1). The patient was taking no prescribed medications (e.g., antiviral therapy), 
and he appeared well. An abdominal ultrasound revealed a large mass in the right lobe of the liver. The 
histopathological investigation of a specimen from the surgical liver tumor resection revealed HCC. The 
patient did not have a family history of liver cancer.

By whole-exome sequencing (WES) of the liver cancer and matched cirrhotic tissues (confirmed 
by histopathological review), we identified 4,998 potential non-silent somatic mutations (i.e., missense, 
nonsense, nonstop, and translation start site mutations) in this patient (details of WES are presented 
below). Compared the number of non-silent mutations in the 12 additional HCC tumors sequenced by 
our group (median number of non-silent mutations, 140), there was an approximate 34-fold increasing 
in the prevalence of non-silent mutations in the studied patient. The median number of non-synonymous 
mutations per HCC has been estimated to be 396, which is also significantly less than that observed in the 
studied patient. The prevalence of somatic mutation corresponded with an exceptionally high number of 
non-silent mutations in the patient.

DNA mismatch repair corrects mismatches generated during DNA replication and escape proof-
reading10. Tumors with DNA repair defects may contain more mutations than average11. Among several 
non-silent mutations in DNA mismatch repair genes (Supplementary Table S1), a novel heterozygous 

Patient Reference range

Age (years) 71 y –

HBsAg (+ ) > 250 IU/ml (− ) < 0.05 IU/ml

HBsAb (− ) 0.21 mIU/ml (− ) < 10.0 mIU/ml

HBeAg (− ) 0.24 S/CO (− ) < 1 S/CO

HBeAb (+ ) 0.01 S/CO (− ) > 1 S/CO

HBcAb (+ ) 11.62 S/CO (− ) < 1 S/CO

HBV DNA < 103 copies/ml < 103 copies/ml

HCV Ab (− ) 0.07 S/CO (− ) < 1 S/CO

AFP 3.6 ng/ml 0.00–13.20 ng/ml

CEA 2.11 ng/ml 0.00–5.50 ng/ml

Table 1.  Clinical characteristics of the patient. HBsAg, Hepatitis B surface antigen; HBsAb, Antibody to 
hepatitis B surface antigen; HBeAg, Hepatitis B e antigen; HBeAb, Antibody to hepatitis B e antigen; HBcAb, 
Hepatitis B core antibody; HCV, Hepatitis C virus; AFP, Alpha-fetoprotein; CEA, Carcinoembryonic antigen; 
and S/CO, Sample/cut off.
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nonsense mutation in MSH2 (rs63751099, p.Q10*; chr2:47630358) was noted (Fig.  1a,b) that leads to 
the early termination of MSH2 translation. The site was not covered by RNA-Seq (Fig. 1c), but both the 
wild-type and mutant alleles were transcribed (Fig.  1d,e). Peptides for MSH2 were down-regulated in 
liver cancer tissue compared with cirrhotic tissue (Fig. 1f,g).

The elevated number of non-silent mutations in the patient provided a rich resource of tumor-mutated 
alleles and served as a unique model for exploring the transcriptional and translational patterns of 
tumor-mutated alleles.

WES, RNA-seq and proteome sequencing. For WES, we captured 185,636 exons of 20,965 
genes and sequenced the targeted regions to a mean coverage of 110 ×  (Supplementary Table S2 and 
Supplementary Fig. S1a). The cumulative depth of coverage indicated that at least 99% of the bases within 
the captured regions were covered at least eight times (i.e., depth of coverage ≥  8) (Supplementary Fig. 
S1b). In total, 20,382 somatic point mutations were identified and 4,998 of these classified as potential 
non-silent mutations (Supplementary Fig. S2a)

To reliably and accurately detect variants at the transcriptome and proteome levels, we performed 
RNA-seq (mRNA_R1 and mRNA_R2) and proteome profiling (pro_R1 and pro_R2) on two replicates 
of the liver cancer and matched cirrhotic tissues. A summary of the total number and the mapped reads 
from the RNA-Seq are shown in Supplementary Table S3. Of the 427,455 filtered SNVs in the combined 

Figure 1. A novel nonsense mutation in MSH2. (a) WES identified a nonsense mutation, which was 
confirmed by Sanger sequencing (b). The nonsense mutation was not identified by RNA-Seq (c), but was 
confirmed by Sanger sequencing (d) and droplet digital PCR (e). The arrow indicates the nonsense mutation. 
(f) Mass spectrometry (MS) identified MSH2 peptides in the liver cirrhotic tissue and not in the cancer 
tissue. The inserted table illustrated the MSH2 peptides identified in the cirrhotic tissue by two independent 
MS experiments. (g) Western plot showing a down-regulated expression of MSH2 in the liver cancer tissue, 
compared with the cirrhotic tissue. R1, replicate #1; R2, replicate #2; FAM: 5-carboxyfluorescein; and VIC: 
registered name. PBL, peripheral blood lymphocyte. 
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RNA-Seq datasets (mRNA_R1 +  mRNA_R2), 13,294 SNVs (3.1%) resided within protein coding regions 
(refseq): 7,119 (53.6%) were non-synonymous and 5,896 (44.4%) were synonymous (Supplementary Fig. 
S2b).

For protein identification, the customized protein database constructed from WES and RNA-Seq 
data was used as the reference database. In the combined datasets (pro_R1 +  pro_R2), 1,422,141 spec-
tra were mapped to the sequences (1% FDR at the peptide levels), corresponding to 98,696 unique 
peptides and 9,255 parsimonious proteins. On average, 153.7 spectra per protein, which is signifi-
cantly greater than that previously reported for a single liver sample proteomics study, were identified. 
There were 3,442 identified peptide ions (wide-type or mutant) that covered 1,517 mutation sites 
(Supplementary Table S4).

The catalog of a large number tumor-mutated alleles compiled by deep-sequencing of the patient’s 
exome, transcriptome, and proteome allowed for the investigation of the transcriptional and transla-
tional patterns of tumor-mutated alleles, i.e., to determine whether and how tumor-mutated alleles 
were expressed. If a tumor-mutated allele was expressed, whether the wild-type and mutant allele were 
expressed at the same level could then be determined.

The characteristics of tumor-mutated allele transcription and translation. At the transcription 
level, we removed 18 sites where the allelic forms were not reference homozygous in the cirrhotic tissue, 
thus, 4,980 somatic mutations (in 3,885 genes) were remained. In cases of a transcribed tumor-mutated 
allele, the allelic forms of the mRNA were required to be heterozygous or alternative homozygous in the 
liver cancer tissue and to be reference homozygous (or not covered by RNA-Seq) in the cirrhotic tissue.

Figure 2a illustrates the transcriptional patterns of the tumor-mutated alleles in the combined datasets 
(mRNA_R1 +  mRNA_R2). Notably, 24.7% of the somatic mutations occurred in genes with no observed 
transcripts (n =  1,231, 8.5%) or that were not covered by RNA-Seq reads (n =  806, 16.2%). No allelic effect 
of the tumor-mutated alleles existed if the genes were not expressed in any form. Somatic mutations that 
were not covered by RNA-Seq may result from low transcripts abundance, which was significantly less 
than genes where somatic mutations were covered (Kolmogorov–Smirnov test, p <  2.2 ×  10−16). For the 
remaining sites, only the wild-type allele was transcribed in 33.9% (n =  1,688 in 1,461 genes), where both 
alleles were transcribed in 39.8% (n =  1,981 in 1,683 genes), and only the mutant allele was transcribed in 

Figure 2. The transcriptional and translational patterns of the tumor-mutated alleles. (a) In total, 
41.5% of the tumor-mutated alleles (n =  2061) were transcribed, and (b) 3.5% of the tumor-mutated alleles 
(n =  174) were translated. (c) The mRNA allelic forms for the 455 sites identified at the protein level.
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1.6% (n =  80 in 79 genes) (Fig. 2a). The patterns were similar in the two independent RNA-Seq replicates 
(Supplementary Table S5).

Similarly, for the translation analysis (Fig. 2b), we noted that 90.1% of the somatic mutations occurred 
in genes with no spectrum (n =  2,531) or that were not covered by the mass spectrum (n =  1,994). We 
identified 455 sites (9.1%) of mutated amino acids in the liver cancer tissue that not identified in the 
cirrhotic tissues. Of these sites, only the wild-type alleles were translated in 281 (61.8%), both alleles 
were translated in 134 (29.5%), and only the mutant allele was translated in 40 (8.8%). The allelic mRNA 
forms of the 455 sites identified at the protein level are illustrated in Fig. 2c. Of the 455 sites, 68.8% of 
the tumor-mutated alleles (n =  313) were identified by RNA-Seq, and 38.2% (n =  174) were identified by 
proteome profiling. In other words, without considering unexpressed genes and unidentified sites, we 
found that approximately two-thirds of the tumor-mutated alleles were transcribed, and one-third of the 
alleles were translated.

Dynamic changes in mutant allelic fraction. Theoretically, a heterozygous founder somatic muta-
tion would be present in virtually all tumor cells with a mutation frequency of 50% in diploid cells. 
However, a continuous allelic fraction distribution of somatic mutations for tumor heterogeneity was 
present (Fig. 3a). Obvious dynamic changes of mutant allelic fractions from genome to transcriptome to 
proteome were noted. The allelic fractions of transcribed tumor-mutated alleles (n =  2,061) significantly 
differed with their corresponding genomic sites (Fig.  3b) (Kolmogorov–Smirnov test, p <  2.2 ×  10−16), 
and there was a weak but significant correlation between the allelic fractions (r =  0.39, p <  2.2 ×  10−16) 
(Fig.  3c). Similarly, the allelic fractions of translated tumor-mutated alleles (n =  174) significantly dif-
fered (i.e., with a much wider range) with their counterparts in the transcriptome (p = 2.0 ×  10−6) and 
genome (p =  7.7 ×  10−15) (Fig. 3e). The correlations between allelic fractions in any two of the pairwise 
comparisons are shown in Fig. 3e–g.

We then ascertained whether the wild-type and mutant allele were expressed at the same level (i.e., 
allelic-specific expression, ASE) if a tumor-mutated allele was expressed. Of the 2,781 transcribed 
tumor-mutated alleles, we found a number of 14 genes with a significant bias toward the expression of 
the mutant allele. Among the 14 sites, only three sites were identified at the protein level, but none exhib-
ited significant ASE. Of the 174 translated tumor-mutated alleles, a missense mutation in HIST1H4E 
(NP_003536, p.D86G) had significant ASE; the tumor-mutated allele was identified at the protein level 
(allelic fraction =  0.018, total SC =  667) but not at the mRNA levels (total read depth =  69). These results 
suggested that mutations with ASE at the mRNA level did not necessarily show the corresponding effect 
at the protein level.

The transcriptional and translational patterns of tumor-mutated alleles based on allelic frac-
tions. To avoid the randomization effects, we filtered sites based on a threshold of eight for the site 
depth in WES or RNA-Seq (DP ≥  8), and of three for the spectral count (SC ≥  3) in MS. After filtra-
tion, 257 (in 237 genes) of 455 sites remained for cluster analysis (i.e., grouped the somatic mutations 
according to their expression). Figure  4a presents scatterplot matrix (SPLOM) plots of all combina-
tions of allelic fractions at each level (genome, transcriptome and proteome). In total, 10.5% (n =  27) 
of the tumor-mutated alleles with moderate allelic fractions (0.13–0.53, blue dots; Cluster_nTCM, 
tumor-mutated alleles not transcribed with a moderate allelic fraction) and 17.5% (n =  45) with small 
allelic fractions (0.03–0.11, green dots; Cluster_nTCS) were not transcribed. Furthermore, 12.8% (n =  33) 
of these alleles were transcribed but not translated (black dots; Cluster_nTL, tumor-mutated alleles not 
translated). The remaining 59.1% (n =  152) of the tumor-mutated alleles were present at the protein 
level (red dots; Cluster_TL). The correlation between the allelic fractions at any two of levels, gradually 
decreased from genome to transcriptome to proteome, as expected. Box plots of allelic fractions of the 
four clusters at the different levels (Fig. 4b) indicated that subsets of tumor-mutated alleles were elimi-
nated at transcriptional and translational levels.

Effects of tumor-mutated alleles on protein expression. Tumor-mutated alleles affect gene 
expression at both the transcriptional and translational stage5. To determine the effects of transla-
tional and/or post-translational regulation after correcting for the transcriptional effects, we defined the 
measure of DPRE as the difference in the normalized fold change (FC) of protein and RNA expression 
between liver cancer and cirrhotic tissues. The DPRE only measures the relative protein abundance after 
correcting for variations in RNA abundance. A DPRE >  0 suggested relatively high protein abundance, 
and a DPRE <  0 suggested low expression.

We compared the DPRE values of genes grouped as somatic mutations, germline variations, and 
without mutations. For clarification, the expression level of a given gene (i.e., FC) was required to be 
consistent in the liver cancer and cirrhotic tissues in the two RNA-Seq replicates. We noted that the 
DPRE of genes with somatic mutations (n =  3,351) was significantly less than that of genes with germline 
variations (n =  3,207) (Pro_R1: p =  3.9 ×  10−3, and Pro_R2: p =  5.6 ×  10−4, Kolmogorov-Smirnov test) 
and genes without mutations (n =  11,822) (Pro_R1: p =  5.3 ×  10−13, and Pro_R2: p =  1.4 ×  10−15) 
(Fig. 5). Additionally, the percentage of genes with somatic mutations with DPRE ≤  0 (58%) was signif-
icantly greater than that for genes with germline variations (51%) (Pro_R1: p =  1.2 ×  10−3, and Pro_R2: 
p =  1.7 ×  10−2; χ 2 test) and without mutations (47%) (Pro_R1: p =  2.2 ×  10−4, and Pro_R2: p =  3.8 ×  10−2). 
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These results indicated that tumor-mutated alleles could significantly reduce the protein abundance via 
translational and/or post-translational regulation, especially for genes with somatic mutations.

To investigate the possible mechanisms of expression insufficiency for proteins with somatic muta-
tions, we analyzed the distribution of DPRE for the four clusters shown in Figure  4a. We found that 
Cluster_nTL has the highest percentage of DPRE ≤  0 (69.6%), whereas Cluster_nTCM has the lowest 
percentage (57.1%), suggesting that the protein expression insufficiency was partially caused by the elim-
ination of tumor-mutated alleles. However, we cannot exclude other potential mechanisms (e.g., the 
percentage of DPRE ≤  0 was > 50% in the Cluster_nTCS). We evaluated the possible effects of somatic 
mutations in Cluster_nTL and Cluster_TL on protein stability12. On average, somatic mutations in 
Cluster_nTL destabilized protein more likely (mean Δ Δ G value =  − 0.94) than that in Cluster_TL (mean 
Δ Δ G value =  − 0.81).

Classification of somatic mutations in cancer: prioritizing personalized candidate mutated 
driver genes. The classification of somatic mutations, i.e., identification of potential mutated driver 
genes, especially in a patient-specific manner, is of interest. We proposed a gene-selection strategy to 
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Figure 3. Distribution of the allelic fraction. (a) The allelic fraction of all identified somatic mutations 
(all sites) and non-silent sites identified by WES. The distribution of allelic fraction between all sites and 
non-synonymous sites differed significantly (Kolmogorov-Smirnov test, P <  2.2 ×  10−16). For the transcribed 
tumor-mutated alleles, the distribution of the allelic fractions (b) and correlation (c) between mRNA and 
genome are shown (n =  2061). For translated tumor-mutated alleles, the distribution of the allelic fractions at 
the protein levels and the corresponding genome and transcriptome (n =  174) (d), and the correlation in any 
two of pairwise comparisons (e–g). The y-axis in a, b, and d is the probability density of allelic fraction.
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classify somatic mutations and prioritize personalized mutated driver genes by incorporating the expres-
sion patterns of tumor-mutated alleles and known cancer driver genes as well as by conducting functional 
network analysis. We hypothesized that a personalized candidate mutated driver gene would follow these 
criteria: 1) the tumor-mutated allele would be expressed at the protein level; 2) the allelic fraction of an 
expressed tumor-mutated allele would be comparable at the DNA, mRNA, and protein levels; and 3) the 
given gene would be associated with the liver function and disease (e.g., liver cancer), as extracted from 
Ingenuity Pathway Analysis (IPA).
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Figure 4. Expression patterns of somatic mutations at the transcriptome and proteome levels. (a) A 
scatter plot matrix indicated four categories of somatic mutations according to the allelic fraction. Different 
colors represent different clusters. Cluster_nTCM (blue), tumor-mutated alleles with a moderate allelic 
fraction that were not transcribed; Cluster_nTCS (green), tumor-mutated alleles with a small allelic fraction 
that were not transcribed; and Cluster_nTL (black), tumor-mutated alleles that were not translated; and 
Cluster_TL (red), tumor-mutated alleles that were translated. (b) Boxplot of allelic fractions at different 
levels according to clusters.
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We first investigated the expression of tumor-mutated alleles in known cancer driver genes that 
were summarized in two elegant review articles6,13. Figure  6a summarized how tumor-mutated alleles 
of known cancer drivers were identified at the DNA, mRNA and protein. For example, of the 25 candi-
date driver genes in HCC with recurrent genetic alterations13, somatic mutations were identified in 11 
sites (11 genes). Of these 11 sites, six tumor-mutated alleles of the 10 identified sites (depth of cover-
age ≥  8) were transcribed (Supplementary Table S6). Of three sites identified at the protein level, only 
the mutated allele (p.S247T, NP_000536.5) of HNF1A was translated in addition to the wild-type allele 
(Supplementary Table S6). Therefore, HNF1A was prioritized as a personalized candidate mutated driver 
gene. Similarly, of the 125 previously summarized mutated driver genes6, HNF1A and IDH1 were prior-
itized (Supplementary Table S7).

We cannot exclude the possibility that other mutant forms of proteins may drive the hepatocar-
cinogenesis. Therefore, we analyzed 237 genes used for clustering and incorporated functional pathway 
analysis. At least 10 pathways (45 genes) extracted from the network constructed by Ingenuity® Pathway 
Analysis (IPA, http://www.ingenuity.com/products/ipa) were significantly associated with liver function 
and disease (e.g., liver cancer) (Supplementary Fig. S3a). In the studied patient, of 66 somatic mutations 
in the 45 genes in these pathways, 42 mutated alleles in 32 genes were transcribed, and 26 mutated alleles 
in 24 genes (54 identified sites) were translated (Fig. 6a and Supplementary Table S8). Of the 24 genes, 
four genes (HNF1A, GNMT, FAH, and SPTBN1) were causally related to the occurrence of liver cancer 
(Table 2 and Supplementary Fig. S3b).

In total, five genes (HNF1A, IDH1, FAH, GNMT, and SPTBN1) were prioritized as personalized can-
didate mutated driver genes in the studied patient. These genes were involved in important known cancer 
signaling pathways (e.g., chromatic modification). HNF1A and IDH1 regulate the core cellular process 
of cell fate. HNF1A has a potent inhibitory effect on HCC14, and HNF1A mutation are associated with 
both benign and malignant primary liver cell tumors15. IDH1 mutations have stimulated the burgeoning 
field of tumor metabolism16; these mutations impair histone demethylation and results in a block to 
cell differentiation17. Fah homozygous mutant mice have an increased incidence of HCC18,19. GNMT 
regulates HCC growth in part by modulating mTOR/raptor signaling pathway20,21. Gnmt homozygous 
mutant mice have an increased HCC incidence22. Disrupting TGF-β  signaling through SPTBN1 leads 
to HCC via cyclin D1 activation23, and Sptbn1 heterozygous mutant mice have an increased HCC inci-
dence24,25. Of the five non-synonymous mutations, four were predicted to be damaging by PolyPhen, 
SIFT or MutationAssessor (Fig. 6b). The allelic fractions of the tumor-mutated alleles in these five genes 
indicated that the mutant forms of proteins were expressed at a moderate proportion (Fig. 6c).

Validation of translated tumor-mutated alleles by selected reaction monitoring (SRM). We 
selected 14 translated tumor-mutated alleles for validation using SRM (Supplementary Table S9), includ-
ing three genes (i.e., HNF1A, FAH and SPTBN1) that have been causally related to liver cancer. The 
fractions from which the mutated and wild-type alleles were identified were subjected to SRM analysis 

Figure 5. Empirical cumulative density of the DPRE in genes within three groups: with somatic 
mutations, with germline variations, and without mutations. R1 and R2 are the two independent MS 
experiments, and the two combined RNA-Seq data sets were used to calculate DPRE. The Kolmogorov–
Smirnov test was performed to test whether the distribution of any two of the groups significantly differed. 
The inserted bar chart illustrated the percentage of genes with DPRE ≤  0 in the three groups.

http://www.ingenuity.com/products/ipa
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on a triple quadruple mass spectrometer. At least eight transitions were required (the Skyline software) 
for each SRM measurement. The results showed confident validation for most of the targeted peptides. 
The SRM profiles of the peptides containing the mutated and wild-type amino acid corresponding to 
the mutation in HNF1A (chr12:121431992, NP_000536, p.S247T) are shown in Supplementary Fig. S4.

Discussions
In the present study, using a hyper-mutated HCC patient as a model, we qualitatively and quantitatively 
studied the transmission of tumor-mutated alleles from DNA to RNA to protein, i.e., the transcrip-
tional and translational pattern of tumor-mutated alleles. Our results provided the direct evidence that 
tumor-mutated alleles can be eliminated by translational or post-translational mechanisms, and 42% 
and 3.5% of the tumor-mutated alleles were identified to be transcribed and translated, respectively. 
The transcriptional and translational patterns of tumor-mutated alleles may enable the prioritization of 
personalized candidate mutation-driver genes.

Tumor-mutated alleles were not always expressed as a result of various molecular mechanisms. First, 
tumor-mutated alleles may reside in genes that are not expressed. Second, transcription-coupled repair 
(TCR)26 restores lesions from the transcribed strands of actively transcribed genes faster than from 
non-transcribed strands. Similar TCR mechanism on preferentially somatic mutations has been reported 
previously27,28. Approximately 34% of the somatic mutations were not transcribed due to its allelic effects 

Figure 6. The classification of somatic mutations and prioritization of personalized candidate mutated 
driver genes. (a) The transcription and translation of tumor-mutated alleles in 25 potential HCC driver 
genes13, 125 cancer driver genes6, and 45 genes associated with liver function and diseases extracted from 
IPA. (b) Non-synonymous mutations in the five prioritized genes and their predicted functional impact 
on protein sequence or structure. Probably damaging: it is with high confidence supposed to affect protein 
function or structure; Possible damaging: it is supposed to affect protein function or structure; (c) The allelic 
fractions of five personalized candidate mutated driver genes at the genome, transcriptome, and proteome 
levels.
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on mRNA in the studied patient. Third, by reducing translational efficiency29 or protein stability, somatic 
mutations may negatively impact protein abundance.

The transcriptional and translational patterns of tumor-mutated alleles may enable the classification of 
somatic mutations, i.e., prioritization of personalized mutated driver genes. The proposed gene-selection 
strategy (i.e., tumor-mutated allele expression-based) focused on patient-specific mutations regardless of 
the mutation frequency, wherein genes with expressed tumor-mutated alleles are more likely to be served 
as candidate drug targets for personalized medicine. The strategy builds upon the following rationales: 1) 
near-saturation of the number of frequently altered mutated driver cancer genes occurs6,30; 2) the effect 
of somatic mutations can be determined by expression at the mRNA and/or protein levels; and 3) the 
genes have been implicated to be causally related to cancer development.

We did not identify somatic mutations in TP53 or CTNNB1 (the average depth of coverage was 55 
and 134, respectively), which are frequently mutated (~20%) in HCC31, in the studied patient. Although 
a non-synonymous mutation (chr1 27056157; NP_006006, p.D385N) in ARID1A (mutated in 10–16% of 
HCCs) was identified, the tumor-mutated allele was not transcribed. Our identification may help classify 
somatic mutations based on its expression patterns and indicate the personalized mutated driver genes 
leading to hepatocarcinogenesis in the patient. The novel nonsense mutation in MSH2 was an initiation 
hit (or a ‘trigger’) (as posited in the mutator phenotype hypothesis32), leading to a greatly increased rate 
of genome-wide point mutations33. Using our gene-selection strategy, we selected and prioritized five 
personalized candidate mutated driver genes that may contribute to hepatocarcinogenesis promotion 
and progression. The moderate mutant allelic fraction (0.22–0.57) may have affected the encoded-protein 
structure and function. Additionally, prediction of the consequences of non-synonymous mutations 
in these five genes suggested that these mutations had damaging effects on the protein structure and 
function.

There are several limitations in the present study. A major limitation is the lack of functional valida-
tion of the inferred driver genes, and follow-up functional experiments could strengthen the predictions. 
However, previous studies have suggested that the inferred genes were causally related to liver can-
cer (Table 2). Second, multiple patients are needed to demonstrate the generalizability of the proposed 
method. Third, the mutant allelic fraction requires validation, e.g., by SRM at the protein level34. We 
validated the nonsense mutation in MSH2 by ddPCR and the mutated peptides in HNF1A, SPTBN1, and 
FAH by SRM. The measure of DPRE could be used to prioritize personalized mutated drivers. However, 
we cannot integrate such a measure in the model due to the lack of training data in the present study. 
The inherent deficiencies in current proteome technologies (e.g., the relatively low sequence coverage) 
led to a low percentage of identification of tumor-mutated alleles. In this study, we tried to bypass the 
technological limitations (e.g., sequencing depth and bias) to obtain the reliable results. Of the 455 sites 
identified, MS identified 281 wild-type alleles and 40 mutated alleles. Suppose all wild-type alleles could 
be expressed, the 40 mutated alleles should miss the identification of their wild-type alleles. So, at least 
there are 241 alleles (281-40) whose mutated alleles were not expressed. The significant bias indicated 
that tumor-mutated alleles tending not to be expressed are reliable despite the limitations of proteome 
technologies. It should also be noted that synonymous mutations are very important in cancer, which is 
relevant to translation control and tumorigenicity35.

In conclusion, using a hyper-mutated HCC patient as a model, we found that only a small propor-
tion of the tumor-mutated alleles identified at the DNA level were transcribed and translated. As a 
proof-of-concept, leveraging a multi-omics strategy based on the expression patterns of tumor-mutated 
alleles may enable the classification of somatic mutations and prioritization of personalized candidate 

Symbol Effects Reference

HNF1A
Down regulation of human HNF1A 
mRNA in HCC is associated with 

HCC in human
43

An potent inhibitive effect of 
HNF1α on HCC by inducing the 

differentiation of hepatoma cells into 
mature hepatocytes and G(2)/M arrest

14

FAH Homozygous mutant mouse Fah 
increases incidence of HCC in mouse 18,19

GNMT GNMT is involved in growth of HCC 20

Homozygous mutant mouse Gnmt 
increases incidence of HCC 22

SPTBN1
Heterozygous mutant mouse Sptbn1 
gene increases incidence of HCC in 

mouse
24,25

Table 2.  Genes causally related to liver cancer with mutated alleles expressed at the protein level. HCC, 
hepatocellular carcinoma.
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drivers. Furthermore, identifying the mutated amino acids linked to genomic somatic mutations may be 
beneficial for tumor reclassification and personalized cancer therapy.

Materials and Methods
Whole exome sequencing (WES) and transcriptome sequencing (RNA-Seq). A 71-year-old 
male with hepatitis-B virus (HBV) associated hepatocellular carcinoma (HCC) was seen at the Peking 
Union Medical College Hospital. The patient provided the written informed consent and the Institutional 
Review Board (IRB) office at the Second Affiliated Hospital of Chongqing Medical University approved 
the study. All experiments were performed in accordance with relevant guidelines and regulations. We 
performed WES on the liver cancer tissue, matched cirrhotic tissue (all tissues after surgical resec-
tion were frozen at liquid nitrogen until genomic DNA and total RNA extraction), and whole blood 
banked from this patient. Two independent RNA-Seq experiments were performed on the liver cancer 
and matched cirrhotic tissues. A detailed description of the WES and RNA-Seq are provided in the 
Supplementary materials.

We analyzed WES reads using a pipeline of integrated multiple bioinformatics tools (Supplementary 
Fig. S5). We used MuTect36 for the reliable and accurate identification of somatic point mutations by 
comparing the liver cancer and cirrhotic tissues. Oncotator (www.broadinstitute.org/cancer/cga/onco-
tator) was used to annotate the somatic mutations. The reliable identification of genomic variants from 
RNA-Seq data remains a challenge due to the complexity of the transcriptome. Piskol et al.37 presented 
a highly accurate approach to identify single-nucleotide variants (SNVs) in RNA-Seq data, which was 
modified to identify sequence variants from our RNA-Seq data (Supplementary Fig. S6).

Sanger sequencing, Droplet digital PCR (ddPCR), and Western blot. Traditional Sanger 
sequencing was performed using BigDye terminator chemistries on an ABI 3730xl (Life Technologies® ; 
Carlsbad, CA) sequencer. ddPCR for the nonsense mutation in MSH2 was performed using a Bio-Rad® 
QX100 system. Details for ddPCR and Western blot are available in the Supplementary materials.

Proteome profiling by mass spectrometry (MS). A detailed description of the in-depth proteome 
analysis of the liver tissue samples, including protein extraction and in-solution digestion, serial peptide 
prefractionation by isoelectric focusing (IEF) and high pH reversed-phase chromatography, as well as 
mass spectrometric analysis of the peptide mixture is provided in the Supplementary materials.

Construction of a customized single amino acid variant (SAV) database and MS database 
searching. To increase the power in identifying SAVs at the protein level, we constructed customized 
SAVs database based on matched WES and RNA-Seq data, including germline variations and somatic 
mutations. We included all mutations from the liver cancer and cirrhotic tissues for MS database search-
ing. Database searching [RefSeq +  customized RNA-Seq-based mutation sequences +  contamination pro-
teins (115 proteins, ftp.thegpm.org/fasta/cRAP)] was performed by Mascot for the raw mass spectra files 
(Supplementary materials). The cross-search between the liver cancer and cirrhosis tissues was used to 
obtain paired quantification results. The identified peptides were mapped to the chromosome locations.

Estimation of allelic fraction. To quantify the relative amount of a mutant allele in a heterogene-
ous tumor samples, we used the ‘allelic fraction,’ which is defined as the number of times a mutated 
base is observed divided by the total number of times any base is observed at the locus38,39. Similarly, 
we defined the allelic fraction at the protein level based on the SC of the mutation site. We used the 
expectation-maximization algorithm (the ‘mclust’ package in R, www.r-project.org) to classify allelic 
fractions of DNA, mRNA, and protein into groups.

To test for a bias toward the expression of the wild-type or the mutant allele, we applied Fisher’s 
exact test between the total number of reads and the depth of coverage supporting the wild-type allele 
in the WES, RNA-seq and MS data40. Cases with a false discovery rate (FDR) <  0.05 were considered 
significant.

Effects of translational and post-translational regulation on the expression of mutated 
genes. We estimated the levels of gene expression using ‘cufflinks’41 (i.e., FPKM, reads per kilobase 
of exon model per million mapped reads42). The protein abundance was estimated by XIC for two rep-
licates (R1 and R2) separately. The logarithm of fold change (FC) was used to measure differential gene 
expression between the liver cancer tissue (Expcancer) and cirrhotic tissue (Expcirrhosis), i.e., FC =  log2(Expcan-

cer/Expcirrhosis). To include all data in the analysis, we adjusted the values of 0 and infinity in the division. 
That is, if Expcirrhosis =  0, we defined FC =  10; and if Expcancer =  0, FC =  − 10.

To investigate the effects of translational and post-translational regulation, we corrected for the effects 
of transcriptional regulation on the mRNA levels. We first normalized the FC for transcripts and proteins 
separately, and then defined a measure (DPRE, Difference of normalized fold change of Protein and RNA 
Expression) to quantify the difference of the normalized protein and mRNA expression levels as:

http://www.broadinstitute.org/cancer/cga/oncotator
http://www.broadinstitute.org/cancer/cga/oncotator
http://www.r-project.org
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DPRE =  Protein(Normalized FC)-mRNA(Normalized FC), where
Normalized FC =  [FC-median(FC)]/[Q3(FC)-Q3(FC)], and Q3(FC) and Q1(FC) are the upper and 

lower quantile of the FC, respectively.

Variants selected for validation by selected reaction monitoring (SRM). We selected 14 
sites which tumor-mutated alleles were identified at the protein levels for further validation by SRM 
(Supplementary Table S9). Detailed methods are available in the Supplementary Materials.
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