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Abstract

The phosphatidylinositol 3-kinase (PI3K) signaling pathway regulates many important cellular 

functions. The functional impact of deregulating the PIK3CA gene, encoding the p110α catalytic 

subunit of PI3K, is validated by frequent gain of function mutations in a range of human cancers. 

We generated a mouse model with an inducible constitutively active form of PI3K. In this model 

Cre recombinase activates expression of a myristoylated form of p110α (myr-p110α). The 

myristoylated version of p110α brings the protein to the cytoplasmic side of the cell membrane, 

which mimics the normal activation mechanism for the p110α catalytic subunit and activates the 

PI3K enzyme. Constitutively activated PI3K signaling induced by myr-p110α in all cells of the 

developing mouse caused lethality during embryonic development. Transgenic Cre;myr-p110α 

heterozygous embryos displayed morphological malformation and poor vascular development 

with extremely dilated blood vessels and hemorrhage in the embryo and the extraembryonic yolk 

sac. Previous studies demonstrated that loss of p110α during embryonic development causes 

angiogenic disruption and here we show that constitutive activation of p110α by gain of function 

mutation during development also disrupts vasculogenesis/angiogenesis in what appears to be a 
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similar manner. These finding demonstrate the importance of tight regulation of PI3K signaling 
during embryonic vasculogenesis/angiogenesis..
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1 Introduction

The phosphatidylinositol 3-kinase (PI3K) signaling pathway controls a range of fundamental 

cellular processes involving metabolism, growth, proliferation, and survival signaling in 

response to a variety of extracellular stimuli [1-3]. The PI3K isoforms in mammalian cells 

can be divided into class I, II, and III, based on their structural characteristics, substrate 

specificity, distribution, mechanisms of activation, and functions [4-6]. Based on different 

associated adaptors and the mechanism of PI3K activation, class I PI3Ks are further 

classified into class IA and IB PI3Ks [4-6]. Although signaling through all classes of PI3Ks 

have key regulatory roles in many cellular processes, only class IA enzymes are implicated 

in human cancers. Class IA PI3Ks are heterodimers of a p85 regulatory subunit and a p110 

catalytic subunit [4-7].

In the basal state, the p110 catalytic subunit is bound to the p85 regulatory subunit through 

its N-terminus and its catalytic activity is kept at a low state [6,7]. Upon the appropriate 

ligand binding on the extracellular domain of cell surface receptors, such as receptor 

tyrosine kinases (RTKs) and G protein-coupled receptors (GPCRs), the receptors are 

phosphorylated and activated [8]. The p85α regulatory subunit binds to activated RTKs, 

causing conformational changes that release the inhibitory interaction of p85α on p110α and 

lead to anchorage of the p85α/p110α complex to the cell membrane where PI3K is active 

[9-11]. Membrane-localized PI3K catalyzes the production of phosphatidylinositol-3,4,5-

trisphosphate (PIP3) at the plasma membrane. PIP3 is an important signal for many cellular 

mechanisms and facilitates the recruitment of many proteins including the serine/threonine 

kinase AKT to the membrane via binding to their pleckstrin homology (PH) domain [1]. 

Membrane-bound AKT becomes fully active through phosphorylation at Thr308 and Ser473 

by 3-phosphoinositide-dependent kinase (PDK1) and mammalian target of rapamycin 

complex 2 (mTORC2) [12,13]. Activated AKT phosphorylates a range of downstream 

substrates, thereby activating or inhibiting these targets, and diversifying the PI3K signal 

into various functional outcomes.

The binding of p85α to p110α is necessary and sufficient for stabilization and inhibition of 

p110α catalytic activity by sequestering p110α away from the cell membrane [6, 7, 14, 15]. 

In addition to regulation of p110α catalytic activity by p85α subunit, the tumor suppressor 

gene PTEN acts as the most important negative regulator of the PI3K signaling pathway. 

PTEN is a protein/lipid phosphatase that antagonizes PI3K activity by dephosphorylation of 

PIP3 to phosphatidylinositol-4,5-bisphosphate (PIP2). Loss of PTEN function results in the 

accumulation of PIP3, sustaining the activation of PI3K signaling [16].
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The catalytic activity of p110α depends on association with the cell membrane and access to 

stores of the membrane-bound PIP2 substrate, and inhibition of p110α by p85α activity 

involves separation from the cell membrane. Therefore, the membrane localization of p110α 

is sufficient and necessary for its enzyme activity and associated activation of downstream 

kinase pathways [17-19]. Myristoylation of proteins strongly links a protein to the cell 

membrane [20]. It has been shown that expression of a myristoylated p110α (myr-p110α) 

constitutively activates the catalytic kinase activity of PI3K, similar to the active mutants of 

p110α [21,22]. A myristoylated p110α construct causes increased AKT phosphorylation and 

malignant cellular transformation [19,22-25].

The PI3K/AKT signaling pathway is important for proper development of the circulatory 

system [26], and the formation of blood vessels is essential for normal embryonic 

development [27]. The vascular endothelial growth factor (VEGF) is a primary inducer of 

angiogenesis. The PI3K/AKT signaling cascade plays an important role in regulating 

vasculogenesis and angiogenesis by mediating expression of hypoxia-inducible factor α 

(HIF-1α) and VEGF in tissues in response to growth factors and other signals, including 

hypoxia [28]. Increased signaling of PI3K and AKT increases VEGF mRNA and is 

sufficient to induce angiogenesis through elevating HIF-1α and VEGF expression levels 

[28,29]. Inhibition of the PI3K signaling pathway reduces VEGF expression and interferes 

with vasculogenesis and angiogenesis [30], resulting in severe defects in vascular sprouting 

and remodeling [31].

In order to investigate the impact of constitutively active p110α during development, we 

have generated a mouse strain with Cre-inducible PI3K activity by insertion of a myr-p110α 

as a transgene under Cre-dependent control at the Rosa26 locus. Mouse embryos that had 

Cre-mediated recombination of myr-p110α transgene in very early stages of embryo 

development show that membrane-targeted myr-p110α expression caused embryonic 

lethality, increased PI3K activity, and activation of downstream AKT signaling pathway 

despite increased active PTEN that is opposing the accumulation of the PIP3 second 

messenger.

2 Experimental Procedures

2.1 Generation of Cre-Inducible Rosa26-myr-p110α construct

pCAG-Myr-p110-IH plasmid, which contains a myristoylated form of murine PIK3CA 
(p110α) cDNA under the control of CAG promoter, was purchased from Addgene (Plasmid 

15689) [32]. The activating mutation was generated by addition of the avian src 

myristoylation sequence (MGSSKSKPK) at the N-terminus of p110α. The NheI-XhoI 

linearized fragment containing myristoylated PIK3CA (myr-p110α) cDNA was inserted into 

the intermediary vector (pCR2.1-TOPO vector). Amplified myr-p110α cDNA NheI-XhoI 

cut fragment was subcloned into the corresponding sites of pBTG vector to generate PGK-

Neo-tpA-myr-p110α-IRES-eGFP construct. pBTG (pBigT-IRES-GFP, DM#268), which 

contains a STOP cassette flanked by two loxP sites, an internal ribosome entry site (IRES), 

and downstream enhanced green fluorescent protein (eGFP), was purchased from Addgene 

(Plasmid 15037) [33]. Shuttle vectors containing PGK-Neo-tpA-myr-p110α-IRES-eGFP 

cassette was inserted into the PacI-AcsI linearized pRosa26 modified targeting vector 
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(pRosa26PAm1, DM#272, Addgene plasmid 15036) [33]. The resulting myr-p110α 

construct in the backbone of the pRosa26 targeting vector including both 5′ and 3′ Rosa26 
targeting arms as well as PGK-DTA negative selection marker was used to generate a 

transgenic mouse. Each construct was confirmed by restriction enzyme mapping and DNA 

sequencing.

2.2 Electroporation of mouse embryonic stem cells and screening for correct targeting

Mouse embryonic stem (ES) cells were cultured on mouse embryo fibroblasts in culture 

medium (Dulbecco’s modified Eagle medium (DMEM), supplemented with 15% Fetal 

Bovine Serum, 0.5 mM non-essential amino acids, 1 mM sodium pyruvate, 2 mM L-

glutamine, 0.1 mM β-mercaptoethanol, and 8.3 ng/mL mouse recombinant leukemia 

inhibitory factor). The targeting vector was linearized by SwaI cut. Linearized DNA was 

purified via phenol:chloroform extraction and ethanol precipitation. 20 μg of linearized 

transgene cDNA construct, 5′ Rosa26-PGK-Neo-tpA-myr-p110α-IRES-EGFP-3′ Rosa26, 

was electroporated into the Rosa26 locus of mouse ES cells (approximately 15 × 106 cells). 

Transfected ES cells were grown with feeders under selection in 180 μg/ml G418 for eleven 

days. Antibiotic resistant ES cell colonies with good morphology were screened by PCR 

amplifying across the 5′ recombination junction, using three oligonucleotides: Rosa26-5F 

forward primer 5′-AAAGTCGCTCTGAGTTGTTAT-3′, Rosa26-3R reverse primer 5′-

GGAGCGGGAGAAATGGATATG-3′, and SA-R2 reverse primer 5′-

GCGAAGAGTTTGTCCTCAACC-3′. After initial denaturation at 94°C for 3 minutes, 30 

cycles of PCR were performed with denaturation at 94°C for 30 seconds, annealing at 56°C 

for 45 seconds, and extension at 72°C for 45 seconds using a Bio-Rad S1000 Thermal 

cycler. The last extension was at 72°C for 7 minutes. The product size genotyped by PCR 

using three oligonucleotides is 602 bp in wild type and 314 bp in a targeted allele.

2.3 Genomic DNA Southern blot

Genomic Southern blot hybridization was performed on genomic DNAs from ES cells 

digested with EcoRI. Digested genomic DNA was separated on a 0.8% agarose gel at 34mV 

overnight and alkaline transferred to a positively charged nylon membrane (Roche, 

11417240001). A 593 bp DIG-labeled DNA probe targeting the Rosa26 locus of the 5′ side 

of the targeted insertion site was amplified using the PCR DIG Probe Synthesis Kit (Roche, 

11630090910) and a set of primers: 5′-ACGAATATTTGGAATTTGGTATTTG-3′ and 5′-

ACACTAATGAACTTTAAGTCCTGTGAA-3′, and used for Southern blot analysis. The 5′ 

probe was used to detect a 15.6 kb wild type band and a 4.3 kb targeted band, due to the 

presence of an extra EcoRI site in the targeted allele. All procedures for the DIG application 

system (Roche, 11585762001) were performed according to the manufacturer’s 

recommendations.

2.4 Generation of transgenic mice and genotyping by PCR

The selected ES colonies were expanded and injected into C57BL/6 mouse blastocysts. 

Embryos were implanted into the uterus of pseudopregnant CD1 females. Chimeric mice 

were generated and mated with C57BL/6 wild type mice. Transgenic mice carrying the 

targeted allele were identified by inspecting genomic DNA purified from tail using PCR 

with three primers: Rosa26-5F forward primer, Rosa26-3R reverse primer, and SA-R2 
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reverse primer. The animal study protocol was reviewed and approved by the institutional 

animal care and use committee (IACUC) of Geisel Medical School at Dartmouth.

2.5 Genotyping and phenotypic analysis of mouse embryo

To determine the effect of global embryonic expression of myr-p110α, CMV-Cre mice 

(BALB/c-Tg(CMV-cre)1Cgn/J, The Jackson Laboratory) were mated with transgenic mice 

harboring myr-p110α. Timed pregnant females were euthanized, and the uterine horns 

carrying the embryos were removed. Each embryo and its respective placenta were separated 

and dissected from the uterus, and put into small tissue culture dishes containing sterile 

phosphate-buffered saline (PBS). Yolk sac membranes were removed for genotype analysis 

by PCR. The presence of Cre recombinase gene (Cre) in embryos was detected by PCR 

amplification of a 100 bp fragment using a pair of oligonucleotides: Cre forward primer 5′-

GCGGTCTGGCAGTAAAAACTATC-3′ and Cre reverse primer 5′-

GTGAAACAGCATTGCTGTCACTT-3′. The transgene excision mediated by Cre 

recombinase was screened by PCR analysis to amplify 503 bp using a pair of primers: 

Rosa26-5F forward primer 5′-AAAGTCGCTCTGAGTTGTTAT-3′ and myr-p110α-R2 

reverse primer 5′-ATGGTCGTGGAGGCATTCTA-3′ or to amplify 364 bp using a pair of 

primers: Rosa26-5F-3 forward primer 5′-GAGTTCTCTGCTGCCTCCTG-3′ and myr-

p110α-R1 reverse primer 5′-CTCTTGCTGCTCCCCATAAG-3′. After initial denaturation at 

94°C for 3 minutes, 30 cycles of PCR were performed with denaturation at 94°C for 30 

seconds, annealing at 56°C for 45 seconds, and extension at 72°C for 45 seconds, followed 

by the last extension at 72°C for 3 minutes. Pictures of each embryo were taken using the 

LEICA MZ16 stereomicroscope and QCapturepro software. The GFP image of whole 

embryo body was analyzed using Zeiss Stemi SV11 Apo upright fluorescence 

stereomicroscope equipped with fluorescent source and captured using a Zeiss AxioCam 

MRm camera and AxioVision Rel 4.4 image program. Whole embryos were fixed in 10% 

buffered formalin in PBS (Electron Microscopy Sciences, 15740-01) and then paraffin-

embedded or cryopreserved for histopathological examinations. The Cre;myr-p110α 

embryos referred to as myr-p110α heterozygotes are expressing both myr-p110α and Cre.

2.6 Mouse embryo sex determination

The genomic DNA was extracted from yolk sacs of embryos as a lysate through proteinase 

K digestion at 55°C for 1 hour. Sex was confirmed by multiplex PCR for the male-specific 

gene SRY (sex determination region on the Y chromosome responsible for testes formation) 

and the autosomal gene myogenin (Myog). Primers specific for the SRY gene are mSry-F 5′-

TCATGAGACTGCCAACCACAG-3′ and mSry-R 5′-CATGACCACCACCACCACCAA-3′ 

and primers specific for the myogenin gene are mMyog-F 5′-

TTACGTCCATCGTGGACAGC-3′ and mMyog-R 5′-TGGGCTGGGTGTTAGTCTTA-3′. 

After initial denaturation at 94°C for 5 minutes, 30 cycles of PCR were performed with 

denaturation at 94°C for 30 seconds, annealing at 66°C (for SRY) or 57°C (for Myog) for 45 

seconds, and extension at 72°C for 45 seconds on a Bio-Rad S1000 Thermal cycler. The last 

extension was at 72°C for 3 minutes. PCR products were electrophoresed on 1.5% agarose 

gels at 100V and visualized with ethidium bromide under UV illumination.
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2.7 Hematoxylin and eosin (H&E) stain

Mouse embryos were fixed in 10% buffered formalin. Paraffin-embedded or cryopreserved 

tissues were sectioned at 6 μm according to standard protocols. Sections were stained with 

hematoxylin and eosin (H&E) following the manufacturer’s protocol and mounted with 

Permount (Fisher scientific, SP15-100). Images were obtained on the Olympus BX5.1 

microscope, and captured using Image Pro software.

2.8 Immunohistochemistry

For PECAM-1 staining, mouse embryos were fixed in 10% buffered formalin overnight. All 

embryos were paraffin embedded and sectioned at 6 μm according to standard protocols. 

Paraffin sections were baked overnight at 60°C, deparaffinized in xylene, rehydrated, and 

washed with PBS. Antigen retrieval was performed with sodium citrate buffer (10mM 

Sodium Citrate, 0.05% Tween 20, pH 6.0) in a pressure steamer (100°C for 10 minutes). 

Endogenous peroxide activity was quenched with 3% hydrogen peroxide in methanol for 10 

min at room temperature and incubated in matched normal sera (Vector Laboratories, 

Burlingame, CA). Sections were immunostained with anti-PECAM-1 antibody (Abcam, 

ab28364, dilution 1:50) following the manufacturer’s protocol. The biotinylated secondary 

antibody was added to amplify signals, sequentially followed by addition of horseradish 

peroxidase-avidin conjugated antibody. The Vectastain Peroxidase ABC kit (Vector 

Laboratories, PK-6101, PK-4002, PK-6105) was applied as described by the manufacturer 

for visualization of PECAM-1 antigen by the development of peroxidase substrate. Sections 

were counterstained with Gill’s hematoxylin (Vector Laboratories, H-3401) and mounted 

with Permount. PECAM-1 immunostainings are visualized as brown colors. Images were 

obtained and captured by using the Olympus BX5.1 microscope and Image Pro software.

2.9 cDNA preparation and quantitative real-time reverse transcriptase-polymerase chain 
reaction (qRT-PCR)

Total RNA from mouse embryos was isolated using RNeasy kit (Qiagen) following 

manufacturer’s protocol. Total RNA was reverse-transcribed using the iScript™ cDNA 

synthesis kit for RT-PCR (Bio-Rad, 170-8891) according to the manufacturer’s instructions. 

The cDNA was quantified by RT-PCR on the ABI Prism 7900 Sequence Detection System 

(Applied Biosystems, Foster City, CA). PCR was performed using iQ™ SYBR® Green 

supermix reagents (Bio-Rad, 170-8882) with the following conditions: 95°C 60 seconds (1 

cycle); 95°C for 30 seconds, 60°C for 30 seconds, and 72°C for 40 seconds (34 cycles). 

GAPDH was used as the reference control for normalization of the target genes. Each 

sample was run in triplicate and each PCR experiment included three non-template control 

wells. Quantitative real-time RT-PCR products were approximately in the range of 120–150 

base pairs in length. To ensure the quality of all the primers, the dissociation curves were 

examined to confirm that no nonspecific bands arose with the primers. The threshold cycles 

(CT) were recorded for all samples for both the target gene and the reference. Relative 

expression values were calculated as the messenger RNA amount of each gene relative to 

that of GAPDH by the 2−ΔΔC
T method. The gene-specific primer sequences were designed 

between different exons to avoid genomic DNA contamination. Primers used for the analysis 

were as follows: lmHIF-1α-F: 5′-GCAGCAGGAATTGGAACATT-3′, rmHIF-1α-R: 5′-
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GCATGCTAAATCGGAGGGTA-3′, lmHIF-1β-F: 5′-TCTCCCTCCCAGATGATGAC-3′, 

rmHIF-1β-R: 5′-CAATGTTGTGTCGGGAGATG-3′, lmVEGFA-F: 5′-

CAGGCTGCTGTAACGATGAA-3′, rmVEGFA-R: 5′-GCATTCACATCTGCTGTGCT-3′, 

lmGAPDH-F: 5′-AACTTTGGCATTGTGGAAGG-3′, and rmGAPDH-R: 5′-

GGATGCAGGGATGATGTTCT-3′.

2.10 Protein preparation and Western blot

Mouse embryos and cultured primary mouse embryonic fibroblasts (pMEFs) were lysed in 

ice-cold lysis buffer containing 50 mM Tris-HCl (pH 7.4), 150 mM NaCl, 1% Triton X-100, 

0.1% SDS, 1mM NaVO4, and protease inhibitor cocktail (Roche, 11836170001) and 

phosphatase inhibitor cocktail (Sigma, P5726). Protein lysates were cleared by 

centrifugation and quantified by Bradford assay. 30 μg of protein lysates were separated on 

9% SDS-PAGE gels under denaturing conditions and then transferred to Immobilon-P 

transfer membranes (Millipore, IPVH00010). The membranes were blocked with 5% non-fat 

skim milk in Tris-buffered saline (TBS)-0.1% Tween 20 (TBS-T) for 1 hour and washed 

according to standard protocols. The membranes were incubated with primary antibodies 

diluted in 5% non-fat skim milk or bovine serum albumin (for phosphorylated antibody) of 

TBS-T overnight at 4°C. Primary antibodies are as follows: anti-p110α (Cell Signaling 

technology, 4249, dilution 1:4 000), anti-AKT (anti-AKT1/2/3, Cell Signaling technology, 

4691, dilution 1:5,000), anti-p-AKT Ser473 (anti-p-AKT1/2/3 Ser473, Cell Signaling 

technology, 4060, dilution 1:5 000), anti-p85α (Santa cruz biotech, sc-1637, dilution 1:2 

000), anti-PTEN (Cell Signaling technology, 9559, dilution 1:4 000), anti-p-PTEN Ser 

380/Thr 382/383 (Santa cruz biotech, sc-101789, dilution 1:4 000), anti-GFP (Santa cruz 

biotech, sc-9996, dilution 1:2 000), and HRP-conjugated anti-β-Actin (Abcam, ab49900, 

dilution 1:30 000). After rinsing with TBS-T, the membranes were incubated with anti-rabbit 

(Santa cruz biotech, sc-2313, dilution 1:5 000) or anti-mouse (Santa cruz biotech, sc-2060, 

dilution 1:5 000) secondary antibody conjugated with horseradish peroxidase diluted in 5% 

non-fat skim milk of TBS-T for 1 hour at room temperature. After rinsing with TBS-T 

several times, immunoreactive proteins were detected by using chemiluminescence ECL 

(Santa cruz biotech Western Blotting Luminol Reagent, sc-2048) and membranes exposed to 

film. Western blots were quantified using Quantity One software (Bio-Rad) and normalized 

with respect to β-actin expression.

2.11 Preparation of primary mouse embryonic fibroblast cells and fluorescence imaging

Mouse embryos at E12.5 day post coitum were dissected in 5 ml sterile Dulbecco’s 

phosphate buffered saline (DPBS) in a 100-mm tissue culture dish. Head and internal organs 

from the abdominal cavity were removed. After rinsing with 10 ml DPBS, the embryo was 

transferred to a clean 100-mm tissue culture dish and dissociated by aspirating into a 3-ml 

syringe through an 18-G needle. The dissociated contents were placed in tissue culture 

dishes containing DMEM supplemented with 10% (v/v) Fetal Bovine Serum, 1X penicillin/

streptomycin, and 200 mM L-glutamine and cultured in a 37°C gassed (5% CO2) incubator. 

For fluorescence imaging, pMEF cells were cultured overnight on cover slips in complete 

DMEM medium. The coverslips were washed with PBS and fixed with 0.4% 

paraformaldehyde in PBS for 5 minutes at room temperature. After fixation, pMEFs on the 

coverslips were washed three times with PBS and permeabilized with 0.1% Triton X-100 
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and 0.1% sodium citrate for 5 minutes at room temperature. Then the coverslips were 

washed three times with PBS after permeabilization and incubated with Hoechst 33342 

nucleic acid counterstain (Molecular Probes, H3570) to visualize nuclei and slides were 

mounted with PermaFluor (Thermo Scientific, TA-030-FM). The enhanced green 

fluorescent protein (eGFP) signals without enzyme-based amplification and Hoechst 33342 

signals were analyzed under the fluorescence Olympus BX5.1 microscope, and images were 

captured using Image Pro software.

2.12 Statistical analysis

Statistical differences between control and experimental groups analyzed for real-time qRT-

PCR and Western blot were determined by two-tailed unpaired Student’s t-test. Data 

analysis was performed using the GraphPad Prism 5.0 software. Graphs in figures denoted 

statistical significance of *p < 0.05, **p < 0.01, and ***p < 0.001. p > 0.05 was considered 

non-significant (ns). Error bars represented as standard error of the mean (SEM).

3 Results

3.1 Construction of Rosa26-myr-p110α targeting vector and generation of Cre-inducible 
myr-p110α mice

The homologous recombination construct used to insert Cre-activatable myr-p110α into the 

Rosa26 locus was generated by addition of the avian src myristoylation sequence 

(MGSSKSKPK) at the NH2 terminus of PIK3CA cDNA, encoding p110α. Targeted 

insertion in the Rosa26 locus was utilized to express the transgene ubiquitously in 

embryonic and adult mice [34]. The myr-p110α construct in the pRosa26 targeting vector 

was recombined via gene targeting into the endogenous Rosa26 locus (Figure 1A). The 

presence of floxed PGK-neo with its polyA site blocks expression of the transgene from the 

endogenous Rosa26 promoter. Cre-mediated removal of the PGK-neo-polyA cassette links 

Rosa26 exon 1 to myr-p110α. As the endogenous Rosa26 transcripts are not translated into 

protein, the first start codon in the myr-p110α is used for initiation of translation, and thus 

myr-p110α is expressed. The presence of IRES-eGFP in the message mediates expression of 

eGFP, which identifies cells that are expressing myr-p110α. Since Rosa26 is ubiquitously 

expressed [34] so myr-p110α should be expressed in any cell derived from a Cre-expressing 

progenitor. This system enables temporal and tissue specific Cre-regulated control of myr-

p110α expression.

The correct integration of this construct into mouse embryonic stem (ES) cells was identified 

by PCR (Figure 1B) and genomic DNA southern blot (Figure 1C). Correctly targeted ES 

cells were used to establish the myr-p110α mice.

3.2 Constitutive expression of myristoylated-p110α results in embryonic lethality

To determine the phenotype of mice expressing myr-p110α beginning in early development, 

myr-p110α carrying mice were mated with CMV-Cre mice that express Cre recombinase in 

very early embryos so all or most cells have Cre-mediated genomic alterations [35]. CMV-

Cre in this transgenic strain is X-linked; therefore, all female and male littermates get Cre 

from CMV-Cre homozygous mothers (Supplemental Figure 1). Hemizygous CMV-Cre 
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fathers transmit Cre to all females and no male offspring (Supplemental Figure 1). 

Genotyping of liveborn mice from breeding of myr-p110α with CMV-Cre mice showed that 

except for one animal, no liveborn mice were identified with both myr-p110α and Cre (Table 

1). This one exception apparently did not have strong Cre recombinase activity early during 

development, because it had a relatively low level of the genomic PCR band specific for the 

Cre-mediated transgene recombination event that activates myr-p110α (data not shown). The 

genotype of liveborn littermates demonstrated that myr-p110α causes embryonic lethality 

when it is expressed.

To identify the stage of embryogenesis at which lethality is occurring, embryos at different 

stages of embryonic development from timed pregnant females were examined and 

genotyped. Mouse embryos were microscopically evaluated to analyze phenotype. 

Abnormal embryos with myr-p110α that also inherited Cre (Cre;myr-p110α) could be 

identified beginning at embryonic day 9.5 (E9.5). Grossly normal mice with Cre:myr-p110α 

were in the minority but also present at E9.5 to E11.5. By day E12.5, almost all 

heterozygous Cre;myr-p110α mutant embryos were grossly abnormal with developmental 

defects, hemorrhage or both although infrequent viable embryos were observable as late as 

E15.5 on mixed genetic background mice. This observation indicates that systemwide 

overexpression of PI3K signaling pathway disrupts normal embryonic development.

3.3 Embryonic death of Cre;myr-p110α heterozygotes involves developmental defects and 
hemorrhage

To evaluate gross phenotypic features, embryos in mixed genetic background were dissected 

and examined for morphology, blood circulation, and extravascular blood. Assessment of 

freshly dissected mutant Cre;myr-p110α embryos demonstrated profound growth retardation 

(Figures 2C, D, G, H, K, and O) compared with the wild-type (WT) controls in the left 

panels. In addition, Cre;myr-p110α embryos also failed to generate well-defined vitelline 

blood vessels in the yolk sac and thus revealed reduced and fragmented vasculature in the 

yolk sac (Figures 2C, G, K, O, and S), and extensive areas of hemorrhaging in the embryos 

(Figures 2L, P, S, and T). Some of Cre;myr-p110α embryos displayed one or more 

subepidermal blebs that frequently filled with blood (Figures 2D, H, and L, arrow) often 

involving enlargement of pericardial cavity (Figures 2D and L) with pooling of blood in the 

pericardial cavity (Figure 2L). We assume that lack of normal blood circulation was a major 

cause of intrauterine death.

The phenotype of Cre;myr-p110α embryos has some variability in time of death and 

characteristics of the phenotype. CMV-Cre is located on the X-chromosome so it was 

possible that, in female embryos, X-chromosome inactivation (XCI) could have modified the 

phenotype and thereby contributed to the phenotypic variability. To investigate this 

possibility, the sex of embryos showing either developmental defects or hemorrhages at 

different time points was tested by PCR for the male-specific marker SRY and the autosomal 

gene myogenin found in both sexes (Figure 3). There was no evident difference between 

females and males in either viability or phenotypic variability, suggesting that XCI is not a 

cause of phenotypic variability.
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3.4 Hemorrhage in myristoylated-p110α heterozygotes is associated with vasodilation and 
increased VEGF

Histological analysis of embryos in mixed genetic background by staining with H&E 

revealed further information on defects in embryo development: abnormality in embryo 

body structure (data not shown) and hemorrhage to various degrees (Figures 4E, F, K, and L) 

in Cre;myr-p110α embryos. The head sections from hemorrhaging Cre;myr-p110α embryos 

clearly showed blood leaking out of blood vessels below the skin (Figures 4E and F), and 

other parts of the body also demonstrated areas of extravasated blood (Figures 4K and L), 

which suggests defective vasculogenesis/angiogenesis leading to embryonic death.

To visualize blood vessel morphology in the hemorrhaging areas of Cre;myr-p110α 

embryos, immunohistochemistry was used to identify cells expressing platelet endothelial 

cell adhesion molecule (PECAM-1, CD31), an endothelial cell-specific marker. Blood 

vessels of the hemorrhaging Cre;myr-p110α embryos demonstrated by PECAM-1 

immunostainings (Figures 4H, I, N, and O) were often considerably dilated as compared to 

WT embryos (Figures 4G and M, arrow). The images show areas of these dilated blood 

vessels in which walls are discontinuous which would cause hemorrhage (arrows in figures 

4H, I, N, and O). Severe vessel dilation, reduced vessel integrity, and hemorrhaging in 

Cre;myr-p110α embryos demonstrate that deregulated expression of class IA PI3K, p110α 

impacts vasculogenesis and angiogenesis.

Vascular endothelial growth factor-A (VEGF-A) mediates vasodilation leading to increased 

vascular permeability and stimulates vasculogenesis and angiogenesis [36]. To assess the 

relevance of the constitutively active PI3K signaling in the expression of VEGF-A, WT and 

Cre;myr-p110α embryos were analyzed for mRNA expression level of VEGF-A. 

Quantitative real-time reverse transcriptase-polymerase chain reaction (qRT-PCR) revealed 

significantly increased levels of VEGF-A mRNA (1.7-fold) in Cre;myr-p110α embryos with 

hemorrhage (Figure 5). This result connects hyperactive PI3K signaling to the regulation of 

VEGF expression and associated vascular embryonic development. The mRNA level of 

hypoxia-inducible factor α (HIF-1α), a heterodimeric transcription factor and a major 

regulator of VEGF-A, was also significantly increased in Cre;myr-p110α embryos (1.4-

fold), whereas HIF-1β that is constitutively expressed in the cell was unchanged (Figure 5). 

Disorganized vascular structures caused by constitutively active PI3K signaling in Cre;myr-

p110α embryos demonstrate that normal vascular development cannot tolerate 

overexpression of PI3K signaling during murine embryogenesis.

3.5 Myristoylated-p110α activates PI3K signaling

The PI3K signaling pathway is complex with multiple regulatory controls. To determine the 

biochemical consequences of constitutive activation of p110α during development, we 

assayed the PI3K pathway activation status in Cre;myr-p110α embryos obtained between 

E9.5 and E11.5 by Western blotting with antibodies against PI3K signaling molecules. In 

Cre;myr-p110α embryos we observed significantly elevated levels of total p110α (4.7-fold) 

and phosphorylated AKT (p-AKT, 2.4-fold), which is the active form of AKT (Figures 6A 

and B), as compared to WT control embryos. In addition, total AKT level was slightly but 

significantly reduced (0.82-fold) and the p-AKT/AKT ratio was increased (2.9-fold) in 
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Cre;myr-p110α embryos. Co-expression of eGFP, indicating expected expression of myr-

p110α, was also confirmed in all transgenic embryos expressing myr-p110α (Figure 6A).

Further Western blots were done in order to investigate the possible feedback of this active 

p110α allele on PTEN and the p85α regulatory subunit that regulate this pathway. The 

embryos responded to overexpression of active p110α with increased protein levels of both 

PTEN and p85α. Total protein levels of the PI3K regulatory subunit p85α (1.7-fold) and 

PTEN (2-fold), and level of phosphorylated PTEN (p-PTEN, 1.9-fold), which is the less 

active form of PTEN, were also significantly increased in Cre;myr-p110α embryos (Figures 

6C and D). Despite increased total PTEN and p-PTEN, the ratio of p-PTEN/PTEN was not 

changed as compared to WT control embryos. Our biochemical results indicate that in spite 

of increased PTEN level that should oppose PI3K activity, the myr-p110α is still overly 

active since levels of active p-AKT were 2.4-fold increased. The overall biochemical 

analysis shows that despite increased levels of regulatory proteins, embryonic lethality is due 

to increased activation of the PI3K/AKT pathway.

3.6 Myristoylated-p110α is ubiquitously expressed in mouse embryos although commonly 
reveals abnormal vascular phenotypes

Although the Rosa26 locus-driven myr-p110α is expected to be expressed in every cell type 

[34], the phenotype of Cre;myr-p110α embryos was largely associated with hemorrhages 

resulting from defective vascularization and vasodilation. To test the possibility that myr-

p110α is silenced or expressed at low levels in non-endothelial tissues, whole-embryo 

imaging ex uterus for eGFP signal, a reporter co-inserted with myr-p110α into the Rosa26 
locus, was performed to visualize myr-p110α expression in mouse embryos and confirm its 

global expression. Cre;myr-p110α embryos were bright green under a fluorescence 

stereomicroscope and expressed GFP in essentially all tissues with the exception of 

hemorrhaging regions due to the absorption of the light by extravasated red blood cells 

(Figure 7), although there was no enzyme-based amplification of GFP signal. This result 

demonstrates that myr-p110α is expressed ubiquitously under the control of Rosa26 
promoter and causes embryonic death.

To further test the possibility that myr-p110α is preferentially expressed in vascular 

endothelial cells or silenced in other non-vascular cells, primary mouse embryonic 

fibroblasts (pMEFs) from WT and Cre;myr-p110α embryos at E12.5 were isolated and used 

for the detection of eGFP signal, as an indicative of myr-p110α expression. Fluorescence 

imaging observed GFP fluorescence in Cre;myr-p110α pMEFs, indicating the expression of 

myr-p110α (Figure 8A vs 8B). After confirming myr-p110α expression, the downstream 

effects of myr-p110α expression were investigated by performing Western blots of PI3K 

signaling proteins in Cre;myr-p110α or WT pMEFs (Figure 8E, F, G, and H). Cre;myr-

p110α pMEFs showed significantly increased levels of total p110α (12.6-fold) and 

phosphorylated AKT (p-AKT, 8.6-fold), in comparison with WT control pMEFs (Figure 8E 

and F). In addition, total protein levels of both p85α (5.8-fold) and PTEN (1.7-fold), and 

level of phosphorylated PTEN (p-PTEN, 1.8-fold) were also significantly elevated in 

Cre;myr-p110α pMEFs (Figure 8G and H). Co-expression of eGFP was also confirmed by 

Western blot in Cre;myr-p110α embryos pMEFs (Figure 8G). These results indicate that 
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myr-p110α is not only expressed in vascular endothelial cells but is also expressed in non-

vascular fibroblast cells, and the PI3K/AKT signaling pathway is activated as an outcome of 

myr-p110α expression in Cre;myr-p110α pMEFs, as compared to WT pMEFs. In sum, these 

data enable us to unequivocally state that myr-p110α is expressed ubiquitously although the 

phenotype is predominantly associated with abnormal vascular development.

4 Discussion

4.1 Myristoylated-p110α activates PI3K/AKT signaling despite increased negative feedback 
regulatory proteins

Membrane targeting of p110α by myristoylation has been reported to enhance catalytic 

activity of PI3K similar to the active mutants E542K, E545K, and H1047R [21, 22]. In 

support of these findings, we show that embryos constitutively expressing myr-p110α overly 

activated the PI3K signaling pathway, with significantly increased levels of total p110α and 

phosphorylated AKT, a major signaling kinase downstream of PI3K. Our result shows that 

fetal embryonic lethality observed in Cre;myr-p110α embryos is associated with constitutive 

activation of the PI3K/AKT pathway.

The inhibition of p110α catalytic activity by the p85α regulatory subunit via tight binding is 

a good example of a widely used regulatory scheme, in which regulatory subunits of kinases 

are stabilized and maintain enzyme activity at a low level in the basal state, and subsequent 

activation of the enzyme occurs by a release of inhibitory interaction. The embryos 

expressing myr-p110α had increased levels of p85α. Elevated p85α level is likely attempted 

negative regulation of p110α activity following hyperactivation of PI3K signaling. However, 

inhibition of p110α activity potentially mediated by increased p85α is ineffective because 

myr-p110α is likely not removed from membrane association by p85α.

PTEN-mediated inhibition serves as one major mechanism that negatively regulates the 

PI3K signaling pathway [37]. PTEN tightly regulates the cellular level of PIP3 by 

dephosphorylation and functionally antagonizes PI3K activity. PTEN can be regulated via 
multiple mechanisms, including subcellular localization and posttranslational modifications, 

all of which potentially impact PTEN levels and/or activity [38]. Phosphorylation of the C-

terminal tail stabilizes the PTEN protein but reduces its lipid phosphatase activity in relation 

to PIP3 by repelling it from the plasma membrane and by inhibiting interactions with PDZ 

domain–containing proteins [39, 40]. Conversely, dephosphorylation of the C-terminal tail 

of PTEN causes its recruitment to the membrane leading to increased phosphatase activity 

accompanied by rapid degradation, therefore keeping PTEN activity under tight control. The 

embryos expressing myr-p110α displayed both increased total protein level of PTEN and 

greater level of phosphorylated PTEN. This may be an outcome of sensing myr-p110α-

driven PI3K signaling activation and negative regulation through a feedback inhibition. 

Since the ratio between total PTEN and p-PTEN is not changed, we expect overall PTEN 

activity to be increased due to the increased level of total PTEN. However, despite 2-fold 

increased PTEN levels that catalyses PIP3 into PIP2 and antagonizes PI3K signaling, 

negative feedback regulation by PTEN is not sufficient to block the downstream 

consequences of aberrantly hyperactive PI3K signaling induced by myr-p110α. The higher 
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p-AKT level observed in Cre;myr-p110α embryos demonstrates the ineffective negative 

feedback loop and activated PI3K signaling.

4.2 Hyperactive PI3K signaling pathway disrupts embryonic vascular development

Constitutive expression of p110α resulted in early embryonic lethality in which embryos 

generally did not survive after E11.5 of embryonic development. This observation 

demonstrates that proper control of p110α is critical for normal embryonic development. By 

9.5 days of embryonic development, endothelial cells, which line the interior surface of 

blood vessels, are fully differentiated [41]. The Cre;myr-p110α embryos began to die at 

E9.5, indicating that tight regulation of class 1A PI3K activity might be necessary for 

endothelial cell differentiation or the formation of the primitive vascular structure. Given the 

wide variety of cellular processes that PI3K signaling controls, a perplexing aspect of the 

phenotype of Cre;myr-p110α embryos is that most embryos survive to E9.5 since the 

Rosa26 locus-driven myr-p110α is expressed ubiquitously in every cell type (Figures 7 and 

8). During post-implantation stages E5.5 to E9.5, successful embryo development and 

survival through implantation is mediated by the initial communication between the fetus 

and mother. Our results show that myr-p110α expressing embryos are able to establish the 

chorioallantoic placenta and maternally mediated fetal circulation in addition to establishing 

the basic body plan to maintain the embryo.

During E9.5 and E10.5, proliferation and differentiation markedly increase as organogenesis 

is rapidly accelerated in the embryo [42]. Organogenesis is accompanied by the recruitment 

of new blood vessels as the developing embryo needs nutrients to promote organ formation. 

At E11.5, pulsatile heartbeats circulate blood [43]. The mutant Cre;myr-p110α embryos 

often displayed enlargement of the pericardial cavity frequently filled with blood. 

Infrequency of Cre;myr-p110α embryo survival past E11.5, at which point adequate 

circulation becomes essential for the embryo, suggests that constitutively active p110α is 

associated with vascular insufficiency which often included pericardial bleeding, 

hemorrhaging in other regions, and overall indicated circulatory collapse.

Vasculogenesis/angiogenesis allows the vascular system to expand in order to deliver 

nutrients and oxygen, and to remove waste products [44]. It is interesting to note that the 

myr-p110α expressing embryos demonstrated broad areas of extravasated blood associated 

with extensive dilated blood vessels that were often discontinuous, implying that 

constitutively active PI3K signaling causes vascular rupture due to deregulated 

vasculogenesis/angiogenesis. Excessive vascular dilation can reduce blood pressure [45], 

which in association with hemorrhage may result in an inadequate blood supply to all organs 

including the heart and multiple organ failure. The defective vascularization impacted by 

myr-p110α activity may lead to loss of vessel integrity, increased vascular permeability, and 

hypotension with the result that the cardiovascular system fails to provide adequate oxygen 

and nutrients for cells during organogenesis, which leads to cell death and associated overall 

death of the embryo.
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4.3 Loss and gain of function mutations of PI3K pathway reveal similar embryonic 
phenotypes

Other studies that manipulated PI3K pathways in the embryo caused disruption of 

vasculogenesis/angiogenesis and surprisingly the phenotypes were outwardly similar for 

both loss and gain of PI3K activity. Our study of increased PI3K activity during 

embryogenesis shows that vascular development is impaired. Consistent with our finding, 

homozygous PTEN deletion in the endothelium that increased PIP3 levels causes abnormal 

vascular remodeling and bleeding, and mouse embryonic loss occurs by E11.5 [26]; 

constitutively activated AKT by addition of a myristoylation sequence to AKT in the 

endothelium results in defective vessel patterning in addition to vessel congestion and 

breaching, and is embryonic lethal [29]. Loss of p110α activity reveals a similar phenotype 

in the embryo: p110α−/− mouse embryos die between E9.5 and E10.5 due to insufficient cell 

proliferation and defects in angiogenesis [46]; p85α−/−;p85β−/− embryos, which lack these 

two regulatory subunits of class 1A p110 catalytic subunits and have decreased PI3K activity 

resulting from impaired membrane localization of p110 catalytic subunit, also exhibit loss of 

vascular integrity and start to die at E12.5 [47]. Collectively, all data including our data 

supports the conclusion that fine-tuning of class 1A PI3Ks during embryo vasculogenesis/

angiogenesis is vital for proper vessel development and integrity, and either too much or too 

little PI3K signaling activity disrupts vasculogenesis/angiogenesis during mouse embryo 

development.

Despite involvement in many central aspects of cellular processes, it appears that increased 

or reduced PI3K signaling is perhaps surprisingly compatible with relatively normal early 

embryonic development, since Cre;myr-p110α embryos implant and undergo germ layer 

differentiation, gastrulation, and subsequent establishment of the body plan in a manner that 

appears normal. It is not until the embryonic stage when organs are established and grow 

rapidly that deregulation of PI3K signaling pathway manifests pathologically and then it 

most often leads to problems in vasculogenesis/angiogenesis. Either this early stage of 

embryo development does not require precise regulation of PIP3 levels or other systems 

enable proper regulation of PIP3 levels at this early stage. Other pathways that generate PIP3 

could make p110α regulation redundant in the early embryo when there is a loss of p110α 

activity. Increased p110α catalytic activity as studied here could potentially be more 

effectively ameliorated by increased PTEN at this early embryonic stage. Many aspects of 

the role of p110α in the very early stages of embryonic development still remain to be 

elucidated.
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Abbreviations

Cre Cre recombinase gene

DMEM Dulbecco’s modified Eagle medium

ES embryonic stem

H&E hematoxylin and eosin

HIF-1α hypoxia-inducible factor α

Myog myogenin

myr-p110α myristoylated p110α

pMEFs primary mouse embryonic fibroblasts

PBS phosphate-buffered saline

PI3K phosphatidylinositol 3-kinase

PIP3 phosphatidylinositol-3,4,5-trisphosphate

PIP2 phosphatidylinositol-4,5-bisphosphate

PECAM-1 platelet endothelial cell adhesion molecule

RTKs receptor tyrosine kinases

SRY sex determination region on the Y chromosome

SEM standard error of the mean

VEGF vascular endothelial growth factor
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Figure 1. Generation of Cre-inducible Rosa26-myr-p110α knock-in allele
(A) Schematic diagrams of the expression construct cloned into pRosa26 targeting vector, a 

portion of Rosa26 locus with restriction sites, the resulting targeted locus, and the myr-

p110α allele following Cre-mediated excision. Labeled primers for PCR genotyping are 

indicated with blue arrows. The probe used for Southern blot analysis is shown as a light 

green box in the Rosa26 locus. (B) Representative result of PCR detecting 602 bp of wild-

type (WT) band and 314 bp of integrated construct band. (C) Genomic Southern blotting 

with a 593 bp of DIG-labeled DNA probe, detecting either 15.6 kb of WT allele and 4.3 kb 

of targeted allele.
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Figure 2. Expression of myristoylated-p110α results in hemorrhage, vascular defects, and 
stunted embryos
(A and B) Cre;WT embryos (WT embryo expressing Cre recombinase) at E10.5 showing 

normal phenotype. (C and D) Cre;myr-p110α embryos at E10.5 revealing defective yolk sac 

vasculature (C) and a shrunken body with a large subepidermal bleb filled with blood in the 

abdominal cavity (D, arrow). (E and F) Cre;WT embryos at E11.5. (G and H) Cre;myr-

p110α embryos at E11.5 displaying defective vasculature and an unusual blood spot in the 

yolk sac (G), and an embryo with abnormal morphology (H). (I and J) Cre;WT embryos at 

E12.5. (K and L) Cre;myr-p110α embryos at E12.5 with fragmented vasculature in the yolk 

sac (K, arrow), and hemorrhaging areas with an enlarged pericardial cavity filled with blood 

(L, arrow). (M and N) Cre;WT embryos at E13.5. (O and P) Cre;myr-p110α embryos at 

E13.5 exhibiting poorly defined yolk sac vessels and abnormal embryo body (O), and 

extensive hemorrhaging areas in the embryo (P). (Q and R) Cre;WT embryos at E15.5. (S 

and T) Cre;myr-p110α embryos at E15.5 displaying defective yolk sac vasculature (S) and 

hemorrhage (T). Pictures are representative of total 434 embryos analyzed. Scale bars 

represent 0.5 cm.
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Figure 3. Variability in a phenotype of Cre;myr-p110α embryos is not associated with X-
chromosome inactivation
PCR products were generated from purified gDNA of the yolk sacs dissected from embryos 

harvested from CMV-Cre homozygous mother and myr-p110αwt/fl father crosses. Embryos 

with either developmental defects (lanes 1 to 5 at E9.5, 11 to 15 at E10.5, and 21 to 25 at 

E11.5) or hemorrhage (lanes 6 to 10 at E9.5, 16 to 20 at E10.5, and 26 to 30 at E11.5) were 

randomly chosen at E9.5 to E11.5 at which embryonic lethality is occurring. There was no 

evident difference between female and male in either viability or phenotypic variability. The 

genomic PCR products were visualized in a 1.5% agarose gel electrophoresis. 

Representative results of PCR detecting 441 bp of male-specific gene SRY and 245 bp of the 

autosomal gene myogenin (Myog) found in both males and females.
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Figure 4. Cre;myr-p110α embryos have extremely dilated blood vessels with discontinuous walls
(A) WT embryo at E15.5. (B and C) Cre;myr-p110α embryos at E15.5 revealing extensive 

hemorrhage. (D to F) H&E stained sagittal head sections of embryo. (D) WT embryo shown 

in (A), exhibiting normal histology. (E and F) Cre;myr-p110α embryos shown in (B) and 

(C), displaying extravasations under the skin (arrow). (G to I) Immunostaining with anti-

PECAM-1 antibody of sagittal embryo head sections. (G) WT embryo (A), revealing normal 

blood vessels (arrow). (H and I) Cre;myr-p110α embryos (B and C), exhibiting extremely 

dilated blood vessels with discontinuous walls in regions of hemorrhage (arrows). (J to L) 

H&E stained sagittal embryo back sections. (J) WT embryo (A), showing normal histology. 

(K and L) Cre;myr-p110α embryos (B and C), displaying extravasations (arrows). (M to O) 

PECAM-1 immunostaining of sagittal embryo back sections. (M) WT embryo (A), 

presenting normal blood vessels (arrow). (N and O) Cre;myr-p110α embryos (B and C), 

exhibiting dilated vessels with discontinuous walls in regions of hemorrhage (arrows). 

PECAM-1 immunostainings are visualized as brown colors, demonstrating the blood 

vessels. Pictures of H&E staining and PECAM-1 immunostaining were taken with X400 

magnification. Pictures are representative. Bar in panel (A) represents 1 cm and indicates 

scale for (A) to (C).
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Figure 5. Cre;myr-p110α embryos increase VEGF-A and HIF-1α mRNA
mRNA expression levels of VEGF-A, HIF-1α, and HIF-1β in WT and Cre;myr-p110α 

embryos analyzed by real-time qRT-PCR, the graphs of real-time qRT-PCR data quantified 

and normalized with respect to GAPDH. Mean fold increase compared with WT control 

embryos, was calculated after normalization. Error bars are presented as the mean ± SEM. 

Two-tailed unpaired t test was used for statistical analysis. *P < 0.05, **P < 0.01, ***P < 

0.001. P > 0.05 was considered non-significant (ns). Data are representative of 2 

independent experiments using 3~6 embryos per group.
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Figure 6. Cre;myr-p110α embryos activate AKT regardless of increased levels of PTEN and 
p85α

(A) Western blot analysis of p110α, p-AKT, AKT, and eGFP in WT and Cre;myr-p110α 

embryos during E9.5 to E11.5. (B) The graphs of Western blot signals of p110α, p-AKT, 

and AKT were quantified and normalized with respect to β-Actin levels. (C) Western blot 

analysis of p85α, p-PTEN, and PTEN in WT and Cre;myr-p110α embryos during E9.5 to 

E11.5. (D) The graphs of Western blot signals of p85α, p-PTEN, and PTEN were quantified 

and normalized with respect to β-Actin levels. Mean fold increase compared with WT 

control embryos, was calculated after normalization. Error bars are presented as the mean ± 

SEM. Two-tailed unpaired t test was used for statistical analysis. *P < 0.05, **P < 0.01, 

***P < 0.001. P > 0.05 was considered non-significant (ns). Data are representative of 4 

independent experiments using 5 embryos per group.
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Figure 7. Myristoylated-p110α is ubiquitously expressed in all tissues
(A) Cre;WT embryo at E15.5 in mixed genetic background with normal phenotype. (B) 

Cre;myr-p110α embryo at E15.5 in mixed genetic background displaying extensive 

hemorrhaging areas in the embryo. (C) Fluorescence image of WT embryo shown in (A), 

presenting no GFP signal. (D) Fluorescence image of Cre;myr-p110α embryo shown in (B), 

revealing significant levels of GFP signal. The fluorescent signals of GFP did not employ 

enzymatic amplification. Pictures are representative of total 14 embryos analyzed. Bar in 

panel (A) represents 0.5 cm and indicates scale for (A) to (D).

Sheen et al. Page 25

Open Life Sci. Author manuscript; available in PMC 2016 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8. Myristoylated-p110α is not expressed only in vascular endothelial cells but also in non-
vascular fibroblast cells
(A) GFP image of WT pMEFs at passage 7, showing no GFP signal. (B) GFP image of 

Cre;myr-p110α pMEFs at passage 7, revealing significant levels of GFP signal. (C) WT 

pMEFs shown in (A) were stained with Hoechst 33342 to visualize nuclei. (D) Hoechst 

33342 nucleic acid stains of Cre;myr-p110α pMEFs shown in (B). Pictures were taken with 

X100 magnification. Bar in panel (D) represents 100 μm and indicates scale for (A) to (D). 

(E) Western blot analysis of p110α, p-AKT, and AKT in WT and Cre;myr-p110α pMEFs. 

(F) The graphs of Western blot signals of p110α, p-AKT, and AKT. (G) Western blot 

analysis of p85α, p-PTEN, PTEN, and GFP in WT and Cre;myr-p110α pMEFs. (H) The 

graphs of Western blot signals of p85α, p-PTEN, and PTEN. For F and H, Western blot 

signals were quantified and normalized with respect to β-Actin and mean fold increase 

compared with signals from WT control pMEFs, was calculated after normalization. Error 

bars are presented as the mean ± SEM. Two-tailed unpaired t test was used for statistical 

analysis. *P < 0.05, **P < 0.01, ***P < 0.001. P > 0.05 was considered non-significant (ns). 

Data are representative of 4 independent experiments.
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Table 1

Genotype of offspring from myr-p110α heterozygote ⊥ CMV-Cre crosses.

Cross Number of liveborn
mice

Genotype of liveborn mice

WT w/o Cre WT w/ Cre Myr-p110αwt/fl w/o
Cre

Myr-p110αwt/fl w/
Cre

CMV-CRE ♂ ⊥ Myr-p110αwt/fl ♀ 54 12 (all ♂) 15 (all ♀) 26 (all ♂) 1(♀)

Myr-p110αwt/fl ♂ ⊥ CMV-CRE ♀ 62 0# 62 (30 ♀, 32 ♂) 0# 0

Probability: ***p<0.0001 (χ2 test)

0#: As CMV-Cre is X-linked, littermate without Cre is not applicable from CMV-Cre homozygous mother.
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