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Abstract: This review seeks to provide a timely survey of
the scope and limitations of cheminformatics methods in
natural product-based drug discovery. Following an over-
view of data resources of chemical, biological and structural
information on natural products, we discuss, among other
aspects, in silico methods for (i) data curation and natural
products dereplication, (ii) analysis, visualization, navigation
and comparison of the chemical space, (iii) quantification of
natural product-likeness, (iv) prediction of the bioactivities

(virtual screening, target prediction), ADME and safety
profiles (toxicity) of natural products, (v) natural products-
inspired de novo design and (vi) prediction of natural
products prone to cause interference with biological assays.
Among the many methods discussed are rule-based,
similarity-based, shape-based, pharmacophore-based and
network-based approaches, docking and machine learning
methods.
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1 Introduction

Natural products (NPs) have a long record of use as
components of traditional medicines and herbal rem-
edies. Even for modern small-molecule drug discovery
they remain the single most prolific source of
inspiration.[1] In fact, about two-thirds of all small-
molecule drugs approved between 1981 and 2019 are
related, to different extents, to NPs.[1] Whereas only 5%
of the drugs that have been introduced to the market
during this timeframe are unaltered NPs, 28% are NP
derivatives, and 35% mimic and/or contain a NP
pharmacophore.[1] A highly visible recognition of the
relevance of NP-research for public health is the award
of the 2015 Nobel Prize in Physiology or Medicine to
William C. Campbell, Satoshi Omura, and Youyou Tu for
the discovery of two NPs (avermectin and artemisinin)
that led to fundamental improvements in the treatment
of diseases caused by parasites.
As a result of evolutionary processes, NPs have a wide

range of bioactivities in different organisms. For this reason
a substantial number of NPs are recognized as privileged
structures.[2,3] NPs are highly diverse in their molecular
structures and physicochemical properties. Many of them
have favorable ADME and physicochemical properties;
others are clearly beyond what is generally considered as
the drug-like chemical space.[4–6] NPs can be highly complex
in terms of molecular structure, in particular with regard to
their 3D molecular shape, stereochemistry, ring complexity
(macrocycles; bridged or fused ring systems) and conforma-
tional space (high number of rotatable bonds; low degree
of aromaticity).[7–9] This poses fundamental challenges to 3D
cheminformatics methods for which reasons the develop-
ment of force fields and algorithms for the prediction of the
protein-bound conformations of such complex molecules
remains one of the most actively pursued research topics in
cheminformatics.[10–15]

The real bottleneck of NP-based drug discovery, how-
ever, is the availability of materials for testing. The sourcing
process can be complex, lengthy and costly, and transport
across borders may prove legally challenging.[16] Once the
material has arrived at its destination, the production of

extracts, the in vitro testing for bioactivity, the identification
and isolation of the bioactive compounds from these
complex mixtures, the determination of the mode of action,
the resupply of compounds of interest (e.g. through partial
or total chemical synthesis), and the profiling of their
pharmacological, pharmacokinetic and toxicological proper-
ties all require expertise, substantial efforts, time and funds,
and there is no guarantee of success.[4,16,17]

Computational methods can make substantial contribu-
tions to NP-based drug discovery and support experimen-
talists throughout the hit discovery, hit-to-lead and lead
optimization phases.[18,19] They have been shown to be
particularly powerful, not just in identifying bioactive NPs,
but also in prioritizing (plant) materials for testing,[20–23]

hence helping experimentalists to focus their resources on
the most promising materials. Computational methods are
also employed, for example, in (i) data curation and NP
dereplication, (ii) chemical space analysis, visualization,
navigation and comparison, (iii) quantification of natural
product-likeness, (iv) prediction of bioactivity spectra,
ADME and safety profiles (toxicity), (iv) natural products-
inspired de novo design and (v) prediction of natural
products prone to cause interference with biological assays.
Compared to the costs involved in experimental

approaches, the funds required for in silico experiments
seem almost negligible. An in-house high-performance
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computing facility is no longer essential. Today, calculations
can be run (if at all needed) at very large scales in the cloud,
at moderate cost and low complexity. Merely software
license fees remain a substantial cost factor and have
constantly increased throughout recent years. At the same
time, we are now seeing a growing number of powerful
open-source tools becoming available, much like what has
been quite common to the field of bioinformatics. Some of
the most outstanding software in this context are RDKit[24]

and CDK[25,26] (both are open-source toolkits for cheminfor-
matics), KNIME[27] (an open-source analytics platform), and
scikit-learn[28,29] (an open-source Python module for machine
learning).
With this review, we aim to provide a succinct but

comprehensive overview of the scope and limitations of
cheminformatics methods in NP-based drug discovery in a
format that is accessible to researchers from different
domains with an interest in drug discovery. The discussion
covers a large number of state-of-the-art methods in
cheminformatics as well as data resources relevant to NP-
based drug discovery.

2 Natural Products Collections Relevant to
Computer-guided Natural Products Research

2.1 Virtual Natural Products Collections

The last decade has seen a steep increase in databases
providing access to chemical, biological, pharmacological,
toxicological and structural data on NPs. We recently
conducted comprehensive surveys of databases that are
particularly relevant to NP-based drug discovery.[6,30,31] As a
minimum requirement, any of the more than 30 databases
surveyed feature a chemistry-aware web interface for
searching and browsing molecular structures. Most of the
databases also offer free bulk download, enabling virtual
screening and other applications. From these studies we
gathered that the total number of NPs for which their

structures can be obtained via bulk download from free
databases is in excess of 250k, approaching 300k.
Unfortunately, the half-life of many (NP) databases is

short; only few of them are sustainably managed and under
continued development. Data quality is always of concern,
but when it comes to NPs, extra caution should be
exercised, in particular when using the data with computa-
tional methods relying on the accurate representation of
3D molecular structures. This is because stereochemical
information on NPs is fairly commonly inaccurate or
incomplete.
Virtual NP databases can be categorized into (i)

encyclopedic and general NP databases, (ii) databases
enriched with NPs used in traditional medicines, (iii)
specialized databases focused on specific habitats, geo-
graphical regions, organisms, biological activities, or even
specific NP classes. The largest of all free NP databases is
Super Natural II,[32] which consists of more than 325k NPs.
The database can be queried via a chemistry-aware web
interface but bulk download is not officially supported.
Among the most outstanding free, downloadable resources
is the Universal Natural Products Database (UNPD),[5] which
lists more than 200k NPs from all forms of life. Unfortu-
nately, this database appears to no longer be hosted.
Further large databases include the TCM
database@Taiwan,[33] which lists more than 60k NPs found
in Chinese medical herbs, the Natural Product Atlas,[34,35]

offering data on over 25k NPs from bacteria and fungi, and
the Collective Molecular Activities of Useful Plants (CMAUP)
database,[36] a collection of over 47k NPs from more than
5600 plants with their biological activities information.
In contrast to information on molecular structures, data

on the biological activities and protein-bound conforma-
tions of NPs remain sparse. By overlapping our set of
approximately 250k NPs with the full ChEMBL database (a
database providing bioactivity data on approximately 2
Million compounds),[37,38] we found that only about 16%
were present in the ChEMBL database and had at least one
bioactivity annotation.[31] Likewise, by overlapping the NP
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dataset with all small-molecule ligands represented in the
Protein Data Bank (PDB), we found that for only about
2000 NPs at least one co-crystallized X-ray structure of high
quality is available.[6] The X-ray structures of three NPs
approved as drugs and bound to their target proteins are
shown in Figure 1.
Since the publication of our recent works,[30,31] more

than one dozen new NP databases have appeared and
existing ones have been updated. However, only few of
these databases offer bulk download of molecular struc-
tures. Among the most relevant databases to mention is
the Marine Natural Library,[40] which allows the download of
the full dataset of more than 14k marine NPs. In early 2020,
a new database was introduced which its authors claim to
be the world‘s largest collection of NPs.[41] It should be
noted that this database combines data from resources of
which some are known to also include substantial numbers
of NP derivatives and analogs, and that the data will require
additional curation for most applications in
cheminformatics.[41]

The reader is referred to refs. [30,31,41–45] for addi-
tional information on NP databases relevant to cheminfor-
matics.

2.2 Physical Natural Products Collections

Today, most of the hundreds of compound suppliers
worldwide provide comprehensive information on the
molecular structures (and other properties) of their com-
pounds for the purpose of virtual screening and other
applications free of charge. The majority of the commercial
compound collections are dominated by synthetic com-
pounds. By overlapping a comprehensive collection of
more than 250k NPs (which we compiled by curating and
merging all of the NP datasets available to us[31]) with the
7.3 million in-stock compounds listed in the ZINC
database[46,47] (a comprehensive database of compounds
that are available from various commercial sources and
research institutes), we found that only about 10% of the
known NPs (approximately 25k) are readily obtainable for
experimental testing.[31] This confirms that the availability of
materials for experimental evaluation represents the bottle-
neck in NP-based drug discovery. Note that by allowing
minor structural deviations between NPs and purchasable
compounds, meaning the inclusion of mainly NP derivatives
and analogs, the number of readily obtainable compounds
increases by roughly 10k to 30k.[31] It is also worthwhile
mentioning that the majority of the readily obtainable NPs
have physicochemical properties that are considered favor-
able in the context of drug discovery. In fact, more than half

Figure 1. Examples of approved NP drugs and how they bind to their target proteins: (A) (-)-galantamine, an acetylcholinesterase inhibitor
approved for the treatment of Alzheimer’s disease (PDB ID 1DX6), (B) tacrolimus, a macrocyclic immunosuppressant targeting the
immunophilin FKBP-12 (FK506 binding protein; PDB ID 1FKF) and (C) chenodeoxycholic acid, an endogenous bile acid that is used for the
treatment of hypocholesterolemia. Chenodeoxycholic acid stimulates the farnesoid X receptor (FXR; PDB ID 6HL1). Carbon atoms grey;
oxygen atoms red; nitrogen atoms blue. Hydrogen bonds formed between the ligand and the protein or water molecules are visualized by
red arrows (acceptors on the ligand side) and green arrows (donors on the ligand side); hydrophobic features are visualized as yellow
spheres, and negative ionizable features as red stars. Visualization and pharmacophore perception with LigandScout.[39]
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of them are fragment-sized (molecular weight below
300 Da),[31] hence offering ample opportunities for optimiza-
tion.
Purified NPs are available from more than 100 commer-

cial providers worldwide[31] but only a dozen of these
companies offer more than 5000 NPs. Pure collections of
genuine NPs are rare whereas mixed catalogues are
commonplace. In these mixed catalogues, however, genu-
ine NPs, NP derivatives and NP analogs are rarely labeled as
such. Surprisingly often there is no mention of NPs found
on the websites of compound providers, even of those
vendors that offer substantial numbers of different NPs.
Therefore, tools for identifying NPs and NP-like compounds
can be of high value to NP-based drug discovery (see
Section 6 for details).
The discussion of catalogue sizes should not obscure

the importance of compound diversity with respect to
physicochemical, structural and biological properties. In this
context it is encouraging to know that the (above-
mentioned) 25k readily purchasable NPs cover more than
5700 Murcko scaffolds. We also found that the readily
purchasable NPs give a good representation of all of the
major NP classes, such as alkaloids, steroids and
flavonoids.[6]

3 Computational Methods for Structure
Elucidation and Dereplication of Natural
Products

The sourcing of materials for the extraction and isolation of
NPs are expensive and time-consuming, and with increasing
knowledge of NPs, the chances for finding novel com-
pounds are diminishing. In order to enable the efficient use
of the available experimental resources, analytical and
computational methods are utilized in tandem in order to
identify known NPs as well as NPs with undesirable proper-
ties at the earliest possible point in time.[44] An important
component in this interplay of technologies are databases
providing measured analytical data (e.g. bioactivities,
chromatographic data, mass spectrometry (MS) and nuclear
magnetic resonance (NMR) spectroscopy data) for known
NPs and their interrogation with computational methods.
However, even the largest of these databases cover only a
small fraction of the known NPs, for which reason computa-
tional methods are increasingly being employed also for
the prediction of MS fragmentation and NMR spectra,
sometimes in combination with structure generators.[44]

There are elaborate algorithms in place which allow the
transformation of spectral data into representations (re-
duced to peak lists, numerical vectors, trees or others) that
enable the efficient comparison of spectra and ranking
according to their similarity. In other words, these methods
have the capacity to identify spectra derived not only from
the same compounds but also from structurally related
compounds. This means that the applicability of these

methods goes beyond known NPs and that they can
provide, for example, valuable hints on chemical classes
and functional groups. However, such analyses still require
manual interaction by an expert, hence limiting
automation.[48]

A main approach to computer-assisted dereplication is
the combination of analytical data with multivariate data
analysis.[44] Using dimensionality reduction techniques such
as principal component analysis (PCA), clustering methods,
and/or discrimination analysis can help to identify interest-
ing NPs in complex mixtures, e.g. NPs in extracts that are
unique to a particular organism of interest.[49,50]

Systems for computer-assisted structure elucidation
(CASE) aim to identify the correct structure of a compound
of interest based on the available spectroscopic data.[51]

More specifically, CASE systems enumerate the structures
that are consistent with the experimental (spectroscopic)
data and rank them according to their probability. Ideally,
CASE systems work in a fully automated fashion, at low
error rates. Elaborate CASE systems also take stereospecific
NMR data and/or calculations based on density functional
theory into account and hence can be used for the
assignment of stereochemical properties to NP structures.[51]

Machine learning approaches enjoy high interest in NP
dereplication. For example, in a recent study the capacity of
machine learning algorithms to assign NPs to eight NP
classes (such as chromans) based on 13C NMR spectroscopy
data was explored.[52] The best performance was obtained
with an XGBoost classifier. For most NP classes, more than
80% of the compounds of a test set were correctly
assigned. Another study successfully employed a convolu-
tional neural network-based approach for the rapid identi-
fication of new NPs from a filamentous marine
cyanobacterium.[53]

A different approach is taken by the NP-
StructurePredictor.[54] Based solely on targeted molecular
weights derived from m/z values obtained by liquid
chromatography-MS, this tool produces a rank-ordered list
of likely NP structures. In order to do so, the tool features a
structure generator that can combine the different scaffolds
and decorations (which draws from a large NP database),
and that can infer structures from structurally related
scaffolds.
For more information on experimental and computa-

tional methods for NP dereplication readers are referred to
recent reviews on this topic, for example, refs.
[44,48,55,56].

4 Computational Analysis of the
Physicochemical and Structural Properties of
Natural Products

Cheminformatics has been playing a key role in the
characterization of NPs by their physicochemical and
structural properties, and in the comparison of NPs with
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small-molecule drugs, drug-like compounds and other
types of (organic) molecules. NPs cover a much broader
chemical space than synthetic compounds and they
populate also areas in chemical space that are generally not
(or only with great difficulties) synthetically
accessible.[6,8,19,57,58] The structural uniqueness (and complex-
ity) of some NPs could allow them to target macro-
molecules that are otherwise undruggable.[16]

NPs are on average heavier and more hydrophobic than
synthetic drugs and synthetic, drug-like compounds.[59]

Their structural complexity is also often higher, in particular
with regard to stereochemistry (commonly quantified by
the number of chiral centers,[57,59–66] the number of fraction
of Csp3 atoms,[6,8] and/or the number of bridgehead atoms
in ring systems[67]) and 3D molecular shape.[8,68]

NPs show an enormous diversity of ring systems, in
particular of aliphatic systems.[6,8,57,63,65] One study showed
that 83% of core ring scaffolds of NPs are absent in
commercially available screening databases.[69] With regard
to atom composition, two of the most discriminative
features of NPs over synthetic compounds are the (on
average) low number of nitrogen atoms and high number
of oxygen atoms.[57,59,62–64] Nevertheless, a clear majority of
the known NPs, and even more so in physical NP libraries,
are drug-like.[6]

NPs from different kingdoms have distinct physicochem-
ical and structural properties.[66,70–76] For example, NPs with
macrocycles or long aliphatic chains are more commonly to
marine species than terrestrial species.[74] Also bacteria
produce many macrocyclic NPs.[75] Their NPs are character-
ized by a high proportion of heteroatoms and, related to
this, a high diversity of functional groups.[76]

5 Computational Methods for the Assessment
of the Structural Diversity of Natural Products

NPs are unrivalled in terms of structural diversity, a fact
which is also reflected on a fragment level.[77] Most of the
studies assessing the structural diversity of NPs and
comparing them to that of synthetic compounds make use
of the concept of molecular frameworks (scaffolds) intro-
duced by Bemis and Murcko.[78] In recent work, Ertl and
Schuhmann[75] show an intuitive visualization of scaffolds
characteristic to NPs and compare them with those of
synthetic compounds. They also provide a comparison of
scaffolds frequently observed in NPs produced by bacteria,
plants, fungi or animals. Rule-based methods offer a differ-
ent angle towards NP diversity analysis. They allow, for
example, the automated assignment and assessment of the
major NP classes.[6]

A powerful tool for the intuitive, visual analysis of the
structural diversity of sets of compounds is Scaffold
Hunter.[79,80] The Java-based, open source software features
a graphical user interface and multiple clustering algo-
rithms. Scaffold Hunter is based on the idea of the

hierarchical representation and classification of molecular
scaffolds (“scaffold tree”). An early version of this tool
formed the basis of the structural classification of NPs
(SCONP), a method for charting the chemical space of
NPs.[81]

One of the most commonly employed techniques for
mapping the chemical space is PCA,[6,58,59,64,73,82,83] which
projects high-dimensional data into a low-dimensional
space for improved interpretability, while keeping informa-
tion loss to a minimum. The most relevant result of PCA
and starting point for interpretation is the PCA scatter plot,
which shows the distribution of the data points in the low-
dimensional space. When interpreting a PCA scatter plot it
is very important to understand and consider the propor-
tion of variance explained by the shown (two or three)
principal components. Only if the proportion of variance
explained is sufficiently high, the observed distribution of
the data points is informative. This is typically not the case
for PCAs based on molecular fingerprints; physicochemical
property descriptors usually give better results with PCA.
To avoid the need for the recalculation of the principal

components as new compounds are added to the datasets,
a method named ChemGPS[84] was developed and extended
for use with NPs (“ChemGPS-NP”[85]). The method utilizes
predefined rules in combination with selected molecular
structures to render a “global drugspace map” into which
new structures are projected based on predicted PCA
scores. ChemGPS-NP has been used in several studies for
mapping the chemical space of small molecules,[71,86] for
mode of action prediction,[87] and for the analysis of
structure-activity relationships.[86,88]

Also self-organizing maps and generative topographic
maps have been regularly utilized for comparing the
molecular structures of NPs with those of drugs, and for
visualizing the structural diversity of fragment-sized and
non-fragment sized NPs.[66,89,90] One interesting observation
from these analyses is a high degree of resemblance of NPs
and synthetic drugs in term of their pharmacophore
features, despite profound differences in chemical
structure.[90]

Further powerful methods for dimensionality reduction
include T-distributed Stochastic Neighbor Embedding (t-
SNE)[91] and the recently introduced Uniform Manifold
Approximation and Projection for Dimension Reduction
(UMAP) method.[92] t-SNE produces plots where, overall,
similar objects are located in close proximity and dissimilar
objects are modeled by distant points. t-SNE can produce
visualizations that are superior to those from PCA but the
method does not scale well with the size of data sets.
UMAP is conceptually related to t-SNE and produces similar
results but it is faster.
The research group of Medina-Franco has been develop-

ing several methods for the intuitive characterization,
visualization and comparison of compound collections, with
focus on NP databases. For example, they developed the
Consensus Diversity Plot (CDP),[93] which allows the compar-
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ison of datasets by a single, straightforward 2D plot
representing the median (or other) values of four key
properties of choice (e.g. physicochemical property, molec-
ular diversity, scaffold diversity). Each dataset is represented
by a single data point. The data point is positioned in the
2D plot according to two properties of choice represented
by the x and y axes. The third property of choice is
represented by color coding of the data points, and the
fourth one (intuitively, this would be the database size) is
represented by the size of the data point. The method has
been used for the visual comparison of multiple small-
molecule databases[83,94–96] and is accessible via a web
service.[93]

Recently, researchers from the same group reported the
development of a new method for the representation of
the chemical space of compound databases by a single
fingerprint called Statistical-Based Database Fingerprint (SB-
DFP).[97] The SB-DFP is widely applicable and can be derived,
in principle, from any molecular fingerprint and for any
reference set. The SB-DFP is generated by comparing the
binomial distributions of features of the molecular finger-
print of choice among the compounds of a dataset of
interest and that of a reference dataset. Only bits for which
significantly higher “on” rates are observed in the molecular
fingerprint among the compounds in the dataset of interest
(than in the reference set) will be set to “1” in the SB-DFP.
The SB-DFP was utilized for assessing and visualizing the
similarity of the chemical space of sets of NPs and synthetic
compounds, confirming that NP collections cover ample
chemical space that remains to be explored (more
thoroughly) in the context of drug discovery.

6 Computational Methods for the Assessment
of Natural Product-likeness

Computational tools are able to discriminate NPs and NP-
like compounds from synthetic compounds with high

accuracy, and they are also able to quantify the NP-likeness
of compounds. As such they are commonly applied to
compound design, library design, the selection of NPs (and
NP derivatives and analogs) from mixed compound collec-
tions, and for compound prioritization.[59,98]

One of the most established approaches is the NP-
Likeness Score developed by Ertl et al.[99] Employing
Bayesian statistics, this score quantifies the NP-likeness of
compounds based on the similarity of their fragments with
those of known NPs. The NP-Likeness Score has been re-
implemented in different software and platforms, with
some modifications.[100–103] Further approaches include a
conceptually related method employing extended connec-
tivity fingerprints (ECFPs)[98] as well as a rule-based
approach.[104] More recently, we developed NP-Scout,[59] a
tool for identifying NPs and NP-like compounds in large
sets of molecules. The random forest classifiers are trained
on a large collection of known NPs and synthetic com-
pounds. On a representative test set, a classifier based on
MACCS keys obtained an area under the receiver operating
characteristic curve (AUC) of 0.997 and a Matthews
correlation coefficient (MCC) of 0.960. NP-Scout makes use
of similarity maps, which highlight areas in a molecule that
contribute to the prediction of a molecule as NP or
synthetic compound (Figure 2). NP-Scout is accessible via a
free web service.[105]

Most recently, the Natural Compound Molecular Finger-
print (NC-MFP) was introduced as a new approach of
describing in particular the structural features of NPs in
terms of the scaffolds and fragments they are composed
of.[106] The NC-MFP was shown to outperform established
fingerprints in discriminating NPs from synthetic com-
pounds.

Figure 2. Similarity maps of (A) vorapaxar and (B) empagliflozin. Green-highlighted atoms contribute to the classification of a molecule as a
natural product; orange-highlighted atoms contribute to the classification of a molecule as a synthetic compound. Adapted from [59] (CC BY
4.0; https://creativecommons.org/licenses/by/4.0).
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7 Computational Methods for the Identification
of Bioactive Natural Products

Computational methods have a strong track record in the
identification of bioactive NPs. The entire range of virtual
screening methods has been applied for NP research, from
simple, fast methods based on 2D molecular fingerprint
similarity to more complex, 3D methods based on molec-
ular shape similarity, pharmacophore models, molecular
interaction fields, or docking. More recently, machine
learning approaches have become a mainstay in virtual
screening for bioactive NPs.[107]

In particular 3D virtual screening methods are chal-
lenged by the structural properties of many NPs such as
high degrees of conformational flexibility, the complexity of
their molecular shapes and ring systems (notably macro-
cycles), insufficiencies of molecular force fields primarily
parameterized for synthetic compounds, and uncertainties
related to protonation states, tautomerism and oxidation
states (for example, the possible involvement of polyphe-
nols in redox cycles is often disregarded). One approach to
reduce the structural complexity of NPs is to remove the
sugars and sugar-like components from NPs in cases where
they are deemed not to be essential for bioactivity.[66,108]

This can be done, for example, by use of defined (SMARTS)
patterns.[6,100]

Given the sparsity of available structural data, docking
of NPs to the structures of macromolecules can pose a
profound challenge. This is because docking algorithms and
scoring functions are highly sensitive even to very small
changes in 3D structure such as those commonly induced
by ligand binding (including solvent effects). However, also
this hurdle may be overcome by the prudent use of
homology modeling techniques, induced fit docking ap-
proaches, and/or molecular dynamics simulations. In the
case of highly flexible proteins, docking against multiple,
representative protein structures (“ensemble docking”) may
be a good way forward (not only for virtual screening but
also for binding mode prediction).[109,110] Diligence and
patience will certainly be required and, above all, checks of
the plausibility of a hypothesis using all available informa-
tion can help to piece the puzzle together.
More often than in virtual screening-docking algorithms

produce good results in binding mode prediction.[111]

Provided that the NP of interest is not excessively large or
flexible (as a rough guide, not exceeding 35 heavy atoms or
eight rotatable bonds), that the ligand binding site is well-
defined (i. e. not overly shallow, not solvent-exposed), and
that the interaction between the binding partners involves
two or more directed interactions, there is a good chance
that a sufficiently accurate binding pose can be obtained
that offers crucial insights for the development of optimiza-
tion strategies. Binding pose prediction is more feasible
than virtual screening because it allows to largely disregard
the most challenging aspect of docking, which is the
scoring of compounds according to their binding affinity,

and it allows researchers to focus their effort on one specific
ligand-target pair. Importantly, in particular in the context
of NP research, docking enables the rationalization of
stereoselectivity in ligand binding (and other processes,
such as metabolism). The importance of using the correct
stereochemical information with 3D approaches, especially
with docking, cannot be overstated.
In the following paragraphs we briefly discuss represen-

tative examples of studies in which virtual screening was
successfully employed for the identification of bioactive
NPs. For more comprehensive discussion of applications,
the reader is referred to excellent reviews.[18,112]

Using katsumadain A (a diarylheptanoid inhibiting
influenza neuraminidase) as a template for 3D molecular
shape-based screening, a number of structurally distinct
NPs were identified that inhibit the viral enzyme with IC50
values in the submicromolar to low micromolar range (for
example artocarpin (1), which is depicted in Figure 3).[113] In
another study, pharmacophore-based virtual screening was
combined with a shape-based approach in order to identify
activators of the G protein-coupled bile acid receptor 1
(GPBAR1).[114] In addition to several NP databases also a
collection of synthetic compounds was screened. Among
the 14 selected NPs eight (57%) obtained a measured
receptor activation of at least 15% at 20 μM concentration.
Two of these compounds, farnesiferol B (2) and micro-
lobidene (3), are based on molecular scaffolds that had not
yet been associated with GPBAR1 modulation. Both com-
pounds were reported to have EC50 values of approximately
14 μM. Among the 19 selected synthetic compounds, only
two were active (applying the identical activity threshold).
Influenza neuraminidase has also been successfully

addressed by docking. For example, a database of NPs
related to plants endogenous to Malaysia was screened for
potential inhibitors of influenza neuraminidase.[20] From the
five plants with the highest hit rates in docking, twelve NPs
with moderate inhibitory activity on influenza neuramini-
dase were identified by experimental testing (one example
is rubraxanthone (4)), four of which had been ranked by
docking among the top-100 compounds in the hit list.
A pharmacophore approach was utilized to screen a

collection of 10k NPs related to traditional Chinese medi-
cine for compounds targeting the farnesoid X receptor
(FXR), a transcription factor involved in inflammatory liver
diseases.[115] Screening results indicated a high likelihood of
activity of lanostane triterpenes from the mushroom
Ganoderma lucidum. Several of these lanostanes were
isolated and subjected to experimental testing in a reporter
gene assay. Five lanostanes showed a dose-dependent
induction of FXR with EC50 values in the low micromolar
range, the most active ones being ergosterol peroxide (5)
and ganodermanontriol (6).[21]

Rupp et al.[116] explored a number of different machine
learning approaches in order to identify NP derivatives that
selectively activate the peroxisome proliferator-activated
receptors (PPARγ). The authors focused on the use of
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Gaussian process models (with different kernels) that they
employed to learn pharmacophoric patterns from a
medium-sized set of synthetic PPARγ ligands. By screening
and ranking several hundred thousand commercially avail-
able compounds, the authors identified a truxillic acid
derivative (7) as a selective activator of PPARγ (EC50=
10 μm).
Another study from the same lab[117] employed machine

learning-based virtual screening for the identification of
mimetics of the Alzheimer drug (� )-galantamine (Figure 1).
Like for many Alzheimer drugs, the therapeutic efficacy of
(� )-galantamine is linked to activities on multiple proteins
rather than a single one. In the search for efficacious
compounds it is hence important to consider polypharma-
cology. To this end, Grisoni et al. employed the machine
learning-based target prediction models SPIDER and TIGER
(which are discussed in more detail in the next section) to
identify (in this case synthetic) compounds with bioactivity
spectra that are comparable to that of (� )-galantamine.
Using these models, they selected 20 compounds from a
set of more than 3 Million purchasable compounds for
testing. Among the selected compounds, several showed
interesting activities in vitro. Two compounds of small size
were shown to have polypharmacological profiles that are
considered to be favorable for the treatment of Alzheimer’s
disease.

8 Computational Methods for the Prediction of
the Macromolecular Targets of Natural
Products

Knowing the macromolecular target(s) of small molecules is
of utmost importance to the assessment of the pharmaco-
logical efficacy and safety of compounds, and for their
further development. However, even for a substantial

number of marketed drugs the mode of action is unknown
or only vaguely understood. The road to the experimental
identification of the target(s) of small molecules can be very
lengthy and expensive, and there is a good chance to be
met by disappointment on the way, for example, when it
becomes clear that “the target” of a supposedly innovative
compound is an established drug target or, worse, a protein
known to be not a viable drug target. Computational
approaches are hoped to make a significant contribution to
making mode of action identification more efficient and
there is an increasing body of evidence that some of these
hopes are becoming reality (as will be discussed below).
In silico target prediction can be regarded as a large-

scale application of virtual screening (see the previously
discussed study of Grisoni et al.[117]), in the way that one,
several or many compounds are screened against the
widest possible set of macromolecules. A plethora of
methods and models have been reported in recent
years[118–121] and they have become established as important
tools in early drug discovery. Related to the challenges
involved in docking and structure-based methods in
general (in particular, the limited coverage of macromole-
cules by the available structural data), most approaches for
target prediction are ligand-based.
Ligand-based methods cover the full range from

straightforward similarity-based approaches to complex
machine learning and network-based approaches. Surpris-
ingly, despite today‘s abundance of computational methods
for target prediction, our understanding of the value of
these methods under real-world conditions remains
limited.[122] This is primarily because of the (in general)
prohibitive costs involved in the experimental, systematic,
prospective evaluation of such models, but also because of
the partly insufficient, superficial retrospective validation
protocols that are regularly employed.[122,123] To our best
knowledge, the only computational method for which a

Figure 3. Examples of natural products and natural product derivatives identified by virtual screening.
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systematic experimental validation has been reported so far
remains the well-known Similarity Ensemble Approach
(SEA).[124–126] One may rightly argue that validating models
on existing data generally leads to an overestimation of
how well a model will perform under real-world conditions,
however, there is at least one more important point to
consider when judging the value of target prediction
approaches based on retrospective validation studies: under
real-world conditions, researchers will rarely face the
situation where no hints on a compound‘s target are
available at all. A scenario where a substantial amount of
information is available on a compound of interest, e.g.
phenotypic assay readouts with different cell lines or data
for structurally related compounds, is more likely. By adding
up all of the available information it is likely that many
false-positive predictions can be ruled out, hence leaving
much fewer candidate targets to be investigated exper-
imentally.
In a recent, in-depth study of the performance and

scope of a similarity-based approach and a machine
learning approach for predicting the targets of small
molecules, we show that the reliability of predictions of
either approach strongly depends on the structural relation-
ship between the compounds of interest and compounds
represented in the training set (or knowledge base).[123] This
fact needs to be carefully considered when working with
NPs, given the fact that models for target prediction are
mostly designed for, and trained on, measured data for
synthetic compounds.
In the same study we found that, surprisingly, with the

currently available data, the similarity-based approach
generally outperformed the machine learning approach.
While a direct comparison of these two approaches should,
for several reasons, be considered with great caution, the
results suggest that the simple similarity-based approach is
a good choice, in particular also when taking into account
model interpretability. This is also reflected by the good
performance of other established, similarity-based models
such as SwissTargetPrediction.[127]

Most NPs are structurally distinct from more conven-
tional, synthetic compounds, which account for the bulk of
the measured activity data. More complex similarity-based
methods that compare molecules based on their 3D
molecular shape are designed to recognize such distant
structural similarity but until recently it was unclear how
well these methods would work in practice. We systemati-
cally explored the capacity of ROCS,[128,129] a leading, shape-
based screening engine that also takes into account
chemical feature distributions, to identify the macromolecu-
lar targets of “complex” small molecules based on a
knowledge base of “non-complex” compounds with meas-
ured bioactivity data.[130] For the purpose of this work, we
defined molecules as “complex” if they are either (very)
large in size (45 to 55 heavy atoms) or macrocyclic (and
large). In contrast, we defined molecules as “non-complex”
if they were small in size (15 to 30 heavy atoms). A total of

28 pharmaceutically relevant targets were studied. For each
of the targets a diverse set of 10 complex small molecules
was automatically generated. A single, low-energy confor-
mation of each of these molecules was used as a query for
screening with ROCS against a multi-conformational knowl-
edge base. The knowledge base represents 3642 targets
with a total of 272 640 non-complex small molecules. This
study found that ROCS correctly ranked at least one known
target among the top 10 positions (out of a list of 3642) for
up to 37% of the 280 complex small molecules serving as
queries. Considering the dissimilarity of the queries and the
compounds in the knowledge base, this performance is
remarkable. It indicates that target prediction is possible for
a substantial number of challenging complex molecules.
Note that researchers will be able, in many cases, to
strongly reduce the number of target candidates based on
expert knowledge and available information. Among the
280 complex small molecules were at least 31 known,
complex NPs and NP-like compounds. For these com-
pounds, the top-10 success rate was lower (23% vs. 37%).
This is related to the fact that the median Tanimoto
coefficient based on Morgan2 fingerprints of the complex
NP (or NP-like compound) and the closest non-complex
small molecule in the knowledge base is only 0.13. For pairs
of compounds sharing such a low degree of similarity it can
be expected that their binding modes are distinct, which is
generally beyond the scope of ligand-based methods. In
summary, taking into account capacity of these methods
and their low demand in computational power, we believe
it is worthwhile using these methods in any case as
valuable ideas may emerge from their use.
Besides 3D similarity-based approaches, also 3D phar-

macophore-based approaches are regularly used for target
prediction in the context of NP research. One example is a
profiling study in which secondary metabolites isolated
from the medical plant Ruta graveolens were screened
against a battery of more than 2000 pharmacophore
models representing over 280 targets.[131] From this in silico
screen, among other bioactive NPs and interactions,
arborinine was identified as an inhibitor of acetylcholines-
terase (measured IC50=35 μM).
In recent years the models for NP target prediction

which have seen most interest certainly are those based on
machine learning. Notable examples include SPiDER,[132]

TIGER,[133] and STarFish.[134] SPiDER uses self-organizing maps
in combination with “fuzzy” molecular descriptors that
allow for extending its usage to NPs.[135,136] The model was
instrumental in the identification of 5-lipoxygenase, PPARγ,
glucocorticoid receptor, prostaglandin E2 synthase 1, and
FXR as targets of the macrolide archazolid A,[137] and it
correctly predicted prostanoid receptor 3 as a target of
doliculide, a 16-membered depsipeptide.[138] SPIDER also
successfully identified the targets of several fragment-like
NPs such as (i) sparteine, for which the kappa opioid
receptor, p38α mitogen-activated protein kinase, muscar-
inic and nicotinic receptors were experimentally confirmed
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as targets,[3] (ii) DL-goitrin, for which the pregnane X
receptor and the muscarinic M1 receptor were experimen-
tally confirmed as targets,[139] (iii) isomacroin, for which the
platelet-derived growth factor receptor and the adenosine
A3 receptor were experimentally confirmed as targets,

[139]

and (iv) graveolinine, for which cyclooxygenase-2 and the
serotonin 5-HT2B receptor were experimentally confirmed as
targets.[139]

Building on predictions from SPiDER, the Drug-Target
Relationship Predictor (DEcRyPT)[140] employs random forest
regression in order to generate a refined list of likely
macromolecular targets. Use of DEcRyPT led to the
successful identification of 5-lipoxygenase as a target of the
ortho-naphthoquinone β-lapachone.[140] The hydroquinone
form of β-lapachone was confirmed as a nanomolar
inhibitor of 5-lipoxygenase.
TIGER is conceptually related to SPiDER. However, it

employs modified CATS descriptors and uses a different
method for scoring the predicted targets (taking into
account ensemble similarity). TIGER successfully identified
the orexin receptor, glucocorticoid receptor, and cholecys-
tokinin receptor as targets of the marine NP (�)-marinopyr-
role A.[133] The model also rightly predicted, among other
proteins, estrogen receptors α and β as targets of the
stilbenoid resveratrol.[141]

STarFish is a stacked ensemble approach for target
prediction trained on synthetic compounds. Various ma-
chine learning algorithms were explored as part of the
development process. The best stacking approach identified
by the authors used molecular fingerprints as input for a
random forest model and a k-nearest neighbors model
(level 0). The probabilities predicted by these two models
for each of the targets are then used as input for a meta-
classifier based on logistic regression (level 1). The stacking
approach was found to perform substantially better on a
test set of NPs (ROC AUC 0.94; BEDROC score 0.73) than the
individual models (AUCs between 0.70 to 0.85; BEDROC
scores between 0.43 and 0.59).[134]

Also network approaches focused on the prediction of
the macromolecular targets of NPs have been reported. For
example, Cheng and co-workers developed statistical net-
work models in order to link NPs to anti-cancer targets[142]

and proteins involved in aging-associated disorders.[143]

Most recently, multi-task deep neural networks were
trained on medical indication data and employed for
identifying privileged molecular scaffolds in NPs (in this
case, scaffolds for which multiple NPs built on the identical
scaffold are active in the same indication).[144] Based on the
predictions of these models, a privileged scaffold dataset
for 100 indications was compiled that could serve as a
starting point for NP-based drug discovery.
For additional information on this topic, the reader is

referred to refs. [18,19,145].

9 Computational Identification of Natural
Products Likely to Interfere with Biological
Assays

The inclination of NPs to cause interference with biological
assays continues to pose a significant challenge to the
experimental screening of NPs.[146,147] The flavonoid querce-
tin, a known aggregator and pan-assay interference com-
pound, gives an illustrative example of the scale of the
problem: as of July 28, 2020, the PubChem Bioassay
database listed quercetin as conclusively active in more
than 800 unique bioassays, which represents a hit rate of
more than 50% (among all conclusive assay outcomes).
By far the most commonly observed mechanism of

assay interference is aggregate formation, which occurs
under specific assay conditions.[148] Further relevant mecha-
nisms are covalent binding, redox-cycling, membrane
disruption, metal chelation, interference with assay spectro-
scopy, and decomposition in buffers.[149]

The development of computational approaches aiming
to tackle this problem has been slow. Until recently, tools
accessible to users included several rule sets, few similarity-
based approaches, and a statistical approach. Among the
rule sets, the best known and most applied collection is the
pan-assay interference compounds (PAINS) rule set.[149,150]

Although clearly declared by its inventors, users of the
PAINS rules set all too often neglect the significant
limitations of its scope, applicability and reliability. Further
examples of relevant rule sets include the REOS rules[151]

and a set of rules derived from an NMR-based method for
identifying small molecules that cause false-positive assay
outcomes due to reactivity (ALARM NMR).[152]

A useful similarity-based approach is Aggregator Advi-
sor, which flags compounds which are in a close structural
relationship to known aggregators (a simple approach of
which negative outcomes of course do not indicate the
benignity of compounds).[153] The statistical approach, called
BADAPPLE,[154] calculates a promiscuity score based on
molecular scaffolds.
More recently, we introduced Hit Dexter 2.0, the second

generation of a set of machine learning models that are
designed to identify compounds that are likely to show
frequent hitter behavior in primary screening assays and/or
confirmatory dose-response assays, regardless of the under-
lying (interference) mechanism.[155]

All these approaches have in common that they are
derived from datasets dominated by synthetic compounds.
As we point out in our work on Hit Dexter 2.0, the training
set, even though consisting of about 250k compounds,
covers only a small fraction (approximately 15%) of the
known NPs with compounds that are structurally sufficiently
similar so that reliable predictions by the model can be
expected.[155] This means, once again, that caution must be
exercised when using any of these approaches in particular
in the context of NPs.
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10 De Novo Design of Nature-inspired
Compounds and Compound Collections

Limited synthetic accessibility poses a major challenge to
the exploration and use of NPs and NP-derived
compounds.[19,156] In order to overcome this hurdle, re-
searchers have devised a number of strategies for the
design of synthetically accessible compounds with NP-like
properties. For example, diversity-oriented synthesis (DOS)
is a concept that utilizes pairs of complexity-generating
reactions to produce diverse and complex compounds with
NP-like architectures (enriched with stereogenic centers and
sp3-hybridized atoms).[156,157] In contrast to DOS, biology-
oriented synthesis (BIOS) starts from biologically active
scaffolds and seeks to generate small to medium-sized
collections of complexity-reduced, NP-like compounds.[80,158]

BIOS is guided by the hierarchical representation and
classification of molecular scaffolds, as well as the structural
similarity of the ligand-sensing cores of proteins.[81,159]

A further strategy for the efficient synthesis of diverse,
NP-like compounds utilizes chemoselective reactions for the
distortion of ring systems that are part of readily available
NPs.[160,161] Common conversions in this context include ring
cleavage, ring expansion, ring fusion and ring rearrange-
ments.
Novel classes of compounds can also be derived by

fragment-based compound design starting from NP-derived
fragments.[156] This NP-inspired strategy may enable the
efficient exploration of the biologically relevant chemical
space beyond the known NPs and NP scaffolds.
Shifting the focus to computational approaches, Har-

tenfeller et al.[162] developed DOGS, a de novo design tool
which utilizes information on more than 25k readily
available synthetic building blocks in combination with a

large set of established reaction rules to generate com-
pounds which are likely synthetically accessible. Impor-
tantly, DOGS utilizes structural and pharmacophoric de-
scriptions of (bioactive) reference compounds in order to
steer the compound generation process into desired
directions.
Starting from NPs active on the retinoid X receptor

(RXR), DOGS was employed for the design of novel,
synthetically accessible, NP-inspired RXR ligands. Five out of
six compounds designed by DOGS proved to be RXR
agonists and to have similar nuclear receptor selectivity
profiles to the respective templates (one example is 8,
shown in Figure 4).[135] In a further study, DOGS was utilized
for the design of mimics of (� )-englerin, a complex
sesquiterpene with potent anti-proliferative activity.[163] A
total of 323 unique designs were generated by DOGS. After
several filtering and scoring steps, two proposed molecules
(9 and 10) were selected and synthesized (one thereof with
a slight modification). Both compounds were confirmed in a
functional, cell-based assay as potent inhibitors of the
transient receptor potential melastatin 8 (TRPM8) ion
channel.[164]

In a follow-up study, the above-mentioned ranking
approach was extended to take into account also the 3D
molecular shape similarity (based on global fractal dimen-
sionality) of the 323 designs.[165] One of two compounds
selected by this approach (11) was again confirmed as
potent inhibitor of TRPC4 and TRPM8 channels.
Merk et al. used a deep recurrent neural network

approach for the de novo design of RXR modulators.[166] The
neural network was trained on synthetic compounds with
measured bioactivities on RXR. By fine-tuning the model
with a small set of NPs modulators of RXR, the authors
showed that their model was able to produce synthetically

Figure 4. Examples of de novo designed molecules inspired by natural products.
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accessible NP mimetics that have a high chance of being
active on the intended target. Following a selection
procedure that involved target prediction and the assess-
ment of molecular similarity, three designs were selected
for experimental testing of which two compounds (12 and
13) were confirmed to modulate the RXR with a potency
that is comparable with that of the templates.
For additional information on de novo design in the

context of NP research, the reader is referred to ref. [19].

11 Computational Prediction of ADME and
Safety Profiles of Natural Products

NP-based drug discovery often faces challenges related to
the ADME and safety profiles of NPs. Among the most
prominent examples of anti-targets addressed by NPs is the
hERG channel[167] (its blockage is linked to potentially fatal
cardiac arrhythmia), cytochrome P450 enzymes (which can
cause drug-drug interactions and toxicity), and the P-
glycoprotein (an efflux pump with broad substrate specific-
ity that can effectively cause drug resistance). A plethora of
computational models of different kinds (i. e. statistical
models, machine learning models, pharmacophore models,
docking, etc.) address these and many other anti-targets
and endpoints.[96,168–173] However, it is important to consider
that, as a result of the available data, these and most other
in silico models are trained and/or tested on compounds
that are primarily of synthetic origin. Therefore, extra
caution must be exercised in relation with NPs, and the
applicability domain of the models must be closely
observed.
Not all models are equally affected by the structural and

physicochemical differences of NPs and synthetic com-
pounds. For example, the applicability of Hit Dexter 2.0 to
NPs is limited. The reliability of Hit Dexter’s predictions has
been shown to decrease substantially when moving away
from the training data beyond a certain point, and the
training data are primarily composed of synthetic com-
pounds. In contrast, a conceptually related machine learn-
ing model for the prediction of the sites of metabolism of
small molecules, FAME 3, was shown to perform well on
NPs, even though the majority of compounds in the
training set are again of synthetic origin.[174] The reason for
the high robustness of the FAME 3 models and their good
performance on NPs is that the liability of atom positions in
molecules is described based on their proximate atom
environment, and these proximate neighborhoods are
much more redundant among NPs and synthetic com-
pounds than their global molecular similarity.

12 Summary

NPs pose some extraordinary challenges to experimentalists
and theoreticians alike, but statistics on recently approved,

small-molecule medicines show that the research of NPs is
worth all the effort and can yield valuable, innovative drugs.
Modern in silico methods can make a substantial contribu-
tion to the acceleration and de-risking of NP-based drug
discovery. However, the applicability of models must be
closely observed, in particular when working with NPs as
computational approaches are mostly designed for, and
trained on, data for synthetic compounds. Unfortunately,
even the recently developed models still often lack robust
definitions of the applicability domain and do not warn
users adequately about compounds for which predictions
are not reliable. Researchers may in particular feel tempted
to use one of the many free, user-friendly web servers to
quickly predict physicochemical or biological properties of
NPs. Obviously, also for these web services the principle
holds true that in the absence of robust indicators of the
reliability of individual predictions, these predictions are not
to be trusted.
Given the reinvigorate interest in NP research, the

growing amount of accessible biological, chemical and
structural data, and advances in algorithms, modeling
techniques and computational power, the future will see
the continued integration of computational methods in NP-
based drug discovery pipelines.
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