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a b s t r a c t

Biological tissue information of the lung, such as cells and proteins, can be obtained from bronchoalveolar 
lavage fluid (BALF), through which it can be used as a complement to lung biopsy pathology. BALF cells can 
be confused with each other due to the similarity of their characteristics and differences in the way sections 
are handled or viewed. This poses a great challenge for cell detection. In this paper, An Improved Yolov5s 
Based on Transformer Backbone Network for Detection and Classification of BALF Cells is proposed, focusing 
on the detection of four types of cells in BALF: macrophages, lymphocytes, neutrophils and eosinophils. The 
network is mainly based on the Yolov5s network and uses Swin Transformer V2 technology in the backbone 
network to improve cell detection accuracy by obtaining global information; the C3Ghost module (a variant 
of the Convolutional Neural Network architecture) is used in the neck network to reduce the number of 
parameters during feature channel fusion and to improve feature expression performance. In addition, 
embedding intersection over union Loss (EIoU_Loss) was used as a bounding box regression loss function to 
speed up the bounding box regression rate, resulting in higher accuracy of the algorithm. The experiments 
showed that our model could achieve mAP of 81.29% and Recall of 80.47%. Compared to the original Yolov5s, 
the mAP has improved by 3.3% and Recall by 3.67%. We also compared it with Yolov7 and the newly 
launched Yolov8s. mAP improved by 0.02% and 2.36% over Yolov7 and Yolov8s respectively, while the FPS of 
our model was higher than both of them, achieving a balance of efficiency and accuracy, further demon-
strating the superiority of our model.

© 2023 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and 
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Bronchoalveolar lavage fluid (BALF) is the alveolar surface lining 
fluid obtained by repeated lavage with sterile saline at the level of 
the lung segments and sub-pulmonary segments below the bronchi 
by fibreoptic bronchoscopy [1]. Cytomorphological examination of 
BALF is of great importance in the diagnosis, observation of outcome 
and prognosis of respiratory diseases, especially interstitial lung 
disease, pulmonary infiltrates and some infectious diseases [2,3]. 
BALF is still regarded as the gold standard for the identification of 
pulmonary misfiring in chronic interstitial lung disease [4]. When 
clinical history, physical examination, common laboratory testing, 

pulmonary function tests, and radiography are insufficient to pro-
vide a conclusive diagnosis, it typically offers important diagnostic 
information [5]. Clarification of inflammatory cell alterations (e.g., 
lymphocytes, eosinophils, neutrophils and macrophages) in BALF 
can provide a better understanding of the disease and can be used as 
an objective parameter to assess the efficacy of treatment [6]. Ac-
cording to research, lymphocyte-dominated BALF substantially 
supports the diagnosis of pulmonary nodular disease or allergic 
pneumonia [7]. Increased percentages of neutrophils and/or eosi-
nophils have now been found to be associated with reduced carbon 
monoxide lung diffusion [8].

Although cellular differential findings on BALF often lack speci-
ficity, they may still be useful in identifying certain diseases and thus 
narrowing the diagnosis [9]. For example, studies have shown that 
cell patterns in BALF can be used to differentiate specific diseases in 
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patients with acute respiratory failure [10]. According to the 2020 
Chinese Expert Consensus on BALF cytomorphology testing [11], the 
counting and classification of different cell types in BALF is still 
currently done by trained pathologists by flow cytometry or manu-
ally after filtration or cell centrifugation techniques. This process of 
manually counting and classifying cells is not only complex, tedious 
and time-consuming, but also has significant variation in image re-
porting between pathologists with different working experience 
[12]. The interpretation of BALF often calls for the use of a bio-oil 
lens with a 1000x magnification and the counting of at least 400 
cells [13]. There is little question that cytological examination of 
bronchoalveolar lavage fluid is a major job for Chinese pathologists 
who must analyze hundreds of slides each day, and a shortage of 
skilled operators may impair the accuracy of results [11,13]. Fur-
thermore, for patients with acute and severe diseases, such as re-
fractory Mycoplasma pneumoniae pneumonia, obtaining accurate 
data in the quickest feasible time is vital for following clinical de-
cisions to be made, which influences the patient’s prognosis [14,15]. 
While bronchoalveolar lavage fluid is crucial for the detection of 
lung-related disorders, its use in clinical screening or fast field 
evaluation may be constrained for a variety of reasons, including 
examination time [16]. Therefore, it would be beneficial to develop 
an intelligent deep learning model for BALF cell detection and 
classification in order to improve the accuracy and efficiency of di-
agnosis and reduce the workload of specialist physicians.

In recent years, deep learning techniques have demonstrated 
excellent image processing and object recognition capabilities in a 
number of large-scale visual recognition challenge tasks, and many 
researchers and groups have explored the possibility of applying 
deep learning to medical image interpretation, and have made very 
significant breakthroughs. In the medical field, image processing 
tasks are mainly classification, detection and segmentation, with cell 
recognition and counting being an important part of these three 
tasks for medical examination. In the field of cell detection, Banik 
et al. proposed a convolutional neural network (CNN) model-based 
method for identifying different kinds of leukocytes by segmenting 
white blood cell (WBC) cell nuclei based on color space transfor-
mation and k-means mean algorithm [17]. They achieved an overall 
accuracy of 96% on BCCD (a small-scale dataset for blood cells de-
tection) test database by using nine classification metrics. Tayebi 
et al. proposed an end-to-end deep learning-based system for de-
tecting bone marrow cells [18]. Following retrospective analysis of 
digital whole slide images (WSI) from 1247 patients, the model 
achieved accuracy, precision, specificity, and NPV of over 90%. Del-
gado-Ortet et al. proposed a deep learning method for erythrocyte 
image segmentation and malaria detection [19]. According to the 
test set from Core Laboratory at the Hospital Clinic of Barcelona and 
the online repository Malaria Dataset, this model had a worldwide 
accuracy of 93.72% and a specificity of 87.04% for detecting malaria 
in red blood cells (RBCs). This work highlights the application of 
deep learning to the field of digital pathology. Bibi et al. proposed an 
Internet of Medical Things (IoMT-) based framework for identifying 
leukaemia-related cells [20]. Their proposed deep CNNs (DenseNet- 

121 and ResNet-34) both yielded accuracies above 99% on ALL-IDB 
and ASH image bank. In the current study on the detection and 
counting of different cells in BALF, Yi Tao et al. used an automated 
biomicroscopy platform to acquire visual images and proposed a 
convolutional neural network-based algorithm to automatically in-
terpret BALF cytology [21]. The sample collected a total of 12,900 
images from 139 subjects. The study successfully detected the ma-
jority of cells in BALF specimens. However, the sample images in that 
study had sparse cell density and the trained model may not work 
well in the dense situation of actual detection. Peng et al. integrated 
an enhanced master curve technique with an evolving neural net-
work to create a unique hybrid method for rectal ultrasound image 
segmentation, resulting in increased image segmentation accuracy 
and resilience [22]. Sai Kit Lam et al. created an image-omics-based 
algorithm for determining whether patients with nasopharyngeal 
carcinoma can undergo radiation treatment [23]. Additionally, they 
suggested an automated A-LugSeg approach based on the Mask- 
RCNN deep learning and refinement subnetwork to precisely seg-
ment lung X-ray images to aid in the diagnosis of lung diseases [24].

In order to improve the detection accuracy and efficiency of BALF 
cells in dense situations we decided to use the you only look once 
(Yolo) algorithm [25]. The core idea of Yolo is to transform target 
detection into a regression problem by applying a single convolu-
tional neural network to the whole image, using the whole image as 
input, to obtain the position of the bounding box and the probability 
of the class to which it belongs. Yolov5 is one of the models in the 
Yolo series. This network model has a high detection accuracy as 
well as a fast inference speed. Based on this, we propose an im-
proved Transformer backbone network based on Yolov5s for the 
detection and classification of bronchoalveolar lavage fluid cells [26]. 
In summary, there were six main contributions in our study:

(1) The original data volume is expanded using data augmenta-
tion to prevent overfitting and improve the robustness of the model.

(2) The introduction of Swin Transformer V2 as the backbone 
network, which allows feature extraction of global information and 
thus improves the accuracy of cell detection.

(3) Presenting the Ghost module in the neck network of Yolov5s, 
which reduces the parameters to achieve a lightweight model and 
facilitates the capture and extraction of detailed features.

(4) We adapt the bounding box regression loss function to em-
bedding intersection over union Loss (EIoU_Loss) and introduce the 
positive and negative sample allocation method of Yolov7 in order to 
speed up the bounding box regression and increase the precision of 
the algorithm for cell recognition.

(5) Using weighted non-maximum suppression (Weighted-NMS), 
we do a weighting and averaging of the prediction bounding box 
information, which can overlap the information of each bounding 
box and ensure the accuracy of localization and classification.

(6) We have deployed our Improved Yolov5s Based on 
Transformer Backbone Network for Detection and Classification of 
Bronchoalveolar Lavage Fluid Cells to a web client. People around the 
world can upload BALF cell images for cell detection. It is currently 
available at http://www.balfcell.cn/. Fig. 1 and Table 1.

Fig. 1. Our model can detect and classify four types of cells in bronchoalveolar lavage fluid, allowing doctors to make a diagnosis. 
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2. Methods and Materials

2.1. Dataset

The BALF dataset used in this study was derived from the publicly 
available dataset "Bronchoalveolar Lavage Fluid Cell Sorting Count 
Challenge" [27], the dataset that classifies cells in BALF into four 
categories in general: macrophages, lymphocytes, neutrophils and 
eosinophils. Normally, the number of nucleated cells is (90−260) x 
106/L, with 85%− 96% alveolar macrophages, 6%− 15% lymphocytes, 
≤ 3% neutrophils and <  1% eosinophils. This bronchoalveolar lavage 
fluid cell target assay dataset was annotated using the Computer 
Vision Annotation Tool (CVAT) [28] platform, with image files of the 
same filename and their label files providing information on the 
location and category of the data images and boxes. Table 2.

2.2. Image preprocessing

We divided the existing 180 images into two sets of 4:1, 144 as 
the training set and 36 as the test set. The generation of a deep 
learning based detection model requires training on a large amount 

of image data, which needs to be augmented in order to improve the 
robustness of the model and prevent overfitting. Image enhance-
ment methods include image brightness enhancement and reduc-
tion, vertical flip, multi-angle rotation, etc. On the basis of the 
original picture, we first rotate the original picture by 2° and 5°, and 
then add Gaussian filtering and vertical flip to the rotated picture. 
Then perform 10° rotation and Gaussian filtering on the original 
image, and finally rotate 350° and add random brightness. The de-
tailed process of the image enhancement method is shown in Fig. 2, 
with no overlap between the training and test sets. Fig. 3.

2.3. Yolov5s network architecture

Yolov5 is divided into Yolov5n, Yolov5s, Yolov5m, Yolov5l and 
Yolov5x, which have the same overall network structure, except that 
each sub-module uses a different depth and width, corresponding to 
the depth_multiple and width_multiple parameters in the sub- 
module yaml file. We have chosen Yolov5s as the base model, with 
some refinements to ensure accurate detection and a lightweight 
design of the parameters.

Yolov5 and Yolov4 use the same Mosaic data augmentation on 
the input side. It is stitched together using 4 images, randomly 
scaled, randomly cropped and randomly arranged. This method has 
more details and textures in the background area of the image, 
which enhances the network’s understanding of the background and 
detection accuracy. In Yolov5, for different datasets, there are an-
chors with initial set length and width. In the network training, the 
network outputs predicted bounding boxes based on the initial an-
chors, and then compares them with the ground truth bounding box, 
calculates the difference between them, and then iterates the net-
work parameters by backpropagation.

As shown in Fig. 4, Yolov5s backbone network consists of the 
Conv, C3 and spatial pyramid pooling-fast (SPPF) modules, and in 
this new version Yolov5 has replaced the Focus module, which was 
the first layer of the network, with a 6 × 6 sized convolutional layer. 
The Conv module is Yolov5s basic convolution unit, which performs 
2D convolution, regularization and Swish activation function (SILU) 
activation function operations on the input. The Bottleneck module 
first reduces and then expands the number of channels (to half by 
default) by first halving the number of channels with 1 × 1 con-
volution, then doubling the number of channels with 3 × 3 con-
volution, and acquiring the features (using two standard convolution 
modules in total), without changing the number of channels in the 
input and output. In the new version of Yolov5, the authors have 
transformed the Bottleneck block with a CSP connection (Bot-
tleneckCSP) module into a C3 module. The C3 module is the main 
module for learning residual features and is structured in two 

Table 1 
The application of deep learning techniques in cell detection. 

References Methods Results Applications

Banik 2020[17] CNN, color space transformation, k-means 
mean algorithm

accuracy 96% on BCCD test database segment WBC cell nuclei, identify different kinds of 
leukocytes

Tayebi 2022[18] end-to-end deep learning accuracy, precision, specificity, and NPV 
over 90%

detect bone marrow cells

Delgado-Ortet 2020[19] deep learning accuracy 93.72%; specificity 87.04% segment erythrocyte image, detect malaria
Bibi 2020[20] IoMT-based framework accuracy above 99% on ALL-IDB and ASH 

image bank
identify leukaemia-related cells

Yi Tao 2022[21] CNN sensitivity, precision, and F1 score 
over 0.9

detect most cells in BALF

Tao Peng 2022[22] evolutionary neural network, improved 
principal curve

DSC 96.8%; Ω95.7%; ACC 96.4% segment ultrasound image

Sai Kit Lam 2022[23] Ridge and MKL an average AUC of 0.942 and 0.918 in 
training and hold-out test set

predict radiation therapy eligibility in 
nasopharyngeal carcinoma patients

Tao Peng 2022[24] Mask-RCNN, refinement subnetwork DSC 0.973; Ω 0.958; ACC 0.972 for JSRT automatic lung segmentation in CXRs

CNN: convolution neural network; IoMT: Internet of Medical Things; DSC: Dice similarity coefficient; Ω: Jaccard similarity coefficient; ACC: accuracy; MKL: Multi-Kernel Learning; 
RCNN: region convolution neural network; JSRT: Japanese Society of Radiological Technology dataset

Table 2 
Examples and numbers of the cells annotated. 

Cell Types Number of 
Cells 
Annotated

Number of 
trainset 
cells 
annotated

Number of 
validation 
sets cells 
annotated

Example

Eosinophil 308 226 82

Lymphocyte 3547 2753 794

Macrophage 2070 1655 415

Neutrophil 649 427 222

Total 6574 5061 1513 /
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branches, one using multiple Bottleneck modules and one Conv 
module, the other passing through only one Conv module and finally 
concatting the two branches and passing through one more Conv 
module. The SPPF module is a spatial pyramidal pooling module that 
performs maximum pooling, with different kernel sizes and fuses 
features by connecting them to solve the target multiscale problem 
to some extent.

Yolov5’s Neck is similar to Yolov4 in that it uses an Feature 
Pyramid Networks (FPN) + Path Aggregation Network (PAN) struc-
ture; the FPN is top-down, passing the high-level feature informa-
tion through upsampling to fuse it and obtain a feature map for 
prediction, while the feature pyramid conveys strongly localized 
features from the bottom-up, aggregating parameters from various 
backbone layers to various detection layers.

Head is mainly used for the final detection part of the model, 
where the anchor boxes are filtered using Non Maximum 
Suppression (NMS). There are three detection layers with different 
sized feature maps, each outputting a corresponding vector, and fi-
nally generating and labelling predicted bounding boxes and classes 
of objects in the original image. Figs. 5 and 6.

2.4. Improvement of Yolov5s network architecture

2.4.1. Improvement of the backbone network
It has been shown that convolutional operations only extract 

features from local neighborhoods, while ignoring global feature 
information [29]. Self-attention can extract contextual information 
about the images and learn more semantic features [30]. For a 
single-head self-attention, the output of each pixel can be calculated 
using the following equation:

=y softmax q K v( )ij a b N i j ab ij
T

ab ab, ( , )k (1) 

where = = =q W x k W x v W x, ,ij Q ij ab K ab ab V ab implies linear pixel 
points and changes in surrounding pixel points, and 

×W W W R, ,Q K V
d dout in are the parameters that the network needs 

to learn. A schematic representation of the multi-head self-attention 
is given in Fig. 7. During self-attention, the input embeddings are 
transformed into query, key, and value vectors. The model then 
computes a weighted sum of the values, where the weights are 
determined by the dot product of the query and key vectors. The 
resulting output is a weighted combination of the input embeddings, 
where the weights represent the importance of each input embed-
ding for the current context.

As the Transformer architecture is a more geometric attention 
mechanism that allows different attention to be given to different 
features, the interference of slice priming, impurities, in BALF cells 
on recognition results is somewhat suppressed. Specifically, it allows 
information to flow freely at different locations in the cell image, 
establishing remote dependencies and providing better robustness 
in the recognition of obscured cells. For the target detection task, in 
order to introduce a self-attention, multiple convolutional layers 
need to be superimposed to build a larger scale model that ag-
gregates all the local features extracted by the convolution. Although 
the stacking of multiple convolutional layers can effectively improve 
the network’s ability to extract target features, it also leads to an 

Fig. 2. Specific operations for image enhancement. 

Fig. 3. Total number of individual labels in the processed image. 
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increase in the depth and computational effort of the network layers, 
so in order to introduce the self-attention while minimizing the 
computational effort, we initially considered using the Swin 
Transformer [31], which solves the problem of computational com-
plexity in the Transformer in a very reasonable way. The Swin 
Transformer has a linear computational complexity with respect to 
image size, which means that the amount of computation required 
to process an image increases linearly with the number of pixels in 
the image. This is achieved through the use of a hierarchical archi-
tecture and a shifted windowing scheme that limits self-attention 
computation to non-overlapping local windows while allowing for 
cross-window connection.

As shown in Fig. 8(a), the Swin Transformer constructs a hier-
archical representation by starting with small patches (grey con-
tours) and gradually merging adjacent patches in deeper 
Transformer layers. It uses hierarchical feature mapping to facilitate 
dense prediction. Linear computational complexity is computed lo-
cally within non-overlapping windows of image partitions for self- 
attention (red contours), rather than over all patches of the entire9 
image. The number of patches in each window is fixed, so the 
complexity is linearly related to the image size.

Swin Tranformer reduces the amount of computation required, 
but still leads to instability in training when deepening the number 
of model layers. Swin Tranformer V2 uses the normalization op-
eration that comes with cosine to calculate the Attention and then 
normalizes the output to stabilize the output [32]. Swin Tranformer 
V2 also uses a two-layer multi-layer perceptron (MLP) to adaptively 
compute additional pixel values for relative position coding, which is 
more flexible than the usual binomial cubic difference, improving 
the model’s adaptability to high resolution, and redefines the re-
lative position coding to use logarithmically spaced coordinates in-
stead of the original linearly spaced coordinates, as in Eq. (2)：

= +
= +

x sign x x

y sign y y

ˆ ( ) · log(1 | |)
ˆ ( ) · log(1 | |) (2) 

where x, y, x̂ , ŷ are the linear scale coordinates and loga-
rithmic space coordinates respectively. This operation ensures the 
accuracy of the relative position encoding and keeps the extrapola-
tion within an acceptable range. Fig. 9.

We finally chose to introduce Swin Transformer V2, which im-
proves on both of the above, as one of the backbone layers into the 
Yolov5 network structure, replacing the original C3 layer to improve 
the model’s ability to process cell image information. The details of 
this addition are shown in Fig. 10.

In summary, for cell detection tasks, BALF cell images inherently 
suffer from low contrast and small differences in the number and 
shape of various types of cells. By introducing Swin Transformer V2, 
we have introduced a self-attentive mechanism with less impact on 
computational effort to enhance detection by effectively capturing 
global features, helping the skeleton network to focus on useful 
cellular objects and reducing the interference of confusing in-
formation. In addition, it additionally stabilizes the output values of 
the model and improves its adaptability to downstream tasks 
compared to Swin Transformer.

2.4.2. Improvement of the neck network
GhostModule is a plug-and-play innovative module proposed in 

GhostNet, which can use fewer parameters and computations to 
obtain more feature maps, making the network structure lighter 
[33]. The core idea is to divide the original convolution operation 
into two stages, where the first stage is a small number of con-
volution calculations in the segment, while the second stage is to 
perform linear convolution again on top of the feature maps ob-
tained in the first stage, generating new feature maps and combining 
them together at the end to obtain a large number of feature maps. 
In this process, the new feature maps are called Ghost maps of the 
previous feature maps. the Ghost module is mainly used to eliminate 
redundant features and obtain a lighter model. For target detection 
tasks such as cells, the Ghost module helps the model to better 
capture detailed information and compensate for the incomplete 
extraction of Yolov5 detailed features, while also effectively reducing 
parameters. The working principle is shown in Fig. 11, which illus-
trates the specific operation of the convolutional layer and the im-
plementation of the Ghost module.

Specifically, assume that the output feature map has height H , 
width W , and channel C . The size of the conventional convolution 

Fig. 4. Network structure of Yolov5s and its modules. 

Fig. 5. Focus Module. 
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kernel is ×k k. The Ghost module has a linear operation of Identity 
and O( 1) cheap transform, where and O c. The convolution 
kernel for the linear operation is ×a a. Thus, comparing the com-
putation consumed by the conventional convolution with that con-
sumed by the Ghost convolution module, the Ghost convolution 
module has a speedup ratio R of:

= × × × × ×
× × × × × + × × × ×

R
N H W C k k

H W C k k O H W a a( 1)N
O

N
O

= × × ×
× × + × × O#C k k O

C k k O a a( 1) (3) 

The structure of the GhostBottleneck and C3Ghost is shown in 
Fig. 12. The GhostBottleneck consists of two stacked GhostModules. 
The first GhostModule is utilized as an extension layer to increase 
the number of channels. The second GhostModule reduces the 
number of channels matching the shortcut path and is connected in 
the middle with a depthwise convolution (DWConv) with a step size 
equal to 2. The inputs and outputs of the two GhostModules are then 
connected using shortcut. The second GhostModule applies the 
Batch Normalization and rectified linear unit (ReLU) activation 
functions after each layer. The two Ghost modules are connected by 
deep convolution in steps of 2 to continuously deepen the 

refinement and capture of image features. Compared to the C3 
module, this module not only reduces the model size, but also fa-
cilitates the capture and extraction of detailed features.

This module is reusable, so in this paper we chose C3Ghost, 
constructed from GhostBottleneck, as the main network for the 
feature extraction part of the YoloV5 network, replacing the three C3 
modules that were originally located in the Neck network. We also 
tried to use the Ghost module as the backbone of Yolov5, but after 
experiments (As shown in Table 4), we showed that it was not as 
effective as replacing it on the Neck part.

2.4.3. Loss function improvement
2.4.3.1. Bounding box regression score improvement. The Yolov5 loss 
function consists of a bounding box regression score, an objectness 
score and a class probability score. In the bounding box regression 
score, the complete intersection over union loss (CIOU_Loss) is used 
to achieve the prediction [34], as shown in Eq. (4).

= + +L IoU av1 #CIoU
b b

c

( , )gt2

2 (4) 

= +a #v
IoU v(1 ) (5) 

Fig. 6. The two-stage process of our framework (a) Training of the model: Our optimized Yolov5s model, which focuses on the detection of cells in a given image, is trained with 
annotated bronchoalveolar lavage fluid cells. (b) Use of the model: By using our optimized Yolov5s model, the cells detected in BALF and their corresponding probabilities can be 
obtained.
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=v (arctan arctan ) #w
h

w
h

4 2gt

gt2 (6) 

=IoU #A B
A B (7) 

where b b, gtrepresent the centroids of the prediction bounding box 
and the ground truth bounding box respectively, represents the 
Euclidean distance calculated between the two centroids, c
represents the diagonal distance of the smallest closed region that 
can contain both the prediction bounding box and the ground truth 
bounding box, w w, gtrepresent the width of the prediction bounding 
box and the ground truth bounding box respectively. h h, gtrepresent 
the width of the prediction bounding box and the ground truth 
bounding box respectively, and IoU is the ratio of the intersection 
and the concatenation between the prediction bounding box and 
ground truth bounding box.

CIoU_Loss considers the overlap area, centroid distance and as-
pect ratio of the bounding box regression, but ignores the real dif-
ference between the width and height respectively and their 

confidence levels, which hinders the effectiveness of model opti-
mization. To address this problem, Zhang et al. proposed an efficient 
intersection over union loss (EIoU_Loss) by splitting the aspect ratio 
on the basis of CIoU_Loss [35]. EIoU_Loss is calculated by splitting 
the aspect ratio influence factor to calculate the length and width of 
the ground truth bounding box and anchors. An overlap loss, a 
center distance loss, and a width-height loss are all included in the 
loss function, with the width-height loss directly minimizing the 
difference between the ground truth bounding box and the anchor. 
EIoU_Loss is shown in Eq. (8).

= + + = + + +L L L L IoU1 #EIoU IoU dis asp
b b

c

w w

c

h h

c

( , ) ( , ) ( , )gt gt

w

gt

h

2

2

2

2

2

2
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where cwand chare the width and height of the minimum ex-
ternal frame covering the prediction bounding box and the ground 
truth bounding box. Compared to the CIoU_Loss in the original 
network, the width and height loss in the EIoU_Loss accelerates and 
improves convergence in the border regression loss, so the better 

Fig. 7. Diagram of the multi-head self-attention. 

Fig. 8. Layered representation of the Swin Transformer (a) and sliding windows (b). 
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performing EIoU_Loss border regression loss function is used in this 
paper.

2.4.3.2. Positive and negative sample allocation strategies. Among the 
four cell types of BALF, there are differences in the number and 
distribution of cells, resulting in an uneven distribution of the 
number of samples in the training data set. Due to the density of 
the sliced cells, it is not possible to maintain an even distribution of 

samples even with a cropping operation on the images, for which we 
introduce a new sample distribution strategy.

Yolov5’s positive and negative sample delineation strategy is 
based on an anchor-based strategy. Before starting training, 9 an-
chors are obtained a priori based on the ground truth (GT) in the 
training set by the k-means clustering algorithm, arranged from 
smallest to largest. Afterwards, each GT is traversed and matched 
with the 9 anchors, and the aspect ratio between the GT and the 9 

Fig. 9. Comparison of the structure of the Swin Transformer and Swin Transformer V2. 

Fig. 10. Improved backbone network. 
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anchors is calculated. If the aspect ratio is less than a set threshold, it 
means that the GT is a positive sample of the current feature map. 
Since negative samples are not involved in training in Yolov5, the 
number of positive samples should be increased. GT is matched with 
the anchors to get the corresponding grid of the anchor, and see 
which grid the GT centroid falls on. Not only the anchor in the grid 
where the GT centroid falls and the GT matches are taken as positive 
samples, but also the anchors in the two adjacent grids are taken as 
positive samples. Figs. 13 and 14.

Simulation-based online training algorithm (SimOTA) was pro-
posed by Ge, Zheng et al. [36], which serves to select different 
numbers of positive samples for different targets. SimOTA can be 
understood as a method of matching strategies on how to achieve 
the lowest cost of assigning these anchors to GT. The cost function is 
described in Eq. (9).

= +c L L #ij ij
cls

ij
reg

(9) 

where λ is the balance coefficient, and Lij
cls and Lij

reg denote the 
bounding box regression score and class probability score between 
the ground truth bounding box and the prediction bounding box, 

respectively. That is, for all anchors on a feature map, the policy cost 
of the entire matching is the sum of the bounding box regression 
score and class probability score generated by all feature points and 
each GT. Yolov7 proposes a new sample allocation strategy, compute 
loss online training algorithm (ComputelossOTA) [37], which is also 
based on anchor based, drawing on ideas related to Yolov5 and 
Yolox. ComputelossOTA uses the strategy of Yolov5 for screening 
positive samples in the first step, followed by the further screening 
strategy of SimOTA. The detailed steps are as follows.

(1) First match each GT with 9 anchors, and also take the two 
adjacent anchors in the grid as positive samples.

(2) Calculate the IoU of the first screening positive samples and 
GT, and sort the IoU from the largest to the smallest, and take the 
sum of the top ten and round it up to b.

(3) Calculate the cost function of the initial sieve of positive 
samples, and rank the cost function from smallest to largest, and 
take the top b samples as positive samples. Also consider the 
case where the same grid prediction bounding box is associated 
with two GT, and take the smaller value of the cost function, the 
prediction bounding box is the positive sample of the corre-
sponding GT.

Fig. 11. The Convolutional Layer and Ghost Module. 

Fig. 12. The GhostBottleneck and The C3Ghost. 
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The Yolov7′s positive and negative sample allocation strategy 
incorporates a cost function compared to the Yolov5′s strategy, 
which enables a further fine screening using the performance of the 
current model. The Yolov7′s strategy, on the other hand, is able to 
provide more accurate prior knowledge compared to using only 
SimOTA. We introduced the Yolov7′s positive and negative sample 
strategy into our model, increasing the number of positive samples 
while maintaining the quality of the anchor, and this change has 
been shown to improve the accuracy of BALF cell detection and 
classification significantly.

2.4.4. Weighted non-maximum suppression
The Non-Maximum Suppression (NMS) algorithm is used to 

suppress elements other than extreme values [38]. In the Yolo family 
of algorithms other candidate bounding box with low accuracy can 
be removed, leaving the best candidate bounding box with the 
highest accuracy. Taking target detection as an example, the target 
detection inference process generates many detection bounding 
boxes, many of which detect the same target, but ultimately only one 
bounding box is needed for each target. The traditional NMS algo-
rithm is to sort the candidate bounding box by confidence, and the 
one with the highest confidence is used as the benchmark bounding 
box, calculate the IoU with other bounding box, delete the ones with 

values greater than the threshold and keep the ones smaller, and so 
on, and finally get the best candidate bounding box with the highest 
accuracy. The traditional NMS algorithm is defined as follows:

=
<

s
IoU M B thresh

s IoU M B thresh

0, ( , )
, ( , )

#i
i

i i (10) 

where si is the current confidence size; M is the benchmark 
bounding box with the highest confidence level; Bi is the other 
candidate bounding boxes with which the benchmark bounding box 
calculates the IoU .

However, the best candidate bounding box obtained from each 
traversal of the traditional NMS algorithm is not necessarily the 
precise one, and there is a possibility that the better candidate 
bounding box is mistakenly deleted. The weighted Non-Maximum 
suppression (Weighted-NMS) algorithm used in this paper obtains 
more accurate candidate bounding boxes by performing a weighted 
average of the benchmark bounding box M and the candidate 
bounding boxes larger than a threshold, rather than a deletion op-
eration [39]. The weighting formula is as follows: Eq. (12) is the 
weight added by the weighting.

=M B B IoU M B thresh M, { | ( , ) } { }#
w B

w i
i i i

i i (11) 

=w s IoU M B( , )#i i i (12) 

Specifically, Weighted-NMS assigns a weight value to each 
bounding box based on the confidence level for a batch of bounding 
boxes with a high repetition rate, with the higher confidence level 
giving a higher weight because the higher confidence level gives a 
reason to value the bounding box more. So, for all the prediction 
bounding boxes a confidence weight is multiplied, and a weighting 
and averaging of the prediction bounding box information is done. 
The use of a weighting algorithm allows for a more accurate place-
ment of the bounding boxes and improves the accuracy and recall of 
the overall algorithm. Therefore, the Weighted-NMS algorithm is 
used in this paper to replace the traditional NMS algorithm.

2.5. Web development of BALF cell detection

The experiments show that the bronchoalveolar lavage cell de-
tection and classification algorithm proposed in this paper has 
achieved significant improvement in detection accuracy and light 
weight, and has a good application prospect. Based on the algorithm, 
we developed a web application to display the detection results 
clearly and intuitively. In addition to basic cell image detection, this 
support detects cell images enhanced with HSV, which expands the 
application scenarios.

The technical architecture of the application is mainly composed 
of three parts: presentation layer, communication layer and service 
layer. The presentation layer uses the Vue technology stack to build 
pages through HTML, JavaScript, and CSS, while the communication 
layer uses the Hypertext Transfer Protocol (HTTP) to establish in-
formation transmission connections. As the core layer of the system, 
the service layer completes the BALF cell detection task according to 
the proposed optimization algorithm, and returns the detection re-
sults to the front-end page for users to view.

Fig. 15 shows the system page layout. Users upload local images, 
and the original images will be displayed in the left area, which will 
be sent to the cell detection algorithm for target recognition, and the 
recognized and labeled detection images will be displayed in the 
right area. Click on the test result graph to display the marked image, 
which is convenient for observing and analyzing the test results. The 
detected target category, target size, confidence and other data are 
displayed in a table at the bottom of the page, which is convenient 
for objectively checking the performance of the algorithm.

Fig. 13. Positive and negative sample allocation strategies for Yolov5. 

Fig. 14. System Technical Architecture Diagram. 
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2.6. Overall network model structure

To achieve the accuracy of the BALF cell detection model, we 
proposed Improved Yolov5 Based on Transformer Backbone Network 
for Detection and Classification of Bronchoalveolar Lavage Fluid. 
Fig. 16 shows the network structure of our model. As shown, the 

Swin Transformer Layer (Red) replaces the last two C3s in the Yo-
lov5s backbone network. The C3Ghost module (Orange) is in-
troduced into the Yolov5s neck network. The purpose of the Swin 
Transformer Layer is to obtain global information in BALF cell de-
tection to enhance the feature extraction capability of the network, 
thus improving the accuracy of the model for BALF cells in multiple 

Fig. 15. Web Page Layout. 

Fig. 16. The network structure of our model. 
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scenarios. The C3Ghost module is designed to further reduce the 
parameters of the model and facilitate the capture and extraction of 
detailed features.

3. Experimental results

3.1. Experimental setting

We used Windows and the Pytorch deep learning framework to 
train the model. The software environment was CUDA 11.3, CUDNN 
8.2, and Python 3.9. The CPU used for training the dataset was a 12th 
Gen Intel(R) Core (TM) i7–12700 H 2.30 GHz 32 G and the GPU was a 
GeForce RTX 3070Ti Laptop GPU 16 G.

Yolov5’s anchor is based on the dataset and calculated using the 
k-means clustering algorithm, which may also differ in datasets with 
different object scales and aspect ratios. When the best recall is 
greater than or equal to 0.98, there is no need to update the anchor. 
The default anchor in this dataset has a best recall of 1.000, so there 
is no need to update the anchor box. Note: The default anchor is 
[10,13, 16,30, 33,23], [30,61, 62,45, 59,119], [116,90, 156,198, 373,326].

3.2. Evaluation indicators

Intersection over Union (IoU) is a commonly used evaluation 
metric in object detection and image segmentation tasks. IoU is a 
measure of the overlap between two sets, where the sets in question 
are usually the predicted bounding boxes and the ground truth 
bounding boxes. IoU is calculated as the ratio of the area of the in-
tersection between the predicted and ground truth bounding boxes, 
to the area of their union. IoU can be expressed as a value between 0 
and 1, where a value of 0 indicates no overlap between the predict 
and ground truth bounding boxes, and a value of 1 indicates perfect 
overlap.

Precision refers to the proportion of true positives among all 
samples predicted as positive by the detector.

Objective evaluation metrics such as recall rate Recall( ) and mean 
average precision (mAP) were used in the study to evaluate the 
performance of the trained bronchoalveolar lavage fluid cell re-
cognition model. The calculation equations are as follows:

= +Recall #Ttue positive TP
Ttue positive TP False negative FN

( )
( ) ( ) (13) 

= =mAP P k R k( ) ( )#
C K i

N1
(14) 

where TP is the number of correctly classified positive cases, FP is 
the number of misclassified negative cases, FN is the number of 
misclassified positive cases, and TN is the number of correctly clas-
sified negative cases. C represents the number of cell target cate-
gories; N represents the number of IoU thresholds, K is the IoU
threshold, P k( ) is precision, and R k( ) is Recall. mAP@0.5 refers to the 
average AP of all classes when IoU is set to 0.5, and mAP@0.5: 0.95
refers to the average mAP under different IoU thresholds. The IoU
ranges from 0.5 to 0.95 in steps of 0.05. The size of the model saved 
after final training is referred to as its model size. FPS stands for 
“Frams Per second”.

3.3. Results

We conducted four sets of experiments using the dataset pro-
vided by the Xunfei platform "Bronchoalveolar Lavage Cell Sorting 
Challenge" [23]. Firstly, we show the accuracy of the optimized 
model compared to the original and visualize the results to de-
monstrate the superiority of our model. Secondly, we conducted an 
ablation experiment with the optimized Yolov5 model, where we 
added six improvements to the Yolov5 model, each of which im-
proved the accuracy and validity of the original model. In addition, to 

further investigate the performance of our method, we compare it 
with other classical backbone models of Yolov5s, and our model 
performs best in terms of accuracy. Finally, we compare the number 
of parameters, FPS and accuracy of our model with other classical 
object detection algorithms. The mAP of our model is 0.02% and 
2.36% higher than the recently launched Yolov7 and Yolov8s, re-
spectively, and the FPS value is the largest. Experimental results 
show that our model outperforms other models in both accuracy and 
efficiency.

3.3.1. The comparison results with Yolov5s and results visualization
Fig. 17 (a), (b) shows the performance of Yolov5s compared with 

the method proposed in this paper in both dense and sparse cell 
scenarios. The left panel shows the detection results of the original 
Yolov5s version, while the right panel shows the detection results of 
the model in this paper. As shown in Fig. 17 (a), in the case of dense 
cells, the original Yolov5s (left) version may miss detection in some 
images, while the method (right) in this paper has a better detection 
effect in the case of dense cells due to the introduction of Trans-
former to obtain global information, which effectively reduces the 
cases of missing detection. In Fig. 17 (b), the original Yolov5s (left) 
version is more likely to have redundant and overlapping bounding 
boxes in the case of sparse cells. Our model (right) uses Weighted- 
NMS to weight the prediction bounding boxes, which can reduce the 
appearance of redundant bounding boxes to a certain extent. By 
removing redundant frames, the analysis can focus on unique 
frames, resulting in better accuracy in detecting the number and 
location of cells. Removing redundant frames can also speed up the 
processing time for cell detection, as fewer frames need to be ana-
lyzed. This can be especially important when analyzing large data-
sets or real-time experiments where rapid detection is necessary.

The outcomes of a single class comparison on the test set be-
tween the benchmark model and our model are shown in Fig. 18. The 

Fig. 17. Comparison of test results. 
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findings demonstrate that, for all four cells, the single-class AP va-
lues of our model are greater than the benchmark model values, 
with the original version of Eosinophil, which had the lowest accu-
racy, showing the most improvement and detecting better than 
Yolov5s. The strategy still outperforms Yolov5s in multi-class target 
detection tasks, demonstrating the applicability of the suggested 
approach.

Furthermore, based on the confusion matrix provided in Fig. 19, 
our proposed method has a recall of more than 0.8 for three of the 
four BALF cell types and an improvement of 0.9% for the Eosinophil 
cell category relative to the original version, with the accuracy of the 
model detection meeting the needs of realistic applications.

3.3.2. Ablation experiment
In our ablation experiments, we verified the effectiveness of our 

improvement points, as shown in Table 3.
- We processed 180 images from the original dataset into 1189 

images using three methods in data enhancement: image brightness 
enhancement and reduction, vertical flip, and fixed angle rotation. 
The training of a deep learning-based target detection model relies 
on a large amount of image data as the training set in order to im-
prove the generalization ability of the target detection model and 
prevent overfitting of the model. After we expanded the data volume 
using data augmentation, the Recall of the Yolov5s model for the 
BALF cell detection model increased by 2.45%, demonstrating that 
our data pre-processing can significantly improve the detection 
coverage of the network.

- Using Swin Transformer V2, we introduced a self-attention 
mechanism to extract richer geometric features around pixel points, 
while maintaining linear computational complexity. Also, in terms of 
migration learning of the model, it is better adapted to high-re-
solution downstream tasks after training on low-resolution datasets, 
with stable model output and generalization capability. With the 
addition of Swin Transformer V2, the overall improvement in mAP(@ 
0.5) was significant at 1.21%, although Recall decreased.

- The introduction of the Ghost module into the Neck network 
resulted in a decrease in the number of parameters and an increase 
in the ability to obtain feature maps from the neck network, with a 
steady increase in both mAP(@0.5) and Recall. We have also tried to 

introduce the Ghost module into the backbone network (see 
Table 3), but experiments have shown that it works better with the 
Neck network, which is mainly used to eliminate redundant features 
and obtain a lighter model. For target detection tasks such as cells, 
the Ghost module helps the model to better capture and extract 
detailed information, compensating for the incomplete extraction of 
detailed features from YoloV5, and also effectively reduces para-
meters.

- We then modified the loss part of Yolov5s to introduce the 
positive and negative sample assignment strategy of Yolov7, which 
adds a cost function to the model compared to the Yolov5-only 
strategy, allowing for a further fine screening using the current 
model performance. It also provides more accurate a priori knowl-
edge, increases the number of positive samples and guarantees the 
quality of the anchor. The experimental improvement in the detec-
tion and classification of BALF cells is significant.

- We modify the bounding box loss function to EIoU_Loss, and 
the width-height loss in the border regression loss in EIOU_Loss 
makes convergence faster and more accurate. In particular, for the 
detection of BALF cells, which have high cell density and high si-
milarity, this change has a significant improvement in accuracy, with 
mAP(@0.5) improved by 0.59%.

- Finally, we used Weighted-NMS to filter the prediction 
bounding box information. Compared with the traditional NMS al-
gorithm, the Weighted-NMS algorithm is a weighted average of the 
benchmark bounding box M and the candidate bounding box larger 
than the threshold, rather than a deletion operation, which can 
obtain more accurate candidate bounding boxes. The final results 
obtained are the best among all the experiments. Compared to the 
original Yolov5s, mAP(@0.5) improved by 3.3%, mAP(@0.5:0.95) 
improved by 0.93%, and Recall improved by 3.67%.

3.3.3. The comparison results with related methods
To further investigate the performance of our method, we com-

pared it with other classical backbone models of Yolov5s, namely 
Yolov5s_all_Ghost, Yolov5s_ShuffleNetV2, Yolov5s_CoT. We chose 
mAP(@0.5), mAP(@0.5:0.95), and Recall as the evaluation metrics. 
Recall as the evaluation metric, and from the experimental results in 

Fig. 18. Four types of cell test results. 
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Table 4, it is clear that our model performs best when compared to 
Yolov5s replaced by other backbone networks.

GhostModule is a plug-and-play innovative module that can use 
fewer parameters and computations to obtain more feature maps, 
making the network structure lighter. In this experiment, 
Yolov5s_all_Ghost differs from our model in that it replaces the 
convolutional layers in the backbone network of Yolov5s with the 
Ghost module, rather than the Neck network. However, experiments 
have shown that replacing the backbone network of Yolov5s with 
the Ghost module instead affects the performance of the model, 
with a reduction of more than 5% in all metrics compared to the 
original version of Yolov5s.

ShuffleNetV2 was developed by Ningning Ma et al. through ex-
tensive experiments to propose four lightweight network design 
guidelines, which provide a detailed analysis of the effects of input 

Fig. 19. Confusion matrix for 4 cell types. 

Table3 
The results for different improvement points. 

Model mAP (@0.5) mAP (@0.5:0.95) Recall

Yolov5s 77.99% 53.31% 76.80%
Yolov5s+Data Augmentation 78.77%(↑0.78%) 53.39% 79.25%
Previous+Swin Transformer 79.98%(↑1.21%) 53.84% 77.64%
Previous+GhostNet 80.30%(↑0.78%) 53.50% 79.87%
Previous+ComputelossOTA 80.54%(↑0.32%) 53.08% 79.94%
Previous+EIoU 81.13%(↑0.59%) 53.84% 80.39%
Previous+Merge-NMS 81.29%(↑0.16%) 54.24% 80.47%

Table 4 
The results for different backbone network. 

Model mAP (@0.5) mAP (@0.5:0.95) Recall

Yolov5s 77.99% 53.31% 76.80%
Yolov5s_all_Ghost 71.41% 45.75% 71.16%
Yolov5s_ShuffleNetV2 75.09% 48.92% 72.99%
Yolov5s_CoT 78.32% 52.65% 75.11%
Our model 81.29% 54.24% 80.47%
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and output channels, the number of grouped convolutional groups 
[40], the degree of network fragmentation, and element-by-element 
operations on the speed and memory access cost (MAC) on different 
hardware. The optimal trade-off between speed and accuracy is 
achieved by replacing group convolution with Channel Split, which 
satisfies the four design criteria. After experiments, it can be seen 
that the detection accuracy of ShuffleNetV2 is slightly degraded 
compared to the original version.

Yehao Li et al. designed a novel Transformer-style module, the 
Contextual Transformer (CoT) block [41], for visual recognition. The 
design makes full use of the contextual information between input 
keys to guide the learning of the dynamic attention matrix, thus 
enhancing the visual representation. As our model backbone net-
work also uses Transformer-related techniques, an experimental 
comparison with other Transformer backbone networks is war-
ranted. The results show a small improvement in CoT compared to 
the original mAP(@0.5), but a decrease in both mAP(@0.5:0.95) and 
Recall compared to YoloV5s.

In summary, our model has a clear advantage in detection ac-
curacy over other Yolov5s that replace the backbone network, and 
achieves the best scores in all three objective metrics of mAP(@0.5), 
mAP(@0.5:0.95), and Recall, making it quite competitive.

3.3.4. The comparison results with other object detection algorithms
To demonstrate the competitiveness of our model, it is necessary 

to compare the optimized model with other classical target detec-
tion algorithms, and the experimental results are presented in 
Table 5.

Faster-RCNN is an improved model based on R-CNN by Girshick 
et al. [42], which further improves the region based CNN baseline, 
increases the training and testing speed, and also improves the ac-
curacy of target detection and solves the problem of multi-scale and 
small target detection [43]. SSD is a single-stage feedforward neural 
network based on Liu et al. [44], which proposes a target detection 
algorithm that eliminates the suggestion of bounding boxes and 
resamples subsequent pixels or features and differentiates the pre-
diction by aspect ratio. Yolov5l is a larger but more accurate model 
compared to Yolov5s. Yolov7 proposes a new positive and negative 
sample allocation strategy based on Yolov5. Compared with existing 
target detection models for general-purpose GPUs and mobile GPUs, 
Yolov7 outperforms other target detection models in terms of both 
FPS and AP.

By generating multiple resamples of the original data and cal-
culating the metric of interest for each resample. We re-validated 
each model separately using 5-fold cross validation, and the statis-
tics of the results are presented in Table 5.

As can be seen from Table 5, our model mAP(@0.5) improves by 
8.42%, 8.56%, and 1.78% compared to Faster-Rcnn, SSD, and Yolov5l, 
respectively, while the number of parameters and model size are 
much smaller than these three algorithms. We also compared it with 
Yolov7 and the newly launched Yolov8s. We have improved mAP by 
0.02% compared to Yolov7, and at the same time, the amount of 
parameters, model size and FPS are all better than Yolov7. Compared 
with Yolov8, the mAP of our model has increased by 2.36%, and the 
FPS is also higher. further demonstrating the superiority of our 
model.

4. Discussion

In this study, we propose a Yolov5-based cellular assay technique 
to detect macrophages, lymphocytes, neutrophils and eosinophils in 
BALF and thus provide accurate counts of these four cell types. We 
subjected the optimized model to ablation experiments, where six 
improvements were added to improve accuracy and effectiveness. 
Comparisons with other classical backbone network models from 
Yolov5s show that our proposed model performs best in terms of 
accuracy. Comparing FPS and accuracy with other classical object 
detection algorithms, the proposed model outperforms others in 
terms of accuracy and efficiency. At the same time, the results show 
that the method has a recall rate of more than 0.8 for three of the 
four BALF cell types, and the accuracy of the model detection meets 
the practical needs. After the model training, we developed a WEB- 
side application, so that people all over the world can visit the 
website and quickly detect BALF cells.

BALF cytomorphological tests have important clinical implica-
tions in the diagnosis of lung inflammation, tuberculosis, tumors and 
parasitic infections [45]. Studies have shown that when clinical 
history, physical examination, routine laboratory tests, pulmonary 
function tests and radiography are not sufficient to reach a definitive 
diagnosis, cytological examination of BALF usually provides valuable 
diagnostic information [46]. Immunophenotyping of lymphocytes in 
BALF is particularly important in the differential diagnosis of inter-
stitial lung disease. The standard method for lymphocyte pheno-
typing is the peroxidase-antiperoxidase technique, however, it is 
both time-consuming and experience-dependent [47]. Furthermore, 
with the large number of samples currently being processed in the 
clinic, BALF cell sorting and counting still needs to be performed 
manually by the testers, a tedious and time-consuming process, 
with variability between test results from different testers, even for 
trained experts, and different methods of preparing cytological 
tests for BALF significantly affect the results of cell quantifica-
tion [48].

BALF cell counting and classification not only helps clinicians in 
diagnosis, but in recent years it has also shown great potential in the 
prognosis of diseases [49]. Recently, Bouros et al. [50] reported that 
higher levels of eosinophils in BALF were associated with increased 
mortality in patients with systemic sclerosis. Researchers have also 
found that high levels of BALF eosinophils are associated with poor 
prognosis in idiopathic pulmonary fibrosis (IPF) and that increased 
BALF neutrophils are strongly associated with early mortality in IPF 
[51]. Several studies have demonstrated the significant prognostic 
value of BALF lymphocytes for 1-year survival in patients with acute 
respiratory failure. Patients with BALF lymphocytes ≥ 20% had sig-
nificantly higher 1-year survival compared to patients with BALF 
lymphocytes <  20% [52]. In studies related to acute exacerbations of 
chronic progressive interstitial pneumonia, mortality was sig-
nificantly lower in patients with BALF lymphocytes ≥ 15% compared 
to those with BALF lymphocytes <  15% [53]. In addition, a BALF total 
leukocyte count ≥ 510/µL was considered an independent predictor 
of bacterial pneumonia [54]. increased BALF neutrophil percentage 
was considered an independent predictor of early mortality in pa-
tients with IPF [55].

Our method has numerous advantages in terms of clinical ap-
plication. First, BALF cell morphology is a tedious and time-con-
suming task, and there is a shortage of skilled professionals involved 
in body fluid cytomorphology, and BALF cell classification and 
counting rely on the extensive clinical skills and experience of pa-
thologists. Secondly, rapid and accurate BALF cell sorting and 
counting can free pathologists from the burden of image reading, 
allowing them to focus more on making diagnostic and therapeutic 
decisions for their patients. In addition, the diagnostic results for the 
same image may vary between pathologists, with consequent dif-
ferences in diagnostic accuracy. The algorithm we proposed can be 

Table 5 
Result of a 5-fold cross-validated object detection model. 

Model mAP (@0.5) Params FPS Weight

Faster-RCNN 72.87%(  ±  0.15%) 136,750,479 0.1 522 Mb
SSD 72.73%(  ±  0.23%) 24,146,894 4.2 92.1 Mb
Yolov5l 79.51%(  ±  0.13%) 46,154,449 13.0 88.7 Mb
Yolov7 81.27%(  ±  0.11%) 37,622,682 22.4 71.4 Mb
Yolov8s 78.93%(  ±  0.08%) 11,137,148 21.8 21.4 Mb
Our model 81.29%(  ±  0.05%) 12,511,853 23.6 24.0 Mb
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used as a third-party cell counting tool to assist pathologists, which 
can help reduce the misdiagnosis rate of pathologists.

5. Conclusion

In this paper, an improved Yolov 5 s Based on transformer 
backbone network is proposed for the detection and classification of 
bronchoalveolar lavage fluid cells. The model has excellent perfor-
mance and solves the challenges in the application of BALF cell de-
tection algorithms. The main findings are as follows:

(1) The introduction of Swin Transformer V2 as the backbone 
network allows feature extraction of global information and thus 
achieves an improvement in cell detection accuracy. Although the 
computational cost is increased, the accuracy is significantly im-
proved. The superiority of introducing SWinV2 was demonstrated by 
comparing it with other classical backbone networks of Yolov5s 
(Yolov5s_all_Ghost, Yolov5s_CoT, Yolov5s_ShuffleNetV2) in ablation 
experiments.

(2) By introducing the Ghost module at the Neck of Yolov5s, the 
model parameters are compressed to a large extent, facilitating the 
capture and extraction of detailed features and maintaining the 
detection accuracy and speed.

(3) The positive and negative sample allocation strategy of Yolov7 
is introduced to increase the number of positive samples and opti-
mize the quality of anchor, which improves significantly. Using 
EIoU_Loss as the bounding box regression loss makes the bounding 
box converge faster and with higher accuracy. Use Weighted-NMS to 
weight and average the prediction frame information to make full 
use of the information of each bounding box and improve the ac-
curacy of localization and classification.

(4) Compared with related target detection methods, in terms of 
accuracy our model is much higher than Faster-Rcnn and SSD, higher 
than Yolov5l, and slightly higher than with Yolov7, the proposed 
method has better prediction performance.

(5) The application of our cloud to the web side facilitates online 
BALF cell detection for physicians around the world.

Although our proposed method is effective in classifying and 
counting the four types of cells in BALF, it has some limitations. 
Firstly, the data used in this study were obtained from the 
Bronchoalveolar Lavage Cell Sorting and Counting Challenge on the 
Xunfei platform, which is a single source of data, and more high- 
quality image data from multiple centers should be collected to 
further evaluate and validate our method. Secondly, in our training 
tests for BALF cell classification, we found that Eosinophil cells and 
Macrophage cells, due to the similarity of their characteristics and 
differences in the way they are handled or observed in the sections, 
change their color rendering in different section views, leading to 
confusion between the two, which will be explored in depth in our 
future studies, trying to reduce the parameters, add this will be 
explored further in our future studies, trying to reduce the para-
meters, add new attention mechanisms or replace the backbone 
network to reduce the occurrence of cell confusion.
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