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Abstract

Motivation: Machine learning models for predicting cell-type-specific transcription factor (TF) binding sites have be-
come increasingly more accurate thanks to the increased availability of next-generation sequencing data and more
standardized model evaluation criteria. However, knowledge transfer from data-rich to data-limited TFs and cell
types remains crucial for improving TF binding prediction models because available binding labels are highly
skewed towards a small collection of TFs and cell types. Transfer prediction of TF binding sites can potentially bene-
fit from a multitask learning approach; however, existing methods typically use shallow single-task models to gener-
ate low-resolution predictions. Here, we propose NetTIME, a multitask learning framework for predicting cell-type-
specific TF binding sites with base-pair resolution.

Results: We show that the multitask learning strategy for TF binding prediction is more efficient than the single-task
approach due to the increased data availability. NetTIME trains high-dimensional embedding vectors to distinguish
TF and cell-type identities. We show that this approach is critical for the success of the multitask learning strategy
and allows our model to make accurate transfer predictions within and beyond the training panels of TFs and cell
types. We additionally train a linear-chain conditional random field (CRF) to classify binding predictions and show
that this CRF eliminates the need for setting a probability threshold and reduces classification noise. We compare
our method’s predictive performance with two state-of-the-art methods, Catchitt and Leopard, and show that our
method outperforms previous methods under both supervised and transfer learning settings.

Availability and implementation: NetTIME is freely available at https://github.com/ryi06/NetTIME and the code is
also archived at https://doi.org/10.5281/zenod0.6994897.

Contact: kyunghyun.cho@nyu.edu or rb133@nyu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1Introduction chromatin immunoprecipitation followed by sequencing (ChIP-seq)

Genome-wide modeling of non-coding DNA sequence function is
among the most fundamental and yet challenging tasks in biology.
Transcriptional regulation is orchestrated by transcription factors
(TFs), whose binding to DNA initiates a series of signaling cascades
that ultimately determine both the rate of transcription of their
target genes and the underlying DNA functions. Both the cell-type-
specific chromatin state and the DNA sequence affect the interac-
tions between TFs and DNA in wvivo (Ching et al., 2018).
Experimentally determining cell-type-specific TF binding sites is
made possible through high-throughput techniques such as

©The Author(s) 2022. Published by Oxford University Press.

(Johnson et al., 2007). Due to experimental limitations, however, it
is infeasible to perform ChIP-seq (or related single-TF-focused
experiments) on all TFs across all cell types and organisms (Ching
et al., 2018). Therefore, computational methods for accurately
predicting in vivo TF binding sites are essential for studying TF
functions, especially for less well-known TFs and cell types.

Multiple community crowdsourcing challenges have been organized
by the DREAM Consortium (http://dreamchallenges.org/about-dream/)
to find the best computational methods for predicting TF binding sites
in both in vitro and in vivo settings (Kundaje ez al., 2017; Weirauch
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et al., 2013). These challenges also set the community standard for both
processing data and evaluating methods. However, top-performing
methods from these challenges have revealed key limitations in the cur-
rent TF binding prediction community. Generalizing predictions beyond
the training panels of cell types and TFs can potentially benefit from
multitask learning and increased prediction resolution. However, many
existing methods still use shallow single-task models. Predictions gener-
ated from these methods typically have low resolution, and they cannot
achieve competitive performance for the prediction of binding regions
shorter than 50 base pairs (bp), although the actual TF binding sites are
considerably shorter (Stewart et al., 2012).

1.1 Related work

Early TF binding prediction methods such as MEME (Bailey and
Elkan, 1994; Bailey ef al., 2006) focused on deriving interpretable TF
motif position weight matrices that characterize TF sequence specifi-
city. Amid rapid advancement in machine learning, however, growing
evidence has suggested that sequence specificity can be more accurately
captured through more abstract feature extraction techniques. For ex-
ample, a method called DeepBind (Alipanahi et al., 2015) used a con-
volutional neural network to extract TF binding patterns from DNA
sequences. Several modifications to DeepBind subsequently improved
model architecture (Hassanzadeh and Wang, 2016) as well as predic-
tion resolution (Salekin et al., 2018). Yuan e al. (2019) developed
BindSpace, which embeds TF-bound sequences into a common high-
dimensional space. Embedding methods like BindSpace belong to a
class of representation learning techniques commonly used in natural
language processing (Mikolov et al., 2013) and genomics (Asgari and
Mofrad, 2015; Yi et al., 2019) for mapping entities to vectors of real
numbers. New methods also explicitly model protein binding sites with
multiple binding mode predictors (Gfeller et al., 2011), and the effect
of sequence variants on non-coding DNA functions at scale (Kelley
et al., 2018; Zhou et al., 2018; Zhou and Troyanskaya, 2015).

In general, the DNA sequence at a potential TF binding site is just
the beginning of the full DNA-function picture, and the state of the sur-
rounding chromosome, the TF and TF-cofactor expression and other
contextual factors play an equally large role. This multitude of factors
changes substantially from cell type to cell type. In vivo TF binding site
prediction, therefore, requires cell-type-specific data such as chromatin
accessibility and histone modifications. Convolutional neural networks
as well as TF- and cell-type-specific embedding vectors have both been
used to learn cell-type-specific TF binding profiles from DNA sequences
and DNase-seq data (Qin and Feng, 2017). The DREAM Consortium
also initiated the ENCODE-DREAM challenge to systematically evalu-
ate methods for predicting in vivo TF binding sites (Kundaje et al.,
2017). Apart from carefully designed model architectures, top-ranking
methods in this challenge also rely on extensively curated feature sets.
One such method, called Catchitt (Keilwagen et al., 2019), achieves top
performance by leveraging a wide range of features including DNA
sequences, genome annotations, TF motifs, DNase-seq, and RNA-seq.

1.2 Current limitations

Compendium databases such as ENCODE (Moore et al., 2020) and
Remap (Cheneby et al., 2020) have collected ChIP-seq data for a large
collection of TFs in a handful of well-studied cell types and organisms
(Ching et al., 2018). Within a single organism, however, the
ENCODE TF ChIP-seq collection is highly skewed towards only a
few TFs in a small collection of well-characterized cell lines and pri-
mary cell types (Supplementary Fig. S1). Transfer learning from well-
known cell types and TFs is crucial for understanding less-studied cell
types and TFs. One way to achieve transfer learning is by reusing in-
formation from a previously learned task to improve the learning effi-
ciency of a related task (Torrey and Shavlik, 2010). For example,
pretraining machine learning models with data from multiple TFs
allows the models to learn common binding characteristics among
TFs and thus, improves fine-tuning performance on a single TF of
interest (Novakovsky et al., 2021; Zheng et al., 2021). Existing meth-
ods that adopt the above transfer learning approach (Novakovsky
et al., 2021; Zheng et al., 2021) do not yet include model components
that account for the TF and cell-type identities in an integrated

fashion, which makes the fine-tuning step necessary for predicting
binding preferences for a particular TF of interest. In contrast, multi-
task learning models that can account for TF and cell-type identities
eliminate the necessity of fine-tuning when learning to predict binding
preferences for new TFs in new cell types (this in turn enables a more
meaningful integration of much larger training sets). Moreover, as dif-
ferent TFs have different binding mechanisms under various cellular
conditions (Smith and Matthews, 2016), models that can account for
TF and cell-type identities are potentially more effective at transfer
learning compared to models, such as Novakovsky ez al. (2021) and
Zheng et al. (2021), which do not have a proper strategy for recogniz-
ing binding data of different TF and cell-type origins.

Top-performing methods from the ENCODE-DREAM Challenge
typically adopt the single-task learning approach. For example,
Catchitt (Keilwagen ez al., 2019) trains one model per TF and cell type.
Cross cell-type transfer predictions are achieved by providing a trained
model with input features from a new cell type. This approach can be
highly unreliable as the chromatin landscapes between the trained and
predicted cell types can be drastically different (Calderon et al., 2019)
and these differences can be functionally important (Sijacic et al.,
2018). Alternatively, each model can be trained on one TF using cell-
type-specific data across multiple cell types of interest (Quang and Xie,
2019). Without proper mechanisms to distinguish cell types, however,
such models tend to assign high-binding probabilities to common bind-
ing sites among training cell types. A few methods have adopted the
multitask learning approach in which data from multiple cell types and
TFs are trained jointly in order to improve the overall model perform-
ance (Avsec ef al., 2021a,b; Kelley et al., 2018; Quang and Xie, 2016;
Schreiber et al., 2020; Zhou et al., 2018; Zhou and Troyanskaya,
2015). The multitask solution adopted by DeepSea (Zhou and
Troyanskaya, 2015) and several other methods (Avsec et al., 2021b;
Kelley et al., 2018; Quang and Xie, 2016; Schreiber et al., 2020; Zhou
et al., 2018) involves training a multiclass classifier on DNA sequences,
where each class represents the occurrence of binding sites for one TF
in one cell type. This solution is suboptimal as it cannot generalize pre-
dictions beyond the training TF and cell-type pairs.

Sequence context affects TF binding affinity (Siggers and Gordan,
2014), and increasing context size can improve TF binding site predic-
tion (Zhou and Troyanskaya, 2015). TF binding sites are typically only
4-20bp long (Stewart et al., 2012); TF binding models that can achieve
base-pair prediction resolution are therefore beneficial for experimental
validation as well as de novo motif discovery. However, instead of
identifying precise TF binding locations, existing methods mainly focus
on determining the presence of binding sites. Predictions from these
models suffer from either low resolution or low context size, depending
on the input sequence length. Leopard (Li and Guan, 2021) and BPNet
(Avsec et al., 2021a) are two recently proposed base-pair resolution
binding prediction methods for predicting cell-type-specific TF binding
sites. Leopard uses both DNA sequences and DNase-seq chromatin ac-
cessibility data as input, whereas BPNet predicts binding sites solely
from DNA sequences. However, Leopard is a single-task learning
model that requires training one model per TF and per cell type.
Although BPNet uses multitask learning, the model does not include
any task-specific components for distinguishing different TF and cell-
type identities, and it’s performance when training on more than four
conditions [described in Avsec et al. (2021a)] has not been evaluated.

In this work, we address the above challenges by introducing
NetTIME (Network for TF binding Inference with Multitask-based
condition Embeddings), a multitask learning framework for base-
pair resolution prediction of cell-type-specific TF binding sites.
NetTIME jointly trains multiple cell types and TFs, and effectively
distinguishes different conditions using cell-type-specific and TF-
specific embedding vectors. It achieves base-pair resolution and
accepts input sequences up to 1kb.

2 Approach

2.1 Feature and label generation
The ENCODE Consortium has published a large collection of TF
ChIP-seq data, all of which are generated and processed using the
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same standardized pipelines (Moore et al., 2020). We therefore col-
lect our TF binding target labels from ENCODE to minimize data
heterogeneity. Each replicated ENCODE ChIP-seq experiment has
two biological replicates, from which two sets of peaks—conserved
and relaxed—are derived; peaks in both sets are highly reproducible
between replicates (https://www.encodeproject.org/about/experi
ment-guidelines). Compared to the relaxed peak set, the conserved
peak set is generated with a more stringent threshold and is general-
ly used to provide target labels. However, the conserved peak set
usually contains too few peaks to train the model efficiently.
Therefore, we use both conserved and relaxed peak sets to provide
target labels for training, and the conserved peak set alone for evalu-
ating model performance.

To collect target labels for a representative set of conditions that
cover a wide range of cellular conditions and binding patterns, we
first select 7 cell types and 22 TFs for which ENCODE has available
binding data. The seven cell types include three cancer cell types,
three normal cell types and one stem cell type. The 22 TFs include
17 TFs from 7 TF protein families as well as 5 functionally related
TFs. Conserved and relaxed peak sets are collected from 71
ENCODE replicated ChIP-seq experiments conducted on our cell
types and TFs of interest. Each of these TF ChIP-seq experiment is
henceforth referred to as a condition. All peaks from these condi-
tions form a set of information-rich regions where at least one TF of
interest is bound. We generate samples by selecting non-overlapping
L-bp genomic windows from this information-rich set, where L is
the context size. We set the context size L = 1000 as it was previous-
ly shown to improve TF binding prediction performance (Zhou and
Troyanskaya, 2015).

In vivo TF binding sites are affected by DNA sequences and the
cell-type-specific chromatin landscapes. In addition to using DNase-
seq, which maps chromatin accessibility, we collect ChIP-seq data
for 3 types of histone modifications to form our cell-type-specific
feature set. The histone modifications we include are H3K4mel,
H3K4me3 and H3K27ac, which are often associated with enhancers
(Rada-Iglesias, 2018), promoters (Benayoun et al., 2014) and active
enhancers (Creyghton et al., 2010), respectively.

2.2 Methods

NetTIME performs TF binding predictions in three steps: (i) gener-
ating the feature vector w = (w1, ...,wy) given a TF label p, a cell
type label g and a sample DNA sequence x = (x1,...,x1) where
each x; € {A,C,G, T}, (ii) training a neural network to predict
base-pair resolution binding probabilities z = (z1,...,21) and (iii)
converting binding probabilities to binary binding decisions y =
(1, ..,yL) of p in g by either setting a probability threshold or add-
itionally training a conditional random field (CRF) classifier
(Fig. 1).

2.2.1 Feature representation

We construct the feature vector w € RV from x € RY, where K
represents the number of features. Different types of features are in-
dependently stacked along the first dimension. For each element in
w, w is the concatenation of the one-hot encoding of the DNA se-
quence O(x;), and the cell-type-specific feature C(x;) (Fig. 1a).

_ | O()
vie[1,L], w = [C(xl)] (1)

High-dimensional embedding vectors can be trained to distinguish
different conditions as well as implicitly learning condition-specific fea-
tures and are therefore preferred by many machine learning models
over one-dimensional condition labels (Qin and Feng, 2017; Yi et al.,
2019; Yuan et al., 2019). Given TF label p and cell-type label g,
NetTIME learns the TF- and cell-type-specific embeddings Hy(p) €
R? and H,,(q) € RY, where d = d' = 50.

2.2.2 Binding probability prediction

NetTIME adopts an encoder—decoder structure similar to that of
neural machine translation models (Cho et al., 2014b; Sutskever
et al.,2014; Vaswani et al., 2017) (Fig. 1b, Supplementary Fig. S2):

Encoder: the model encoder maps the input feature w to a hid-
den vector h € R2*!', The main structure of the encoder, called the
Basic Block, consists of a convolutional neural network (CNN) fol-
lowed by a recurrent neural network (RNN). CNN uses multiple
short convolution kernels to extract local binding motifs, whereas
bi-directional RNN is effective at capturing long-range TF-DNA
interactions (Cho et al., 2014a; Hochreiter and Schmidhuber,
1997). We choose the ResBlock structure introduced by ResNet (He
et al., 2016) as our CNN, as it has become a standard approach for
training deep neural networks (Huang et al., 2017; Vaswani et al.,
2017). Traditional RNNs are challenging to train due to the vanish-
ing gradient problem (Hochreiter and Schmidhuber, 1997). We
therefore use the bi-directional gated recurrent unit (bi-GRU) (Cho
et al., 2014a), a variant of RNN proposed to address the above chal-
lenge. The hidden state of bi-GRU is initialized by concatenating the
embedding vectors Hy () and He(c).

Decoder: the model decoder converts the hidden vector h to
binding probabilities z. The conversion is achieved through a fully
connected feed-forward network, as the relationship between h and
z may not be trivial. A softmax function subsequently transforms
the decoder output to the binding probabilities.

2.2.3 Training
We train the model by minimizing the negative conditional log-
likelihood of z:

1 N L
L=-5D_ > logdf (2)

n=1 |=1

where N denotes the number of training samples. The loss function
is optimized by the Adam optimizer (Kingma and Ba, 2015) (also
see Supplementary Section S1.2).

2.2.4 Binding event classification
Binary binding events y can be directly derived from z by setting a
probability threshold b € (0, 1) such that

1, ifZ[Zb

Vi€ L1, y = { 0, otherwise (3)

This approach has been used by many existing TF binding pre-
dictions models to admit exact inference (Li et al., 2019; Li and
Guan, 2021). Alternatively, a linear-chain CRF classifier can be
trained to achieve the same goal. It computes the conditional prob-
ability of y given z, defined as the following:

L L
p(Y‘Z) = ﬁexp (Z (zl)y, + Z VYI~YI+|) (4)

=1 =1
where

1. Z(z) is a normalization factor,
V € RP*? is a transition matrix, where p denotes the number of
classes of the classification problem and each V;j; represents the
transition probability from class label 7 to j,
3. %, (21),, calculates the likelihood of y, given 2, and
I ! - .
4. 314 Vy,4,, measures the likelihood of y;,1 given y.

In CRF, the class label at position / affects the classification at
position [+1 (Sutton and McCallum, 2012). This is potentially
beneficial for TF binding site classification as positions adjacent to a
putative binding site are also highly likely to be occupied by TFs.
We train the CRF by minimizing —logp(y|z) over all training sam-
ples. The Adam optimizer (Kingma and Ba, 2015) is used to update
the parameter V.
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(a) Feature representation

(b) Base pair binding prediction

/ Sequence /

=X
AGGGCCACTTG...CCTCGAGCGGA Encoder Decoder Zz Y
T ™ e S
L=1000bp & [plql — >Her (0) Hee(q)
- Ny —

Sequence one-hot encoding _ - (m— —— -
10000010000..00000100001 5 =
00001101000..11010001000 - S I 2| softmax | crF ™
01110000001..00001010110 | - = wi > 8 > Z b4 zZ > Qo > >
00000000110..00100000000 3 e 1o | 9
Cell type feature in g i L L) L B

5 iDi.NaST L) \__ BasicBlock(2) -
dih gy, H3Kéme3 '

\ ‘ H3K27ac

_

_/

Fig. 1. Schematic method overview. (a) Constructing feature vector w from input sequence x, TF label p and cell type label g. w consists of the sequence one-hot encoding, and
a set of cell-type-specific features—DNase-seq signals, and H3K4mel, H3K4me3 and H3K4ac histone ChIP-seq signals—in cell type gq. (b) Feature vector w, TF label p and
cell type label g are provided to the NetTIME neural network to predict base-pair resolution binding probability z. An additional CRF classifier is trained to predict binary

binding event y from z

2.3 Model selection

We follow the guideline provided by the ENCODE-DREAM
Challenge (Kundaje et al., 2017) to perform data split as well as
model selection whenever possible. Training, validation and test
data are split according to chromosomes (Supplementary Table S1).
We use the area under the Precision-Recall Curve (auPRC) score to
select the best neural network model checkpoint.

To access how well our model predictions recover the positive
binding sites in the truth target labels, we evaluate classifiers’ per-
formance according to Intersection Over Union (IOU) score.
Suppose P and T are sets of predicted and target binding sites, re-
spectively. Then

PNT

We test 300 random probability thresholds and select the best

threshold, i.e. the threshold that achieves the highest IOU score in

the validation set. We also train a CRF using predictions generated

from the best neural network checkpoint. The best CRF checkpoint

is selected according to the average loss on the validation set. Model
performance reported here is evaluated using the test set.

(5)

3 Results

3.1 Multitask learning improves performance by

increasing data availability

NetTIME can be trained using data from a single condition (single-
task learning) or multiple conditions (multitask learning). Jointly
training multiple conditions allows the model to use data more effi-
ciently and improves model generalization (Caruana, 1997).
Multitask learning is particularly suitable for learning cell-type-
specific TF binding preferences because a TF has common binding
sites across different cell types, and functionally related TFs share
similar binding sites (Spitz and Furlong, 2012). We therefore evalu-
ate the effectiveness of multitask learning when jointly training mul-
tiple related conditions. For this analysis, we choose three TFs from
the JUN family that exhibit overlapping functions: JUN, JUNB and
JUND (Mechta-Grigoriou et al., 2001). Combining multiple cell
types of JUND allows the multitask learning model to significantly
outperform the single-task learning models, each of which is trained
with one JUND condition (Fig. 2a). Jointly training multiple JUN
family TFs further improves performance compared to training each
JUN family TF separately (Fig. 2b). However, we observe decreased
performance when subsampling the multitask models’ training data
to match the number of samples in the corresponding single-task
models (Fig. 2).

(a) s MTLJUND msm STLJUND mmm MTL-sampled JUND
0.7
0.6
Qos
a
S
© 0.4
0.3
0.2+
K562 o e 12878 589 epG? oMt JUND.H1
JUND N JND GWH D JUND! W
(b) s MTL JUN Family ~ mm STL JUN Family MTL-sampled JUN Family

0.6 1
0.51 1

0.39

p=244x10"*
—

p=122x107

P =0311
—

auPRC

0.2-

JUN JUNB JUND

Average

Fig. 2. Performance comparison between multitask learning and single-task learning
approaches using JUN family TFs. Models are trained with datasets from (a) JUND
across multiple cell types, and (b) multiple TFs in the JUN family across multiple
cell types. MTL, multitask learning; MTL-sampled, multitask learning training data
that has been subsampled to match the number of samples in the corresponding sin-
gle-task models; STL, single-task learning. The right panels in (a) and (b) are the
averaged auPRC of the models shown in the corresponding left panels. Error bars
represent standard error of the mean across all training conditions. P-values are cal-
culated using the Wilcoxon signed-rank test using auPRC scores across all
conditions

This indicates that the multitask learning strategy is more effi-
cient due to the increased data available to the multitask models ra-
ther than to the increased data diversity. Similar results are also
observed when the same analysis is performed on three unrelated
TFs (Supplementary Fig. S3).

3.2 Supervised predictions made by NetTIME

outperforms existing baseline methods

Our complete feature set includes DNA sequence, and cell-type-
specific features including DNase-seq and three types of histone
ChIP-seq. In practice, however, data for these features are not al-
ways available for the conditions of interest. Additionally, TF motif
enrichment has often been used by existing methods to provide TF
binding sequence specificity information (Keilwagen et al., 2019;
Quang and Xie, 2019). We therefore evaluate the quality of our
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model predictions when we vary the types of input features available
during training.

We first train separate models after removing cell-type-specific
features using training data from all conditions mentioned in Section
2.1. Model prediction accuracy is evaluated in the supervised fash-
ion using the test data from the same set of conditions. The addition
of cell-type-specific features significantly improves NetTIME per-
formance. However, adding TF motif enrichment features
(Supplementary Section S1.1), either in addition to DNA sequence
features or in addition to both sequence and cell-type features, does
not introduce significant performance improvement (Fig. 3a).
Despite exhibiting high sequence specificity in vitro, TF binding sites
in vivo correlate poorly with TF motif enrichment (Chen et al.,
2017). Motif qualities in TF motif databases vary significantly de-
pending on the available binding data and motif search algorithms.
Nevertheless, TF motifs have been the gold standard for TF binding
site analyses due to their interpretability and scale. However, TF
motif enrichment features are likely redundant when our model can
effectively capture TF binding sequence specificity, though it’s pos-
sible our protocol for generating TF motif enrichment features is
suboptimal.

We further compare NetTIME predictive performance with that
of Catchitt (Keilwagen et al., 2019) and Leopard (Li and Guan,
2021). As Catchitt and Leopard use only DNase-seq data as their
cell-type-specific input feature, we train a separate NetTIME model
using DNA sequences and DNase-seq data as input. Additionally,
because Catchitt is evaluated under the 200-bp resolution for the
ENCODE-DREAM Challenge, we reduce the NetTIME and
Leopard prediction resolution by taking the maximum prediction
probability across the center 200-bp regions for all the example
sequences in our test set. Performance of these three methods is fur-
ther compared under 1000-bp resolution to evaluate per-sample pre-
diction accuracy. Prediction auPRC scores consistently increase for
all three methods as we decrease the prediction resolution from 200
to 1000 bp. Nevertheless, NetTIME outperforms both baseline
methods under both prediction resolutions (Fig. 3b). Furthermore,
NetTIME significantly outperforms Leopard when predictions are
evaluated on the per-base-pair level (Fig. 3c). Although the TF
motifs are not used by Leopard as a type of input feature, Leopard
derives target binding labels by subsetting TF ChIP-seq peaks with
regions that show TF motif enrichment (Li and Guan, 2021). This
data generation procedure potentially introduces unwanted biases
and contributes to the reduced performance when the model is
evaluated on the complete set of TF ChIP-seq peaks.

Both Catchitt and Leopard can only be trained using examples
derived genome-wide. To ensure a fair comparison, we train add-
itional Seq + DNase NetTIME models using DNase seq data and
ChIP-seq labels provided by the ENCODE-DREAM Challenge. All
three methods are benchmarked against the 13 test conditions in the
ENCODE-DREAM Challenge, and their model performance is eval-
uated at 200-bp resolution using examples generated by sliding a
200-bp window across all test chromosomes with a 50-bp overlap
between adjacent examples. Predictions at 200-bp resolution from
NetTIME and Leopard are generated by taking the maximum prob-
ability across each 200-bp region from the 1-bp resolution predic-
tions generated by these two methods. NetTIME improves the mean
prediction auPRC score by 11.8% and 6.3% over Catchitt and
Leopard, respectively (Fig. 3d).

3.3 TF- and cell-type-specific embeddings are crucial for

an effective multitask learning strategy

Here, we evaluate the relative contributions of different model com-
ponents to our predictive accuracy. We use the TF and cell-type
embedding vectors to learn condition-specific features and biases,
and a combination of CNNs and RNNs to learn the non-condition-
specific TF-DNA interaction patterns. TF and cell-type embedding
vectors can be replaced with random vectors at prediction time and
at training time to evaluate the contribution of each component
individually.

To evaluate the model’s sensitivity to different TF and cell-type
labels, TF and cell-type embedding vectors are replaced with ran-
dom vectors at prediction time (Fig. 4). When NetTIME is trained
with both TF and cell-type embeddings, the model learns to use both
pieces of condition-specific information in order to make accurate
predictions. As a result, substituting both types of embeddings with
random vectors reduces our model performance by 69.1% on
average. Replacing either TF or cell-type embeddings with random
vectors also drastically reduce auPRC scores. This indicates that
cell-type-specific chromatin landscape, in addition to TF identity, is
important for defining in vivo TF binding sites, which explains the
redundancy of TF motif features and the lack of correlation between
TF ChIP-seq signals and TF motif enrichment mentioned in Section
3.2 and Chen et al. (2017).

We additionally swap either or both types of embedding vectors
during training to evaluate the contribution of the non-condition-
specific network component. Replacing both types of embedding
vectors during training results in a 26.2% drop in the mean auPRC
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score across all training conditions (Fig. 4b). However, the signifi-
cant performance decrease is mainly due to the removal of TF
embeddings—separately removing TF embeddings and cell-type
embeddings result in a 25.7% and a 0.5% drop in the mean auPRC,
respectively. Under the current model input feature setting, TF iden-
tity can only be learned through the TF embedding vectors. In
contrast, cell-type-specific chromatin landscape can be learn from
the cell-type-specific input features in addition to cell-type
embeddings. In the presence of cell-type-specific input features,
cell-type embeddings are used by the model to capture residual cell-
type-specific information, and therefore only introduce marginal
performance improvement (Fig. 4 and Supplementary Fig. S4).

Visualizing the trained TF embedding vectors in two dimensions
using t-distributed stochastic neighbor embedding (t-SNE, Van der
Maaten and Hinton, 2008) reveals that a subset of embedding vec-
tors also reflects the TF functional similarities. Some TFs that are in
close proximity in t-SNE space are from the same TF families,
including FOXA1 and FOXA2, HNF4A and HNF4G, ATF2, ATF3
and ATF7, and JUN, JUNB, and JUND (Fig. 4c, solid circles).
Functionally related TFs such as IRF3 and STAT3 (Mogensen,
2019) are also adjacent to each other in t-SNE space (Fig. 4c, dashed
circle). However, these TF embedding vectors are explicitly trained
to learn the biases introduced by TF labels. Available data for TFs of
the same protein family are not necessarily from the same set of cell-
types. As a result, not all functionally related TFs are close in the t-
SNE space, such as IRF (IRF3, IRF4 and IRFS) family proteins and
TFs associated with c-Myc proteins (MAX and MAZ).

3.4 TF and cell-type embeddings allow more reliable

transfer predictions

Transfer learning allows models to make cross-TF and cross-cell-
type predictions beyond training conditions. Existing single-task
learners such as Catchitt achieve transfer learning by providing in-
put features from a new cell type to a model trained on a different
cell type. If multiple trained cell types are available for the same TF,
the final cross-cell-type predictions are generated by averaging pre-
dictions from all trained cell types (Fig. 5a, Average Train). A differ-
ent transfer learning strategy proposed by AgentBind (Zheng et al.,
2021) involves pretraining a multi-TF model that does not distin-
guish different TF identities before fine-tuning the model on a single
TF of interest (No Embedding Transfer, Fig. 5a). The former strat-
egy cannot take advantage of the additional information introduced
by other functionally related TFs, whereas the latter does not distin-
guish different TF identities in the multitask pretraining step. Since
TF binding prediction can benefit from the multitask learning para-
digm (Section 3.1), and a multitask learning model performance is
highly influenced by the TF identity (Section 3.3), we hypothesize
that NetTIME’s transfer learning strategy (Fig. 5a, Embedding

Transfer) is superior for cross-TF and cross-cell-type binding
prediction.

To evaluate the prediction quality of these three approaches, we
pretrain a NetTIME model by leaving out 10 conditions for transfer
learning. Transfer learning predictions are generally less accurate
compared to supervised predictions (Supervised). For each transfer
condition [p, q], we use the pretrained model to directly derive pre-
dictions for each transfer learning strategy (Fig. 5a). However, trans-
fer predictions generated by Embedding Transfer still significantly
outperform those of the Average Train and the No Embedding
Transfer (Fig. 5b). Transfer predictions derived from NetTIME also
achieve considerably higher accuracy compared to those from
Catchitt and Leopard (Supplementary Fig. S5a and ¢). We addition-
ally investigate whether different transfer learning strategies can
benefit from fine-tuning by fine tuning all models using all condi-
tions from TF p excluding [p, q]. This fine-tuning step additionally
improves performance for Embedding and No Embedding Transfer
approaches, whereas Average Train performance after fine-tuning
remains low compared to two other approaches (Supplementary
Fig. S5b and d).

Using trained TF and cell-type embeddings additionally allows
models to perform binding predictions beyond the training panels of
TFs and cell types. We therefore test our model’s robustness when
making predictions on unknown conditions using four conditions
from four new TFs in three new cell types. Starting from a NetTIME
model pretrained on all original training conditions (Section 2.1),
we fine-tune the pretrained model for each transfer condition [p’, ¢']
separately by collecting available ENCODE datasets from all condi-
tions from TF p’ and all conditions in cell type ¢’ excluding [p’, q'].
Transfer predictions generated from models trained with TF and
cell-type embeddings (Trained Embedding Transfer) significantly
outperform those from models trained with no embeddings (No
Embedding Transfer) that cannot distinguish different TF and cell-
type identities (Fig. 6a). TF binding motifs derived from predicted
binding sites also show a strong resemblance to those derived from
conserved ChIP-seq peaks (Fig. 6b).

3.5 A CRF classifier post-processing step effectively

reduces prediction noise

Summarizing the binding strength, or probability, along the chromo-
some at each discrete binding site is an important step for several
downstream tasks ranging from visualization to validation. Deriving
binary binding decision from binding probabilities are typically
done by finding a probability threshold that achieves the best predic-
tion accuracy (Li et al., 2019; Li and Guan, 2021; Yuan et al.,
2019). We test this baseline approach by evaluating the model’s pre-
dictive performance at 300 randomly selected probability
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thresholds. We find that at threshold 0.1302, the model achieves the
highest IOU score of 36% (Fig. 7a).

We alternatively train a CRF classifier, as a manually selected
probability threshold is poorly generalizable to unknown datasets.
These two approaches achieve comparable predictive performance
as evaluated by IOU scores (Fig. 7a). However, prediction noises
manifested as high probability spikes are likely to be classified as
bound using the probability threshold approach. To evaluate the ef-
fectiveness of reducing prediction noises using the probability
threshold and the CRF approaches, we calculate the percentage of
class label transitions per sequence within the target labels and
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Fig. 7. Binary classification performance using the probability threshold and CRF.
Performance evaluated by (a) the mean IOU score and (b) the percentage of class
label transitions per sequence (bottom), both calculated over all training conditions

within each of the predicted labels generated by these two
approaches. The transition percentage using CRF is comparable to
that of the true target labels and is also significantly lower than the
percentage obtained using the probability threshold approach
(Fig. 7b). This indicates that CRF is more effective at reducing pre-
diction noise, and therefore CRF predictions exhibit a higher degree
of resemblance to target labels.

4 Conclusions

In this work, we address several challenges facing existing methods
for TF binding site predictions by introducing a multitask learning
framework, called NetTIME, which learns base-pair resolution TF
binding sites using embeddings. We show that our multitask learn-
ing approach improves prediction accuracy by increasing the data
available to the model. Both the condition-specific and non-
condition-specific components in our multitask framework are im-
portant for making accurate condition-specific binding predictions.
The use of TF and cell-type embedding vectors additionally allows
us to make accurate transfer learning predictions within and beyond
the training panels of TFs and cell types. Our method also signifi-
cantly outperforms previous methods under both supervised and
transfer learning settings, including Catchitt and Leopard.

Although DNA sequencing currently can achieve base-pair reso-
lution, the resolution of ChIP-seq data is still limited by the size of
DNA fragments obtained through random clipping. A considerable
fraction of the fragments are therefore false positives, whereas many
transient and low-affinity binding sites are missed (Park, 2009).
Additionally, ChIP-seq requires suitable antibodies for proteins of inter-
est, which can be difficult to obtain for rare cell types and TFs.
Alternative assays have been proposed to improve data resolution (He
et al., 2015; Rhee and Pugh, 2011; Rossi et al., 2018) as well as to
eliminate the requirement for antibodies (Southall et al., 2013; van
Steensel and Henikoff, 2000). However, datasets generated from these
techniques are rare or missing in data consortiums such as ENCODE
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(Moore et al., 2020) and ReMap (Chéneby et al., 2020). NetTIME can
potentially provide base-pair resolution solutions to more complex
DNA sequence problems as labels generated from these alternative
assays become more widely available in the future.

ATAC-seq [Assay for Transposase-Accessible Chromatin using
sequencing (Buenrostro ef al., 2013)] has overtaken DNase-seq as
the preferred assay to profile chromatin accessibility, as it requires
fewer steps and input materials. However, these two techniques
each offer unique insights into the cell-type-specific chromatin states
(Calviello et al., 2019), and it is therefore potentially beneficial to in-
corporate both data types for TF binding predictions. In fact, exten-
sive feature engineering has been the focus of many recent in vivo
TF binding prediction methods (Chen et al., 2017; Keilwagen et al.,
2019; Quang and Xie, 2019). It is also important to note that, with-
out strategies for handling missing features, increasing feature
requirements significantly restricts models’ scope of application
(Supplementary Fig. S1). A comprehensive evaluation of data imput-
ation methods (Amodio et al., 2019; Howie et al., 2009;
Troyanskaya et al., 2001; Van Dijk ez al., 2018) can be difficult due
to the lack of knowledge of the true underlying data distribution.
We plan to extend our model’s ability to learn from a more diverse
set of features and investigate more efficient ways to handle missing
data. We also plan to explore other neural network architectures to
improve model performance while reducing the model’s feature
requirement.

NetTIME is extensible and can be adapted to improve solutions
to other biology problems, such as transcriptional regulatory net-
work (TRN) inference. TRN inference identifies genome-wide func-
tional regulations of gene expressions by TFs. TFs control the
expression patterns of target genes by first binding to regions con-
taining promoters, distal enhancers and/or other regulatory ele-
ments. However, functional interactions between TFs and target
genes are further complicated by TF concentrations and co-
occurrence of other TFs. A series of methods have been proposed for
inferring TRNs from gene expression data and prior knowledge of
the network structure (Greenfield ez al., 2013; Irrthum et al., 2010;
Yuan and Bar-Joseph, 2019). Prior knowledge can be obtained by
identifying open chromatin regions close to gene bodies that are also
enriched with TF motifs (Miraldi et al., 2019). However, this
method is problematic for identifying TF functional regulations to-
wards distal enhancers and binding sites without motif enrichment.
In vivo predictions of TF binding profiles, however, can serve as a
more flexible approach to generating prior network structure as it
bypasses the aforementioned unnecessary constraints. In future
work, we hope to adapt the NetTIME framework to explore more
efficient approaches for generating prior knowledge for more bio-
physically motivated TRN inference.
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