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Experimental evidences for 
reducing Mg activation energy in 
high Al-content AlGaN alloy by 
MgGa δ doping in (AlN)m/(GaN)n 
superlattice
Xiao Wang, Wei Wang, Jingli Wang, Hao Wu & Chang Liu

P-type doping in high Al-content AlGaN alloys is a main challenge for realizing AlGaN-based deep 
ultraviolet optoelectronics devices. According to the first-principles calculations, Mg activation energy 
may be reduced so that a high hole concentration can be obtained by introducing nanoscale (AlN)5/
(GaN)1 superlattice (SL) in Al0.83Ga0.17N disorder alloy. In this work, experimental evidences were 
achieved by analyzing Mg doped high Al-content AlGaN alloys and Mg doped AlGaN SLs as well as MgGa 
δ doped AlGaN SLs. Mg acceptor activation energy was significantly reduced from 0.378 to 0.331 eV by 
using MgGa δ doping in SLs instead of traditional doping in alloys. This new process was confirmed to be 
able to realize high p-type doping in high Al-content AlGaN.

High Al-content AlGaN alloys are ideal materials for deep ultraviolet (DUV)1 optoelectronic devices due to their 
large direct band gaps with operating wavelengths from 364 nm down to 200 nm2–5. The external quantum effi-
ciency (EQE) of AlGaN-based DUV light-emitting diodes (LEDs), however, is as extremely low as 0.1%, which 
is still a formidable obstacle6,7. N-type AlGaN can be produced relatively easily8,9. The very low p-type dop-
ing efficiency in AlGaN hinders the further improvement of AlGaN-based DUV LEDs. The difficulty to realize 
p-type doping is related to the high acceptor activation energy (EA), the compensation by nitrogen vacancies, 
the increased hole scattering, and the limited acceptor solubility10,11. For the most widely used p-type dopant 
of Mg, its EA in AlxGa1−xN increases monotonically with increasing Al-content from 0.17 eV in GaN to 0.51 eV 
in AlN11,12. This behavior indicates that only a very tiny fraction (~10−9) of Mg dopants can be activated in AlN 
at room temperature 11. Therefore, decreasing Mg acceptor activation energy is one of the most challenges in 
AlGaN-based DUV optoelectronic devices.

Great efforts have been devoted to improve p-type conduction in group-III nitrides13–20. Different from sup-
pressing the charge separation effect in InGaN-based devices, polarization doping has been applied to increase 
the hole concentration in AlGaN alloys by ionizing Mg acceptor in the polarization field13,14. Alternative 
acceptor-donor co-doping and non-equilibrium growth with Mg pulse doping and Mg δ -doping have also been 
developed to reduce the acceptor activation energy, and thus, increase the hole concentration and enhance the 
p-type conductivity of AlGaN alloys15–20. So far, most experiments were focused on the p-type conductions of 
GaN and low Al-content AlGaN alloys, but the bottlenecks of the p-type doping in high Al-content AlGaN still 
remain20–22.

Many works were concentrated on the doping in the superlattices (SLs)23–29, where a periodic oscillation of 
the valence band edge was created by the valence band discontinuity and innate polarization fields in Mg-doped 
AlGaN/GaN SLs, resulting in the accumulation of holes near the valance band edge close to the Fermi energy 
forming the so-called two-dimensional (2D) hole gases. In our previous work, we have used SiGa δ  doping in 
Al0.6Ga0.4N alloys to increase the n-type carrier density30. Recent theoretical works predicted that the nanoscale 
(AlN)m/(GaN)n (m >  n) SL could convert the valence-band maximum (VBM) from the crystal-field split-off hole 
to heavy hole band, leading to the increase of the transverse electric (TE) polarized light emission efficiency31,32. 
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The influence of the nearest and next-nearest (NN) atoms on Mg electronic structures in nanoscale (AlN)5/
(GaN)1 SL substitution for Al0.83Ga0.17N disorder alloy was theoretically investigated by Zhong et al.1. The results 
showed that the EA decreases if the NN Ga atom number increased and the Mg-centered tetrahedron volume 
decreased. In this way, the Mg acceptor activation energy can significantly be reduced to 0.26 eV, very close to that 
of GaN, in (AlN)5/(GaN)1 SL by MgGa δ -doping1. Recently, improved p-type conductivity was achieved in multi-
dimensional Al0.63Ga0.37N/Al0.51Ga0.49N SLs33. In this work, we use MgGa δ  doping in (AlN)m/(GaN)n SLs to study 
Mg acceptor activation energy, aiming to find a proper way to minimize it in high Al-content AlGaN.

Methods
In this work, traditional Mg doped AlGaN alloys (in which Al, Ga, Mg and N atoms arrived at the substrate at the 
same time), Mg doped AlGaN SLs and MgGa δ  doped AlGaN SLs were grown on c-plane sapphire substrates by 
using the radio-frequency plasma-assisted molecular beam epitaxy system (rf-MBE, SVTA 35-V-2). The growth 
details are shown in Table 1 Sample D1 and D2 were Mg doped AlGaN alloys with traditional doping method. 
Mg doping was continuously carried out for 30 min. Sample D3 and D4 were Mg doped AlGaN SLs. Mg doping 
was continuously performed for 10 s at each cycle and the total deposition lasted for 180 cycles. Hence the real 
Mg doping time was also 30 min. Sample D5 and D6 were MgGa δ  doped AlGaN SLs with a cycle period of 15 s 
for 180 cycles. Although the cycle period of sample D5 and D6 was 15 s, the effective growth time in a cycle was 
still kept as 10 s and the total effective growth time was also 30 min. For sample D5, the growth process consisted 
of two loops as shown in Fig. 1. During the growth of AlGaN thin films, the nitrogen flow rate was set at 2.65 
sccm under 375 W rf-plasma power. Prior to the growth, nitridation was performed at 810 °C for 10 min under 
500 W rf-plasma power with a nitrogen flow rate of 2.65 sccm. AlGaN films were examined by high-resolution 
x-ray diffraction (HRXRD, Bede D1) and high-resolution transmission electron microscopy (HRTEM, JEOL JEM 
2010 FEF UHR). Ni/Au electrodes (15 nm Ni and 50 nm Au) were made by thermal evaporation with templates 
of 150 ×  150 μ m2 in area. Current versus voltage (I-V) characteristics were measured by using a semiconductor 
device analyzer (Keithley 4200, Keithley Instruments).

Results
Figure 2 shows XRD patterns of AlGaN films grown on sapphire substrates. AlGaN (0002) peaks were found 
between the GaN (0002) peak at 34.543° and AlN (0002) peak at 36.033°. The Al2O3 (0006) peaks were normal-
ized at 41.700°. The full widths at half maximum (FWHM) of the Mg-doped AlGaN (0002) peaks were around 
800 arcsec in alloys and 1000 arcsec in SLs. AlGaN peaks were fitted with Gauss model to get more accurate peak 
information. According to the alloy crystal parameter formula = − +

−
c (1 x)c xcAl Ga N GaN AlNx 1 x

 and Bragg’s law 
2dhklsinθ  =  nλ  as well as hexagonal interplanar distance formula = + + +d 1/ 4(h k hk)/(3a ) l /chkl

2 2 2 2 2 , the 
compositions of AlxGa1−xN thin films were determined by using standard crystal parameter cGaN of 0.5189 nm 

Sample 
ID

TAl 
(°C)

TGa 
(°C)

Tsubstrate 
(°C)

TMg 
(°C)

tAl 
(s)

tGap 
(s)

tGa 
(s)

tGap 
(s)

D1 1260 960

795 340

— — — —

D2 1250 970 — — — —

D3 1260 960 8 — 2 —

D4 1260 960 5 — 5 —

D5 1260 960 8 2 2 3

D6 1260 960 5 2 5 3

Table 1.  The growth details of all the samples from D1 to D6. Sample D1 and D2 were traditional Mg doped 
alloys. Sample D3 and D4 were Mg doped SLs. Sample D5 and D6 were MgGa δ  doped SLs. The time “t” inside is 
the open time in one single loop. “− ” means 0 s.

Figure 1. Two loops of the growth process of sample D5. The solid and blank lines indicates open and close of 
the source shutters, respectively.
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and cAIN of 0.4981 nm. In this way, the compositions of all samples from D1 to D6 were Al0.97Ga0.03N, Al0.75Ga0.25N, 
Al0.79Ga0.21N, Al0.53Ga0.47N, Al0.76Ga0.24N and Al0.47Ga0.53N, respectively. The compositions of (AlN)m/(GaN)n in 
D3 and D5 nearly matched to the designed value of 4:1, while those in D4 and D6 nearly approached to the 
designed 1:1.

As XRD results reveal only the macro compositions of the AlGaN films, the (AlN)m/(GaN)n SLs were con-
firmed by HRTEM results. Figure 3(a) shows the cross-sectional HRTEM image of AlGaN SLs grown on sapphire 
in sample D5. The total thickness of AlGaN SLs were about 210 nm. The magnified HRTEM image of AlGaN SLs 
and the corresponding FFT image are shown in Fig. 3(b) and (c). The growth direction of AlGaN SLs on sapphire 
was [0002], in agreement with the XRD results. As shown in Fig. 3(c), five extra diffraction spots were obtained 
along [0002] axis in one unit. The four quinquesection spots were attributed to the (AlN)4/(GaN)1 SLs, indicating 
that the monolayer SL structure was achieved and NN Ga atom number increased in sample D5. The one bisec-
tion spot might be caused by the dislocations. Hence sample D5 was measured to be (AlN)4/(GaN)1 superlattices, 
achieving the designed (AlN)m/(GaN)n SLs structure with increased NN Ga atom number.

Figure 2. XRD spectra of AlGaN films. 

Figure 3. (a) Cross-sectional HRTEM image of AlGaN/Al2O3 in sample D5. (b) The magnified HRTEM image 
of AlGaN superlattices in sample D5. (c) FFT image of (b).
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Figure 4 shows the I-V characteristics of sample D4, D5 and D6 at different temperatures. The linear I-V 
behavior indicated the Ohmic contacts between Ni/Au electrodes and AlGaN films. The good ohmic behavior 
could be attributed to the formation of p-type NiO34. As for sample D5, the resistances were deduced to be 
13.67 GΩ, 5.776 GΩ, 2.090 GΩ, 1.042 GΩ, 547.8 MΩ and 340.3 MΩ at temperatures of 50, 80, 110, 140, 170 and 
200 °C, respectively. The insets show the corresponding Arrhenius plot of the resistivity (ρ) versus temperature 
(T). Since ρ = ρ(T) e0

E /kTA , the ionization energy (EA) of Mg in AlxGa1−xN in sample D5 was fitted to be 0.331 eV 
as shown in Fig. 4(b). The same procedures were also performed for other samples. As for the asymmetry I-V 
curves as shown in Fig. 4(c), EA was calculated separately under positive and negative voltages and then made of 
an average. The EA for samples D1-D6 were 0.386, 0.378, 0.358, 0.344, 0.331, and 0.311 eV, respectively. The high-
est EA as 0.386 eV was in sample D1 and the lowest EA as 0.311 eV lied in sample D6, in match with calculated 
results that high EA in high Al component alloys, and low EA in low Al component SLs.

Figure 5 shows the dependence of EA on Al composition in AlGaN with three doping methods. Obviously, 
the EA reaches the lower values in MgGa δ  doped AlGaN SLs, the medium in Mg doped SLs and the higher in 
traditional Mg doped AlGaN alloys. As for Al content around 0.8, the EA decreases from 0.378 to 0.358, then to 
0.331 eV by the three methods in turn as Mg doped AlGaN alloys, Mg doped SLs and MgGa δ  doped SLs. Hence, 
Mg acceptor activation energy can be significantly reduced from 0.378 to 0.331 eV by using MgGa δ  doping in 
(AlN)4/(GaN)1 SLs instead of traditional Mg doping in Al0.8Ga0.2N alloys. The difference between the theoretical 
value (0.26 eV) and the experimental one (0.331 eV) is attributed to two reasons: firstly, the macro function of 
Mg activation energy in Ga and Al was measured in this experiment while only the Mg activation energy in Ga 
was calculated to be 0.26 eV; secondly, the as-grown (AlN)4/(GaN)1 SLs were not perfect single crystal with dis-
locations which might affect the Mg activation energy. Therefore, we have experimentally proved the theoretical 
prediction that Mg acceptor activation energy can be significantly decreased in (AlN)m/(GaN)n SL1.

Conclusions
In conclusion, we have systematically studied Mg doping in high Al-content AlGaN by using different doping 
methods. For high Al-content AlGaN, Mg acceptor activation energy can be significantly reduced from 0.378 to 
0.331 eV by using MgGa δ  doping in (AlN)4/(GaN)1 SLs instead of traditional Mg doping in Al0.8Ga0.2N alloys. Our 
experimental study verifies the prediction of the first-principles calculations1, and provides potential applications 
in AlGaN-based DUV optoelectronic devices.

Figure 4. I-V characteristics of (a) sample D4, (b) sample D5 and (c) sample D6 at different temperatures. The 
insets show the corresponding Arrhenius plots of the resistivity versus temperature. The ionization energy of 
Mg in AlGaN in sample D4, D5 and D6 was determined to be 0.344, 0.331 and 0.311 eV, respectively.

Figure 5. The dependence of EA on Al composition in AlxGa1−xN with three doping methods. 
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