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Abstract: Chronic kidney disease (CKD) is a global health problem associated with a number of
comorbidities. Recent evidence implicates increased hemichannel-mediated release of adenosine
triphosphate (ATP) in the progression of tubulointerstitial fibrosis, the main underlying pathology of
CKD. Here, we evaluate the effect of danegaptide on blocking hemichannel-mediated changes in the
expression and function of proteins associated with disease progression in tubular epithelial kidney
cells. Primary human proximal tubule epithelial cells (hPTECs) were treated with the beta1 isoform
of the pro-fibrotic cytokine transforming growth factor (TGFβ1) ± danegaptide. qRT-PCR and
immunoblotting confirmed mRNA and protein expression, whilst a cytokine antibody array assessed
the expression/secretion of proinflammatory and profibrotic cytokines. Carboxyfluorescein dye
uptake and ATP biosensing measured hemichannel activity and ATP release, whilst transepithelial
electrical resistance was used to assess paracellular permeability. Danegaptide negated carboxyfluo-
rescein dye uptake and ATP release and protected against protein changes associated with tubular
injury. Blocking Cx43-mediated ATP release was paralleled by partial restoration of the expression of
cell cycle inhibitors, adherens and tight junction proteins and decreased paracellular permeability.
Furthermore, danegaptide inhibited TGFβ1-induced changes in the expression and secretion of key
adipokines, cytokines, chemokines, growth factors and interleukins. The data suggest that as a gap
junction modulator and hemichannel blocker, danegaptide has potential in the future treatment
of CKD.

Keywords: danegaptide; connexin; hemichannel; ATP; chronic kidney disease; inflammation; fibrosis;
hPTECs; TGFβ1

1. Introduction

Chronic kidney disease (CKD) is a growing health concern associated with increased
risk of cardiovascular disease and morbidity [1]. Estimated to affect 10% of the global
population [2], risk factors include age, diabetes, hypertension, dyslipidaemia and obe-
sity [3]. The disease is characterised by a decline in the glomerular filtration rate (GFR),
in addition to proteinuria, with glomerulosclerosis, tubular atrophy and tubulointerstitial
fibrosis (TIF), which are common histopathological changes [4]. Culminating in the loss of
epithelial stability, persistent inflammation and increased deposition of the extracellular
matrix [5,6], treatment of TIF and advanced CKD represents an unmet clinical need [3].
Consequently, urgent therapeutic approaches are required.

Altered connexin (Cx) expression and function have been implicated in the pathology
of various forms of disease (as reviewed in [7]), including CKD (as reviewed in [8,9]).
Connexins are a family of membrane-bound proteins that oligomerise into hexameric
assemblies termed connexons [10]. When neighbouring cells align, connexons dock to

Int. J. Mol. Sci. 2021, 22, 2809. https://doi.org/10.3390/ijms22062809 https://www.mdpi.com/journal/ijms

https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0003-4547-6777
https://orcid.org/0000-0002-1277-739X
https://orcid.org/0000-0001-8750-2588
https://doi.org/10.3390/ijms22062809
https://doi.org/10.3390/ijms22062809
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijms22062809
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms22062809?type=check_update&version=2


Int. J. Mol. Sci. 2021, 22, 2809 2 of 21

form gap junctions, continuous pores through which messenger molecules can be ex-
changed, allowing a direct route of communication [10]. When unbound, connexons form
hemichannels through which molecules, e.g., adenosine triphosphate (ATP), can be re-
leased into the local extracellular space to influence neighbouring cells via activation of
purinoreceptors [11]. Expression of the purinergic P2X7 receptor (P2X7R) is upregulated
in the renal tubules of individuals with diabetic kidney disease [12] and has been heavily
implicated in the progression of fibrosis both in the kidney [13–17] and in other tissue
types [18–21]. Unsurprisingly, targeting purinergic signalling has received considerable
attention. However, to date, clinical trials have failed to demonstrate beneficial effects of
P2X7R antagonism in numerous inflammatory conditions, an effect perhaps associated
with genetic variation within the receptor [22]. Targeting upstream of ATP release would
circumvent these problems.

Evidence links the aberrant expression and/or activity of connexins with various
forms of CKD [12,23–26]. Initial studies by Abed et al. reported that heterogenous
(Cx43+/−) mice, with unilateral ureteral obstruction (UUO), exhibited reduced extracel-
lular matrix (ECM) deposition and decreased inflammation [27], whilst the Cx43-specific
mimetic, GAP-26, was able to inhibit monocyte adhesion and blunted the expression of
collagen I in the renin transgene (RenTG) mouse model of renin-dependent CKD [25].
More recently, we identified that the predominant connexin isoform expressed in the proxi-
mal tubule, Cx43, is elevated in biopsy material isolated from individuals with diabetic
nephropathy, an observation paralleled by increased hemichannel-mediated ATP release
in TGFβ1-treated primary proximal tubule cells [12]. In evaluating the impact of local
increases in extracellular ATP concentrations, we determined that aberrant Cx43-mediated
communication initiates disassembly of adherens (e.g., E-cadherin) and tight (e.g., Zona
Occludens) junction complexes via activation of P2X7R. These effects, which were negated
in a heterogeneous Cx43+/− mouse model of UUO [12], suggest a clear link between Cx43
and tubular injury. Whilst partial ablation of Cx43 confirms a role for connexins in initi-
ating phenotypic changes of tubular injury, pharmacological intervention with the Cx43
hemichannel blocker peptide5 established that the protective nature of this diminished
Cx43 activity stems from inhibition of hemichannel-mediated ATP release. The use of
mimetic peptides to underscore the protective nature behind blocking hemichannel activity
has been successfully reported in other models of disease, including retinopathy [28],
neuroinflammation [29], glioma [30,31] and age-related macular degeneration [32,33]. Ul-
timately, studies link altered connexin activity to increased inflammation [34–36] and
fibrosis [37–40] and suggest that stabilising hemichannel- and/or gap-junction-mediated
communication (GJIC) may delay the onset of damage observed in various models of injury.
Consequently, inhibiting connexin hemichannels provides an attractive means to reduce
inflammation and is of considerable therapeutic interest.

Danegaptide ((2S, 4R)-1-(2-aminoacetyl)-4-benzamidopyrrolidine2-carboxylic acid),
also known as ZP1609 or GAP-134, is a small dipeptide derived from rotigaptide (AAP10,
ZP123). Originally developed as an anti-arrhythmic agent [41], it interacts with Cx43 [42]
and acts as a potent gap junction modifier [43]. The compound has demonstrated protective
and anti-arrhythmic properties and has previously shown significant effects in established
preclinical models of cardiac ischemic reperfusion injuries [44,45]. Whilst phase 2 human
clinical trials unfortunately failed to meet their end point [46], studies from other groups
have explored the therapeutic potential of danegaptide in other tissue types and models
of disease [41,47–49]. Moreover, whilst little is known of its role in modulating hemichan-
nel activity, it has been demonstrated that danegaptide reduces hemichannel-mediated
dye uptake in C6 glioma cells [43]. Despite this, a role for this compound in blocking
hemichannel-mediated ATP release in other tissue types remains to be confirmed.
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The current study investigated the efficacy of danegaptide in negating connexin-
mediated hemichannel ATP release in primary TGFβ1-treated human proximal tubule
epithelial cells (hPTECs), ahead of delineating its protective role against the expression
and functional changes commonly associated with progression of tubulointerstitial fibrosis.
Using techniques to determine changes in expression (qRT-PCR, immunocytochemistry,
immunoblotting, antibody arrays) and function (ATP biosensing, dye uptake, transep-
ithelial electrical resistance, antibody arrays), our findings demonstrate that nanomolar
concentrations of danegaptide block Cx hemichannel-mediated ATP release and partly
attenuate TGFβ1-induced changes in the expression of cell cycle proteins (e.g., p16, p21,
cyclin D1) and reno-protective factors (e.g., Klotho). Moreover, danegaptide decreases
the changes often observed in tubular injury, including disassembly of adherens junctions
(including a loss of E-cadherin) and tight junctions (including a loss of zona occludens 1
(ZO-1) and claudin 2). Importantly, the proteome profiler array demonstrated the ability of
danegaptide to restore changes in the expression and secretion of key extracellular matrix
proteins, adipokines, chemokines and growth factors induced by TGFβ1. Consequently,
our in vitro data suggest that danegaptide (50–100 nM) can successfully block hemichannel-
mediated ATP release in primary hPTECs and partially protect against changes associated
with inflammation and fibrosis, as observed in late-stage CKD.

2. Results
2.1. Danegaptide Does Not Affect Tubular Epithelial Cell Viability

Human kidney 2 (HK2) cells were cultured in low glucose (5 mM) for 48 h, prior to
being serum-starved overnight and subsequently treated with the optimum concentration
of TGFβ1 (10 ng/mL) [12,24] ± danegaptide (50 nM–1 µM) for 48 h (Figure 1A, n = 3).
A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay confirmed
that neither TGFβ1 (101.9 ± 11.7%) nor danegaptide alone altered cell viability (95.2 ± 7%
(50 nM), 103 ± 5.7% (100 nM) and 96.6 ± 5.3% (1 µM)) as compared to controls. No effect
was observed when TGFβ1-treated cells were co-incubated with danegaptide (104.1 ± 2.2%
(50 nM), 93.4 ± 1.6% (100 nM) and 89.3 ± 3.7% (1 µM)). To corroborate these data, a crystal
violet (CV) and lactate dehydrogenase (LDH) assay was performed. LDH release in
TGFβ1-treated cells was comparable to controls (109.3 ± 11.3%), and co-incubation with
danegaptide had no additional effect (106.4 ± 11.6% (50 nM), 113.9 ± 15.6% (100 nM) and
113.2 ± 4.3% (1 µM)). As expected, danegaptide alone did not significantly alter LDH
release compared to controls (104.4 ± 4.3% (50 nM), 95.3 ± 4.7% (100 nM) and 92.6 ± 3.3%
(1 µM)). Cell staining using crystal violet recapitulated these findings, with data for TGFβ1
(10 ng/mL; 96.9 ± 7.3%) and TGFβ1 plus danegaptide (50 nM–1 µM) being comparable
to controls (98.2 ± 1.9% (50 nM), 97.5 ± 1.8% (100 nM) and 85.8 ± 5.3% (1 µM). Lastly,
danegaptide alone did not alter crystal violet staining (98.3 ± 2.5% (50 nM), 99.6 ± 2.7%
(100 nM) and 98.5 ± 2.2% (1 µM) of controls). In light of these data, a concentration of
50–100 nM was selected for subsequent studies.
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Figure 1. Danegaptide prevents TGFβ1-evoked increases in hemichannel-mediated dye uptake. In
panel (A), human kidney 2 (HK2) cells were cultured in low glucose (5 mM) ± TGFβ1 (10 ng/mL) ±
danegaptide (50, 100 and 1000 nM) for 48 h and cell viability assessed. Results are presented as the
mean ± SEM (n = 3). Incubation with TGFβ1 (10 ng/mL ± danegaptide (50–1000 nM)) did not alter
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) uptake, lactate dehydrogenase
(LDH) release or crystal violet (CV) staining. In panels (B) and (C), carboxyfluorescein dye uptake
was used to assess hemichannel activity in HK2 cells and human proximal tubule epithelial cells
(hPTECs), with the degree of dye loading being directly proportional to opening. Cells were cultured
in low glucose (5 mM) ± TGFβ1 (10 ng/mL) ± danegaptide (50 or 100 nM) for 48 h. Danegaptide
prevented TGFβ1-evoked increases in carboxyfluorescein dye uptake in HK2 cells (panel (B)) and
hPTECs (panel (C)). Minimal dye loading occurred in control cells, whilst dye loading significantly
increased in cells treated with TGFβ1. Addition of danegaptide (50 or 100 nM) reduced dye uptake,
returning the fluorescence intensity to control levels. Intensity is expressed as a percentage compared
to low-glucose controls and is representative of 3 separate experiments. Data are presented as the
mean ± SEM (n = 3), with key significances indicated (** p < 0.01, *** p < 0.001; one-way ANOVA and
Tukey’s post-test).
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2.2. Danegaptide Blocks TGFβ1-Evoked Changes in Hemichannel-Mediated Dye Uptake in
Tubular Epithelial Cells

We have previously shown that TGFβ1 increases Cx43-mediated hemichannel activity
and ATP release from proximal tubule epithelial cells [24]. A carboxyfluorescein dye uptake
assay was used to determine whether danegaptide can negate TGFβ1-induced dye uptake
through hemichannels in HK2 cells and primary hPTECs. As expected, TGFβ1 (10 ng/mL)
increased dye uptake to 354.9 ± 32.6% of controls in HK2 cells, whilst co-incubation with
danegaptide (50 nM and 100 nM) significantly blunted the response to 165.5 ± 17.9%
and 147.6 ± 18.1%, respectively (Figure 1B; p ≤ 0.001, n = 4). Danegaptide alone did not
alter dye uptake. Carboxyfluorescein dye uptake was increased by TGFβ1 (10 ng/mL) in
primary hPTECs (310.8 ± 38.6% of controls), a response partly negated by the co-incubation
of danegaptide (100 nM; 145 ± 19.7%) as compared to controls (Figure 1C; p ≤ 0.01, n = 4).

2.3. Danegaptide Negates TGFβ1-Induced Hemichannel-Mediated ATP Release in HK2 Cells

To determine whether danegaptide (50–100 nM) could prevent TGFβ1 (10 ng/mL)-
induced release of ATP from hemichannels in HK2 cells, we used ATP biosensing [24,50].
TGFβ1 (10 ng/mL) increased ATP release from 0.33± 0.11µM to 3.60± 0.29µM (Figure 2A,B,E;
p ≤ 0.001), an effect partially negated by danegaptide at both 50 nM (1.90 ± 0.26 µM;
p ≤ 0.01) and 100 nM (0.79 ± 0.19 µM; p ≤ 0.001) (Figure 2D,E, n = 3, six repeats/sample
number). Danegaptide alone did not affect ATP release (Figure 2C,E), with ATP levels
recorded at 0.35 ± 0.10 µM (50 nM) and 0.31 ± 0.09 µM (100 nM) as compared to controls
(Figure 2E).

Figure 2. Danegaptide prevents TGFβ1-evoked increases in ATP release. HK2 cells were cultured
in low glucose (5 mM) with/without TGFβ1 (10 ng/mL) ± danegaptide (50 or 100 nM) for 48 h.
Representative biosensor traces show ATP release following removal of extracellular calcium. Control
cells (panel (A)) exhibit negligible ATP release compared to a calibration (CALIB) response to 10
µM ATP, whilst a marked increase in release was observed from TGFβ1-treated cells (panel (B)).
Danegaptide (100 nM) alone failed to alter basal ATP (panel (C)) but significantly reduced TGFβ1-
evoked ATP release (panel (D)). Peak responses were quantified by comparing against a known
concentration of ATP (10 µM) and mean data ± SEM plotted (panel (E)). Results are representative of
3 separate experiments (n = 3; ** p < 0.01, *** p < 0.001; one-way ANOVA and Tukey’s post-test).
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2.4. Danegaptide Reverses TGFβ1-Induced Changes in Cell Cycle Proteins and a Marker of
Reno-Protection in hPTECs

To determine whether danegaptide can negate hemichannel-mediated regulation of
common cell cycle and reno-protective markers, hPTECs were incubated with TGFβ1
(10 ng/mL) ± danegaptide (100 nM) for 12 h and the expression of candidate gene mRNA
assessed through qPCR analysis. Addition of danegaptide to TGFβ1-treated hPTECs
returned the expression of p16 from 358.8 ± 21.1% to 193 ± 18.5% of controls, p21 expres-
sion from 221.8 ± 12.9% to 142.2 ± 6.2% and cyclin D1 expression from 253.2 ± 7.7% to
132.9 ± 15.0% (Figure 3; p ≤ 0.001, n = 3). In addition, danegaptide partially reversed the
decline in Klotho from 43.3 ± 3.8% to 59.9 ± 11.7% of controls (Figure 3, n = 3).

Figure 3. Danegaptide reduces TGFβ1-induced mRNA changes in cell cycle and reno-protective
markers. Primary hPTECs were cultured in low glucose (5 mM) ± TGFβ1 (10 ng/mL) ± danegaptide
(100 nM) for 12 h. In TGFβ1-treated cells, qPCR analysis demonstrated an increase in p16, p21 and
cyclin D1 mRNA and a significant reduction in Klotho mRNA as compared to controls. Danegaptide
(100 nM) partly negated the increase in p16, p21 and cyclin D1 and reversed the TGFβ1-evoked change
in Klotho. Results are representative of 3 separate experiments and presented as the mean ± SEM
(n = 3), with key significances indicated (** p < 0.01, *** p < 0.001; one-way ANOVA and Tukey’s
post-test).

2.5. Danegaptide Restores TGFβ1-Mediated Changes in Adherens and Tight Junction Proteins and
Paracellular Permeability in hPTECs

In the kidney, reduced E-cadherin (ECAD)-mediated cell adhesion initiates a series of
events that culminate in an intermittent phenotype associated with partial epithelial-to-
mesenchymal transformation. Initiation facilitates disassembly of both adherens and tight
junction complexes, culminating in loss of adhesion, diminished gap junction intercellular
communication and leaky epithelia [12,24,51]. To determine whether danegaptide can
negate TGFβ1-mediated changes in adherens and tight junction proteins, hPTECs were
incubated with TGFβ1 (10 ng/mL) ± danegaptide (100 nM) for 48 h and expression of
candidate proteins assessed. Danegaptide partially restored E-cadherin expression from
33.3 ± 3.3% to 89 ± 7.6% of controls, N-cadherin (NCAD) expression from 224.4 ± 29.6
to 161.9 ± 27.4% and vimentin expression from 212.9 ± 13% to 147.3 ± 8.8% (Figure 4A;
p ≤ 0.001, p ≤ 0.01 and p ≤ 0.001, respectively; n = 3). β-catenin expression remained
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unaltered by the hemichannel blocker from 149.2 ± 11.2% (TGFβ1 alone) to 151.6 ± 16.8%
(TGFβ1 + danegaptide, Figure 4B; p = NS, n = 3). Assessment of the effects of danegaptide
on tight junction proteins confirmed that the gap junction modulator partially restored the
expression of claudin-2 from 44.5 ± 5% to 74.6 ± 5% of controls and ZO-1 from 27.8 ± 11.3%
to 52.8 ± 5.4% as compared to controls (Figure 4B; p ≤ 0.05, n = 3). Studies examining
transepithelial electrical resistance confirmed that reduced expression of tight junction
proteins seen with TGFβ1 (10 ng/mL) is paralleled by a loss of transepithelial resistance
from 57.33 ± 1.86 Ω·cm2 to 10 ± 1.53 Ω·cm2 (p ≤ 0.001, n = 3). This increased leakiness
was partially corrected by co-incubation with danegaptide (36 ± 2.08 Ω·cm2) (Figure 4C;
p ≤ 0.001, n = 3).

Figure 4. Danegaptide reduces TGFβ1-evoked changes in adherens and tight junction proteins and
epithelial leakiness. Primary hPTECs were cultured in low glucose (5 mM) ± TGFβ1 (10 ng/mL)
± danegaptide (100 nM) for 48 h. Expression of E-cadherin (ECAD), N-cadherin (NCAD) and
vimentin (panel (A)) and of claudin-2, zona occludens 1 (ZO-1) and β-catenin (panel (B)) was
assessed via Western blotting. TGFβ1 reduced E-cadherin, claudin-2 and ZO-1 expression and
increased N-cadherin and vimentin expression. Effects were partially reversed by danegaptide
(100 nM). Representative blots for each protein are shown, with expression normalised by re-probing
for α-tubulin as a loading control. Results are presented as the mean ± SEM (n = 3), with key
significances indicated (* p < 0.05, ** p < 0.01, *** p < 0.001; one-way ANOVA and Tukey’s post-test).
In panel (C), transepithelial electrical resistance (TER) assessed the consequence of altered adherens
and tight junction protein expression on epithelial integrity. HK2 cells were cultured in low glucose
(5 mM) on Transwell inserts and transepithelial resistance measured. TGFβ1 reduced TER, an effect
partially restored by the addition of danegaptide (100 nM). Data are expressed as the mean ± SEM
(n = 3; *** p < 0.001).

2.6. Danegaptide Prevents TGFβ1-Evoked Upregulation of Extracellular Matrix Proteins
in hPTECs

Caused by an imbalance between formation and degradation, the accumulation of the
ECM is a major hallmark of CKD. A role for TGFβ1 in this process is well established [52],
and understanding how to negate these changes has clear implications to progression
of the disease. To examine the effect of danegaptide on TGFβ1-evoked changes in the
expression of ECM proteins, hPTECs were cultured in low glucose (5 mM) for 48 h,
serum-starved overnight and treated with TGFβ1 (10 ng/mL) ± danegaptide (100 nM)
for 48 h. Compared to controls, TGFβ1 increased the expression of the ECM proteins
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collagen I (334.6 ± 30.14%), collagen IV (354.5 ± 16.9%), fibronectin (301.7 ± 50.4%) and
laminin (324.8 ± 36.4%) (Figure 5A,B; p ≤ 0.001, n = 3). Co-incubation with danegaptide
significantly attenuated these changes, restoring the expression to 180.7 ± 27.3% (collagen
I), 164 ± 6.9% (collagen IV), 161.3 ± 4% (fibronectin) and 149 ± 20.4% (laminin) (p ≤ 0.001;
n = 3 in each case). Danegaptide (100 nM) also reduced TGFβ1 (10 ng/mL)-evoked
changes in integrin-linked kinase 1 (ILK1) from 378.9 ± 16.8% to 251.8 ± 33% (p ≤ 0.001)
but had minimal effect on matrix metalloproteinase 3 (MMP3), reducing the expression
from 185.3 ± 19.6% with the cytokine alone to 147.1 ± 12.2% when co-incubated with
danegaptide (Figure 5B).

Figure 5. Danegaptide negates TGFβ1-evoked changes in the expression of proteins associated with
the extracellular matrix. Primary hPTECs were cultured in low glucose (5 mM) ± TGFβ1 (10 ng/mL)
± danegaptide (100 nM) for 48 h. In panel (A), expression of collagen I (Col1), collagen IV (Col4),
fibronectin (Fibro) and laminin (panel (B)) was assessed via Western blotting. TGFβ1 upregulated
extracellular matrix (ECM) protein expression, an effect reduced by danegaptide (100 nM). Similarly,
danegaptide partially reversed TGFβ1-evoked changes in matrix metalloproteinase 3 (MMP3) and
integrin-linked kinase 1 (ILK1). Representative blots are shown, with expression normalised by re-
probing for α-tubulin as a loading control. Bars correspond to their associated lanes in the respective
blot. Results are presented as the mean ± SEM (n = 3; * p < 0.05, *** p < 0.001; one-way ANOVA and
Tukey’s post-test).

2.7. Danegaptide Reduces TGFβ1-Evoked Changes in the Expression of Adipokines, Chemokines,
Growth Factors and Interleukins from hPTECs

The inflammatory response in and around proximal tubules involves both the activa-
tion of multiple cell types and the secretion of numerous inflammatory markers. Specif-
ically, soluble chemokines, cytokines and growth factors recruit and activate infiltrating
immune cells and stimulate resident fibroblasts. Sustained activation of these cells medi-
ates tubulointerstitial fibrosis. We used the proteome profiler array to determine whether
danegaptide negates TGFβ1-induced changes in the expression and secretion of key proin-
flammatory mediators. Primary hPTECs were cultured, as described above, and treated
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with TGFβ1 (10 ng/mL) ± danegaptide (100 nM) for 48 h. A list of changes in lysate
(Figure 6) and supernatant (Figure 7) are provided for 31 candidate proteins grouped by
primary function.

Figure 6. Danegaptide prevents TGFβ1-evoked changes in the expression of adipokines, chemokines,
growth factors and interleukins. Primary hPTECs were cultured in low glucose (5 mM) ± TGFβ1
(10 ng/mL) ± danegaptide (100 nM) for 48 h. An inflammation antibody array was used to assess
the expression of 31 candidate inflammatory proteins in hPTEC lysates. Results are representative of
3 separate experiments and presented as the mean ± SEM (n = 3), with key significances indicated
(* p < 0.05, ** p < 0.01, *** p < 0.001; one-way ANOVA and Tukey’s post-test).
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Figure 7. Danegaptide prevents TGFβ1-evoked changes in the secretion of adipokines, chemokines,
growth factors and interleukins. Primary hPTECs were cultured in low glucose (5 mM) ± TGFβ1
(10 ng/mL) ± danegaptide (100 nM) for 48 h. An inflammation antibody array was used to assess
the secretion of 31 candidate inflammatory proteins in the supernatant from treated hPTECs. Results
are representative of 3 separate experiments and presented as the mean ± SEM (n = 3), with key
significances indicated (* p < 0.05, ** p < 0.01, *** p < 0.001; one-way ANOVA and Tukey’s post-test).
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3. Discussion

In 2017, the global incidence of CKD was at 697.5 million cases, with the condition
identified as the 12th-leading cause of death worldwide [53]. To date, there are no curative
therapeutic options for end-stage renal disease (ESRD). Furthermore, with low dialysis
survival rates and a global shortage of kidney donors, there is a pressing need to develop
therapies that could prevent CKD progression and improve the patient’s quality of life.

In CKD, the severity of inflammation in the proximal tubule dictates how quickly
a kidney will fail. Contributed to by the activation of multiple cell types, it appears, in
part, to involve connexin-mediated cell-to-cell communication [9]. Connexins facilitate
direct and local paracrine-mediated cell communication through their ability to oligomerise
into hexameric connexons. When neighbouring cells align, connexons dock to form gap
junctions [10]. These continuous channels provide a direct route for information transfer,
allowing cells to lock into a particular frequency and synchronise activity. In contrast to
gap junctions, which typically open under physiological conditions, undocked connexons,
also termed hemichannels, have a low open probability and open in response to injury [10].
Altered hemichannel activity is associated with the pathophysiology of multiple disease
states, with evidence linking altered cell-to-cell communication to increased senescence [54],
inflammation [34,55,56] and fibrosis [18–21]. Data from our own lab demonstrate that the
predominant connexin isoform in the proximal tubule (Cx43) is up-regulated in advanced
CKD and correlates with elevated levels of TGFβ1 and severity of fibrosis and inflamma-
tion [24]. Moreover, this altered expression translates to a loss of gap junction intercellular
communication, which is accompanied by increased hemichannel-mediated ATP release
and changes indicative of early tubular injury. Consequently, blocking Cx43-mediated
hemichannel ATP release may represent a viable target for treatment of the late-stage
damage that develops in individuals with CKD.

Danegaptide is a small therapeutic peptide that until recently has been used in
its capacity to restore gap junction coupling in multiple models of injury, including is-
chaemia [43,44] and retinopathy [49]. Danegaptide has been shown to block hemichannel
activity and dye uptake in C6 glioma cells [43]; however, a role for the compound in
blocking hemichannel-mediated ATP release remains to be confirmed, and no studies have
yet evaluated the effects of danegaptide on injured kidney tubules. In the current study,
we presented compelling evidence that danegaptide blocks TGFβ1-induced hemichannel-
mediated ATP release in primary human proximal tubule epithelial cells. Furthermore, the
compound restored TGFβ1-evoked changes in the expression and secretion of proteins
linked to inflammation and fibrosis. In CKD, tubulointerstitial fibrosis develops in response
to various morphological and phenotypic changes, including epithelial-to-mesenchymal
transition (EMT), inflammatory cell infiltration, fibroblast activation and extracellular ma-
trix (ECM) remodelling [57]. Recent evidence suggests that cellular senescence may play a
key role in the progression of chronic kidney disease [58], with senescence linked to EMT,
a proinflammatory secretome, and extracellular matrix deposition [59–62]. Senescence
denotes irreversible proliferative growth arrest with associated changes in chromatin or-
ganisation, gene transcription and protein secretion [63,64]. Consequently, senescent cells
are known to exhibit increased expression of cyclin-dependent kinase (CDK) inhibitors
(CKIs), including p21Cip1 (p21) and p16Ink4a (p16), and altered expression of reno-protective
Klotho [65–68]. In the current study, mRNA expression of CDK inhibitors p16, p21 and
cyclin D1 was significantly elevated in TGFβ1-treated tubular epithelial cells, whilst the
reno-protective anti-aging protein Klotho demonstrated reduced expression compared to
controls. Interestingly, the expression of p16, p21 and cyclin D1 was ameliorated when cells
were co-incubated with danegaptide. The importance of this observation is supported by
numerous in vivo studies [69,70], including recent work in the p16 INK4a double-knockout
mouse model. When induced with UUO to exhibit advanced interstitial inflammation
and fibrosis, these mice exhibited decreased apoptosis, senescence, diminished levels of
TGFβ1/Smad signalling and a reduction in inflammatory cell infiltration as compared to
wild-type animals [70]. Moreover, proximal tubule cells isolated from the UUO model
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exhibited increased levels of p21, suppression of which is paralleled by a reduction in
markers commonly associated with EMT [71,72]. A direct link to cell senescence and
induction of EMT has already been established [73].

The loss of E-cadherin-mediated cell adhesion is an initiating trigger of EMT, with a
concomitant increase in N-cadherin (the cadherin switch), accompanied by disassembly of
the adherens junction and acquisition of proteins commonly associated with a fibroblast
phenotype, e.g., vimentin and fibroblast-specific protein [74]. In the kidney, it is well
established that tubular injury evokes a number of morphological and phenotypic changes
characteristic of partial, if not full, EMT. Our recent studies demonstrated that glucose-
evoked changes in TGFβ1 mediate disassembly of the adherens and tight junction complex
by regulating changes in adherens (ECAD, NCAD, β-catenin) and tight junction (ZO-1)
protein expression. Moreover, in vitro administration of non-hydrolysable ATP downregu-
lated E-cadherin expression in proximal kidney cells, the loss of which was paralleled by a
reduction in intercellular ligation forces, decreased tether rupture events and cytoskele-
tal remodelling [51]. Mediated by P2X7R, the effects were reversed in the heterogenous
Cx43+/- UUO model [12]. Building on these findings, the effectiveness of danegaptide
underscores a protective role for blocking hemichannel-mediated ATP release in preventing
altered expression of key epithelial (ECAD, β-catenin, ZO-1, claudin 2) and mesenchymal
(NCAD, vimentin) proteins, the implications of which are of therapeutic interest.

The adherens junction assembles when the cytoplasmic tail of E-cadherin binds to
β-catenin, mediating attachment to the cytoskeletal network and ensuring that cell polarity
and architecture are maintained [75]. Despite its role in maintaining cell polarity, disas-
sembly of these junctions allows for the release of β-catenin into the cytosol, which when
activated by either Wnt proteins or other upstream regulators, e.g., integrin-linked kinase
(ILK), can translocate into the nucleus and regulate cell-specific effects. Integrin-linked
kinase is an intracellular serine/threonine protein kinase that plays a fundamental role
in the regulation of cell adhesion, survival, proliferation and extracellular matrix (ECM)
deposition [76]. Importantly, inhibition of ILK attenuates renal fibrosis in multiple models
of CKD [77]. In the current study, TGFβ1-induced increases in ILK1 expression were, in
part, restored when cells were co-incubated with danegaptide, an effect that paralleled a
decrease in β-catenin expression and ECM-related proteins. Interestingly, whilst danegap-
tide failed to significantly alter the TGFβ1-induced increase in β-catenin expression, it is
important to note that the absence of a change in expression does not reflect the absence of
its function within the cell. The canonical Wnt pathway involves the nuclear translocation
of β-catenin and activation of target genes via a group of transcription factors called the
T cell factor/lymphoid enhancer factors (TCF/LEF) [78]. Normally, Wnt/β-catenin sig-
nalling is silent, but it is reactivated after injury in a number of different models of chronic
kidney disease [79,80]. Moreover, aberrant Wnt/β-catenin signalling is highly associated
with the initiation of senescence, an effect that parallels the loss of expression of Klotho, an
anti-aging protein that acts as a negative regulator of the canonical Wnt pathway [81], and
in the current study was downregulated in TGFβ1-treated cells (Figure 3). Consequently,
sustained activation of Wnt/β-catenin signalling is linked to the progression of fibrosis
in both the kidney and other tissue types [79,82,83]. Once translocated into the nucleus,
β-catenin is associated with increased expression of the transcription factor SNAIL and
the matrix metalloproteinase MMP7. Interestingly, these events are associated with tran-
scriptional repression and extracellular domain membrane shedding of E-cadherin, the
latter of which sees an increase in the cytoplasmic pool of free β-catenin [84]. Accordingly,
Wnt signalling is a key activator of EMT in conditions of injury [85]. Moreover, with
evidence that Wnt/β-catenin signalling promotes the expression of numerous genes, in-
cluding fibronectin, FSP1, Snail1, MMP7 and cyclin D1, it is not surprising that attenuation
of this signalling cascade is associated with improved renal function, reduced EMT [86]
and diminished inflammation [87] and fibrosis [80,88]. Consequently, it could, in part,
account for the TGFβ1-induced increased expression and secretion of extracellular matrix
proteins (Figure 5), proinflammatory cytokines and chemokines observed in this study
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(Figures 6 and 7). Increased ECM deposition and secretion of proinflammatory molecules
are hallmarks of tubulointerstitial fibrosis, with different cell types, including renal tubular
epithelial cells known to secrete a large number of factors that are collectively defined as
the CKD-associated secretory phenotype (CASP). Characterised by numerous molecules,
including interleukins, extracellular matrix proteins and chemokines, this CASP bares
striking similarities to the senescence-associated secretory phenotype (SASP), with compo-
nents of the CASP having been strongly associated with the pathology of tubulointerstitial
fibrosis [89]. When released, these proinflammatory factors act upon neighbouring healthy
cells in a paracrine fashion, thereby driving the progression of fibrosis in CKD. As many
factors associated with the CASP are known to induce fibrosis in the kidney (e.g., TGFβ,
interleukin (IL)-1, and interleukin (IL)-6), targeting upstream of these inflammatory sig-
nalling intermediates might prove an effective alternative strategy for CKD treatment.
Using a proteome profile array, the cell supernatant from TGFβ1±danegaptide-treated
cells was incubated on a cell membrane preabsorbed with antibodies raised against key
inflammatory proteins. As highlighted in Figures 6 and 7, co-incubation of cells with
TGFβ1 and danegaptide restored the expression and secretion of a number of candidate
proteins whose role in kidney disease is well established as either detrimental (tumour
necrosis factor-alpha, interleukin 1-alpha, interferon-gamma) or protective (hepatocyte
growth factor). Moreover, in CKD, soluble chemokines, adhesion molecules and growth
factors recruit and activate infiltrating immune cells and resident fibroblasts to mediate
inflammation and fibrosis in the injured kidney. Our array data confirm that modulating
Cx43 and blocking hemichannel-mediated ATP release in tubular epithelial cells negates,
either in part or fully, secretion of many inflammatory mediators, including chemokines,
monocyte chemo-attractant protein (MCP1) and Regulated on Activation, Normal T Cell
Expressed and Secreted (RANTES), both of which are involved in monocyte recruitment.
Elevated in both human and experimental kidney diseases, MCP1 secretion is triggered by
interleukin-1, tumour necrosis factor-alpha [90] and interferon-gamma [91], all of which
were induced in our model by TGFβ1, yet blocked when co-applied with danegaptide.
Moreover, danegaptide was also observed to prevent TGFβ1-induced secretion of intercel-
lular cell adhesion molecule (ICAM1) [92], granulocyte-macrophage colony-stimulating
factor (GM-CSF) [93] and epithelial-neutrophil-activating peptide (ENA78) [94]. Collec-
tively, these have been linked to the progression of CKD and with other key pathogenic
proteins, including dipeptidyl peptidase 4 (DPPIV) [95] and vascular endothelial growth
factor (VEGF) [96], and have been identified as potential therapeutic targets. Despite
these observations, array analysis identified a number of proteins at 48 h, where TGFβ1-
induced regulation appeared to independent of hemichannel-mediated ATP release. As
evidenced by the expression of the FLT3 ligand in the cell lysate, danegaptide failed to
significantly alter TGFβ1-induced changes in whole-cell expression. The FLT3 ligand is
initially synthesised as a membrane-bound protein, which must be cleaved to become a
soluble growth factor. In TGFβ1-treated cells, an increase in membrane-bound FLT3L was
observed compared to controls in the cell lysate, a response that was unaffected when cells
were co-incubated with danegaptide. Although little is known about the enzyme involved
in the proteolytic cleavage and release of FLT3L, a study by Horiuchi et al. demonstrated
that shedding of FLT3L and release from the membrane are metalloprotease dependent and
that this effect in fibroblasts is dependent on the TNFα-converting enzyme (TACE) [97].
Whilst we can only speculate, it is possible that blocking Cx43-mediated ATP release
may blunt the activity of a protein(s) required for FLT3 membrane shedding and, thus
in the absence of FLT3L release, FLT3L levels in the supernatant are significantly less in
TGFβ1+danegaptide-treated cells as compared to TGFβ1-treated controls. Interestingly,
whilst danegaptide did not appear to reverse the TGFβ1-induced increase in the FLT3L cell
lysate, it did have an effect on the secreted form of the protein.

The soluble Receptor for Advanced Glycation Endproducts (RAGE) is a potential
biomarker of inflammation and oxidative stress [98]. It acts as a decoy receptor that
prevents advanced glycation end products binding to membrane-bound RAGE and RAGE-
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related detrimental effects. In the current study, we observed a 70% increase in the secretion
of sRAGE with TGFβ1, an effect restored to control by danegaptide. sRAGE is functional
and able to induce an effect when secreted. The potential of danegaptide to significantly
negate this secretion is of clear therapeutic interest. Interestingly, however, we did not
observe an increase in the RAGE lysate at 48 h with TGFβ1 ± danegaptide. Whilst these
experiments have been performed in human primary proximal tubule cells, the limitations
of our model may have cell-, time- and concentration-dependent effects. Consequently,
whilst a better understanding of the mechanism of action of danegaptide is needed, find-
ings from this study provide important initial evidence of the benefits of using danegaptide
to negate TGFβ1-induced changes in markers of inflammation and tubular injury via
blockade of hemichannel-mediated ATP release. We concede that our in vitro data provide
a minimalistic model of the multifactorial events that give rise to tubulointerstitial fibrosis,
and recommend caution in translating these novel findings to the in vivo situation, espe-
cially where studies on other species and models of injury have demonstrated variable
effects [41,44,46–49]. Further studies are now required to determine the selectivity of these
hemichannels and the capability of the drug in preclinical models of chronic damage, ahead
of testing efficacy in human clinical trials.

4. Materials and Methods
4.1. Materials

Clonal human kidney 2 (HK2) epithelial cells and primary human proximal tubule ep-
ithelial cells (hPTECs) were purchased from the American Type Culture Collection (ATCC)
(LGC Standards). Tissue culture supplies were purchased from Invitrogen (Paisley, UK).
The Immobilon-FL PVDF membrane was from Millipore (Watford, UK), and Odyssey block-
ing buffer and secondary fluorescent antibodies were purchased from LI-COR (Cambridge,
UK). Antibodies for E-cadherin, N-cadherin, ILK1, MMP-3, β-catenin, vimentin and ZO-1
were obtained from Cell Signalling Technologies (Hertfordshire, UK), whilst claudin-2,
laminin, collagen I and collagen IV antibodies were obtained from ABCAM (Cambridge,
UK). Fibronectin antibody was purchased from Santa Cruz (Santa Cruz, CA, USA).

Recombinant hTGFβ1 was obtained from Sigma (Poole, UK), as were all other general
chemicals. Danegaptide was provided by Zealand Pharmaceuticals. ATP biosensors were
from Sarissa Biomedical Ltd. (Coventry, UK) and fluorodishes from WPI (Hertfordshire,
UK). Transwell filters were purchased from Corning (Nottinghamshire, UK). The Proteome
Profiler Human Cytokine Array Kit was from R&D Systems (Oxfordshire, UK).

4.2. Tissue Culture

Primary human proximal tubule epithelial cells (hPTECs) were maintained in a renal
epithelial cell basal medium from the ATCC, supplemented with 0.5% fetal calf serum
(FCS wt/vol, triiodothyronine (10 nM), rhEGF (10 ng/mL), hydrocortisone hemisuccinate
(100 ng/mL), rhInsulin (5 µg/mL), epinephrine (1 µM), transferrin (5 µg/mL) and L-alanyl-
L-glutamine (2.4 mM), in a humidified atmosphere at 37 ◦C with 5% CO2. Cells were
subjected to overnight serum starvation prior to treatment. Human kidney 2 (HK2) cells
(passages 18–30) were grown in Dulbecco’s Modified Eagle’s Medium (DMEM)/Hams
F12 medium, supplemented with 10% FCS wt/vol, glutamine (2 mmol/L) and epithelial
growth factor (EGF) (5 ng/mL), in a humidified atmosphere at 37 ◦C with 5% CO2. HK2
cells were immortalised by the transduction of human papilloma virus 16 (HPV-16) E6/E7
genes and were mycoplasma free. In all experiments, cells were seeded in low-glucose
DMEM/F12 (5 mmol/L) for 48 h and then serum-starved overnight prior to treatment.

4.3. MTT Assay

The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was
performed, as described previously, to assess the cytotoxic effects of danegaptide on cell
proliferation [99]. HK2 cells were seeded in 96-well plates and cultured in low-glucose
DMEM/F12 (5 mM) for 48 h, prior to overnight serum starvation, and then subsequently
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stimulated for 48 h with TGFβ1 (10 ng/mL) ± danegaptide (50–1000 nM). Colourimetric
measurement of formazan production corresponded to the number of viable cells.

4.4. Lactate Dehydrogenase Assay

The release of lactate dehydrogenase (LDH) into media as a result of plasma mem-
brane damage is commonly used to evaluate cell death or cytotoxicity. HK2 cells were
seeded in 96-well plates and cultured in low-glucose DMEM/F12 (5 mM) for 48 h prior to
overnight serum starvation. Cells were then stimulated for 48 h with TGFβ1 (10 ng/mL) ±
danegaptide (50–1000 nM). The LDH cytotoxicity assay kit II (Abcam) was used to quantify
LDH according to the manufacturer’s instructions.

4.5. Crystal Violet Assay

This simple assay is used to measure the relative density of adhered cells to multi-well
dishes. Crystal violet stains DNA and can be quantified colourimetrically after solubili-
sation. HK2 cells were seeded in 12-well plates and cultured in low-glucose DMEM/F12
(5 mM) for 48 h, prior to overnight serum starvation, and then subsequently stimulated for
48 h with TGFβ1 (10 ng/mL) ± danegaptide (50–1000 nM). The assay has been described
previously [99]. Briefly, cells were fixed using paraformaldehyde for 10 min, washed with
phosphate buffered saline (PBS) and incubated for 10 min at room temperature (RT) in a
0.1% crystal violet solution. After several more washes, the stain was solubilised using 1%
SDS, and absorbance was measured by a plate reader.

4.6. Western Blotting

Preparation of cytosolic protein from HK2 cells and hPTECs, their separation by SDS-
gel electrophoresis and transfer onto Immobilon-FL PVDF membranes have been described
previously [12]. Membranes were blocked using Odyssey blocking buffer (LI-COR) and
then probed overnight with antibodies against E-cadherin (1:1000), N-cadherin (1:1000),
claudin-2 (1:500), ZO-1 (1:1000), collagen I (1:1000), collagen IV (1:2000), fibronectin (1:2000),
laminin (1:500), ILK1 (1:500), β-catenin (1:2000), vimentin (1:500) and MMP3 (1:500). Bands
were visualised using OdysseyFC and semi-quantified using ImageStudio (v5.2, LI-COR,
Lincoln, NE, USA).

4.7. Transepithelial Resistance

HK2 cells were seeded (6 × 104 cells/mL) onto Transwell filters (12 mm diameter, pore
size 0.4 µM; Corning, NY, USA) and cultured in low-glucose DMEM/F12 (5 mM) for 48 h,
serum-starved overnight and subsequently stimulated with TGFβ1 (10 ng/mL) ± dane-
gaptide (100 nM) for 48 h. Transepithelial electrical resistance (TER) was measured using
the EVOM apparatus (World Precision Instruments, Sarasota, FL, USA). A blank resistance
measured from a well with medium alone was subtracted from each resistance reading.

4.8. Dye Uptake Studies

HK2 cells and hPTECs were seeded onto fluorodishes (22 mm diameter) and cultured
in low-glucose DMEM/F12 (5 mmol/L) for 48 h. Following overnight serum starvation,
the cells were incubated with TGFβ1 (10 ng/mL) ± danegaptide (50–100 nM) for 48 h. For
subsequent steps, a balanced salt solution (BSS, pH 7.0) comprising of NaCl (137 mM), KCl
(5.4 mM), MgSO4 (0.8 mM), Na2HPO4 (0.3 mM), KH2PO4 (0.4 mM), NaHCO3 (4.2 mM),
HEPES (10 mM) and glucose (5 mM) was used. To induce dye uptake, cells were exposed
to Ca2+-free BSS (zero CaCl2 + EGTA (1 mM)) plus carboxyfluorescein (200 µM) for 10 min,
followed by a 5 min period in Ca2+-containing BSS (1.3 mM) plus carboxyfluorescein
(200 µM). Dishes were subsequently washed with Ca2+-containing BSS (12 mL). Images
were acquired with a Cool Snap HQ CCD camera (Roper Scientific, Gottingen, Germany)
and Metamorph software (Universal Imaging Corp., Marlow, Bucks, UK). ImageJ was
used to quantify dye uptake, where a region of interest (ROI) was drawn around each
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cell (approx. 10–15 cells/dish) and the mean pixel intensity measured. A background
fluorescence value was subtracted from each ROI.

4.9. ATP Biosensing

ATP biosensors (Sarissa Biomedical, Coventry, UK) were used in a simultaneous
dual-recording amperometric set-up, as described previously [12]. A null biosensor was
used to account for non-specific electro-active artefacts and subtracted from the ATP trace.
Glycerol (2 mM) was included in all recording solutions to enable ATP detection. HK2 cells
were seeded on glass coverslips (10 mm diameter) in low-glucose DMEM/F12 (5 mmol/L)
for 48 h prior to overnight serum starvation. The cells were then incubated with TGFβ1
(10 ng/mL) ± danegaptide (100 nM) for 48 h. The coverslips were transferred to a chamber
containing Ca2+-containing BSS perfused at 6 mL/min (37 ◦C) and left for 10 min to
acclimatise. ATP and null biosensors were bent and lowered so that the electrode lay
parallel to the cellular monolayer. Once a stable baseline occurred, perfusion of Ca2+-free
BSS stimulated hemichannel opening. After ATP release, Ca2+-containing BSS was used to
close hemichannels, followed by a calibration solution of ATP (10 mM). Recordings were
acquired at 4 Hz with a Micro CED (Mark2) interface using Spike (v8.03) software.

4.10. Inflammation Antibody Array

An inflammation antibody array (RnD Systems) assessed TGFβ1-induced regulation
of 31 inflammatory markers. The array was performed by following the manufacturer’s
instructions. Briefly, hPTECs were cultured in low-glucose DMEM/F12 (5 mM) for 48 h,
prior to overnight serum starvation, and then subsequently stimulated for 48 h with TGFβ1
(10 ng/mL) ± danegaptide (100 nM). The cell lysates and supernatant were collected
and incubated overnight with pre-blocked membranes spotted in duplicate with capture
antibodies. An 800 CW fluorescent streptavidin/biotinylated cocktail mixture was used to
visualise expression protein/antibody complexes by using Odyssey FC and semi-quantified
using ImageStudio (v5.2, LI-COR).

4.11. Quantitative Real-Time PCR

RNA was extracted using an RNeasy mini kit (QIAGEN) and reverse-transcribed
(Invitrogen). Real-time PCR (SYBR GreenER, Invitrogen) was performed using a StepOne
Plus instrument (Applied Biosystems Inc, Foster City, CA, USA). cDNA expression was
obtained by comparing to a standard curve of serially diluted cDNA. The following
primers were used: p16 (forward: CTCGTGCTGATGCTACTGAGGA, reverse: GGTCG-
GCGCAGTTGGGCTCC), p21 (forward: AGGTGGACCTGGAGACTCTCAG, reverse: TC-
CTCTTGGAGAAGATCAGCCG), cyclin D1 (forward: TCTACACCGACAACTCCATCCG,
reverse: TCTGGCATTTTGGAGAGGAAGTG), Klotho (forward: CCTCCTTTACCTGAAA-
ATCAGCC, reverse: CAGGTCGGTAAACTGAGACAGAG) and GAPDH (forward: GTCTC-
CTCTGACTTCAACAGCG, reverse: ACCACCCTGTTGCTGTAGCCAA). Melt curve anal-
ysis confirmed primer specificity and checked for potential contamination.

4.12. Analysis

For all experiments, the low-glucose control (5 mM) was normalised to 100%, and
all other conditions were compared to their respective controls. Statistical analysis was
performed using a one-way ANOVA test with Tukey’s multiple-comparison post-test. Data
are expressed as the mean ± SEM, with n denoting the sample number. A p-value of ≤0.05
signified statistical significance.
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