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Abstract: Early detection of thyroid nodules can greatly contribute to the prediction of cancer
burdening and the steering of personalized management. We propose a novel multimodal MRI-
based computer-aided diagnosis (CAD) system that differentiates malignant from benign thyroid
nodules. The proposed CAD is based on a novel convolutional neural network (CNN)-based texture
learning architecture. The main contribution of our system is three-fold. Firstly, our system is the first
of its kind to combine T2-weighted MRI and apparent diffusion coefficient (ADC) maps using a CNN
to model thyroid cancer. Secondly, it learns independent texture features for each input, giving it
more advanced capabilities to simultaneously extract complex texture patterns from both modalities.
Finally, the proposed system uses multiple channels for each input to combine multiple scans
collected into the deep learning process using different values of the configurable diffusion gradient
coefficient. Accordingly, the proposed system would enable the learning of more advanced radiomics
with an additional advantage of visualizing the texture patterns after learning. We evaluated the
proposed system using data collected from a cohort of 49 patients with pathologically proven thyroid
nodules. The accuracy of the proposed system has also been compared against recent CNN models
as well as multiple machine learning (ML) frameworks that use hand-crafted features. Our system
achieved the highest performance among all compared methods with a diagnostic accuracy of 0.87,
specificity of 0.97, and sensitivity of 0.69. The results suggest that texture features extracted using
deep learning can contribute to the protocols of cancer diagnosis and treatment and can lead to the
advancement of precision medicine.

Keywords: thyroid; cancer; CNN; MRI; DWI; radiomics

1. Introduction

In the United States, approximately 52,890 new cases of thyroid cancer and about
2180 deaths were estimated in 2020 according to the American Cancer Society’s most
recent statistics [1]. The prevalence of thyroid nodules is approximately 5% in women
and 1% in men [2]. Among the cases of thyroid nodules, 7–15% evolve into malignant
tumors (cancerous tissue), and this rate depends on age, sex, radiation exposure history,
family history, and other factors [2]. Malignant tumors can be classified into three major
categories: Differentiated thyroid cancer (DTC), medullary thyroid cancer, and anaplastic
thyroid cancer. DTC has the biggest share of thyroid cancer, with a share of more than 90%.
DTC includes two main subcategories: papillary thyroid carcinoma (PTC) and follicular
thyroid carcinoma (FTC). PTC accounts for more than 80% of all thyroid cancers [2].
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The diagnostic criteria of thyroid nodules involve different procedures that include
physical examination, blood test, ultrasound (US) imaging, magnetic resonance imaging
(MRI), and a biopsy procedure. The detection of smaller nodules becomes easier over
time due to the current advances in US and MRI. However, cancer diagnosis and early
stratification of nodules is still challenging and mainly performed using biopsy [2]. Al-
though biopsy, either fine-needle aspiration or surgical excision of the nodule, is still the
definitive way of clinical evaluation, this invasive procedure is costly and may introduce a
false negative error depending on the biopsy technique and the size of the nodule being
aspirated [3–6].

Non-invasive-based approaches have been proposed by several researchers to pro-
vide accurate detection and stratification of thyroid cancer [7–10]. These methods utilize
different types of medical images. The type of imaging technology used as an input to
artificial intelligence (AI) algorithms can affects the accuracy of the desired computer-aided
diagnosis (CAD) system. US imaging is currently used as a first-line evaluation of sus-
pected thyroid nodules [2], and specific features of thyroid nodules in US imaging can
be associated with higher risk of malignancy. However, the appearance of those features
in US images is operator-dependent, and also multiple features need to be considered
simultaneously during the evaluation in order to provide sufficient malignancy diagnostic
power [2]. These factors cause various limitations in AI-based systems that use US images
for thyroid nodule classification [7–9]. Compared to US, MR imaging modalities have
also been used in the literature recently. For instance, T1-weighted MRI and T2-weighted
MRI were used in a recent study to perform thyroid nodule classification [10]. Some MRI
modalities can help distinguish between different substances in the tissue. For example, fats
appear bright in T1-weighted MRI images [11], while fluids appear bright in T2-weighted
MRI images. Studying T2-weighted MRI images can help in the modeling of fluid patterns
in the tissue [12]. Over and above that, diffusion-weighted MRI (DWI) can model the
diffusivity of fluids in the tissue by measuring constraints of fluid diffusion in different
directions [13,14]. Therefore, DWI can model the dynamics of fluids in the tissue, and these
dynamics can be presented by computing the apparent diffusion coefficient (ADC).

The cell proliferation process associated with malignant thyroid nodules can have a
significant effect on the patterns and the dynamics of the extracellular matrix (ECM) in the
thyroid tissue. Studies suggest that statistical analysis between ADC value and T2-weighted
images, and therefore can differentiate between malignant and benign nodules [15–17].
Thus, in the preliminary analysis of our work, we examined if the intensity variations
between malignant and benign groups are significantly different or not, see Figure 1. To
achieve this, we employed a statistical analysis test to determine the differences between
the two groups as observed in each of the T2-weighted images and the ADC maps (three
different gradient coefficients were used to generate the ADC maps). Our analysis showed
significant heterogeneity in intensity variance between T2-weighted images and ADC
maps, which suggests that feeding the T2-weighted images and the ADC maps each to a
separate input branch of the CNN would enables learning of independent textures in each
branch and therefore this would enhance the accuracy of our system.

Inspired by our preliminary statistical analysis results, our initial exploratory work [18],
and other studies [15–17], we propose a novel CNN-based CAD system that integrate T2-
weighted images and ADC maps using a multi-input CNN network for thyroid nodules
detection and classification, see Figure 2. Our work is in contrast to one recent study
that proposed a CNN-based system using multimodel MRI but does not include ADC
maps [10]. ADC maps can be considered as an indication of cell density in tissues [19] and
therefore can be used to search for cancer biomarkers, which usually involve high rates of
cell proliferation. Similar to a recent study [20] that uses multiparametric MRI radiomics
for prediction, we use a CNN-based structure instead of hand-crafted features—namely, we
utilize a process of independent convolutions for ADC and DWI before fusing them using
the dense fully connected layer. This process increases the possibility to detect deep texture
patterns from each modality without loosing the capability for automatic searching for
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visual features, provided by the CNN. Our system integrates multiple ADC maps obtained
from different gradient coefficients (a configurable parameter in the MRI scanner) for each
sample. Then, the combination of all inputs is fed to our CNN model as a multichannel
3D input in order to achieve enhanced learning of texture features, thus providing a more
accurate diagnosis.

Figure 1. Illustrative diagram of the preliminary statistical study performed on our dataset. A high-pass Laplacian spacial
filter was applied to the images to estimate intensity variation at the pixel level. Following that, statistical analysis was
performed to calculate the mean difference between malignant and benign nodules.

Figure 2. Schematic diagram that represents the training pipeline for the proposed system. MRI data were collected from
human subject cohort. ADC maps were computed in order to prepare the two inputs for the CNN. The objective of the
proposed system was to learn the texture patterns in DWI images and correlate them with pathological finding.

2. Materials and Methods
2.1. Study Participants and Data Collection

Data were collected in this study from 49 patients with pathologically proven thyroid
nodules. The age range is 25 to 70 years. Imaging of the thyroid gland was performed at
Mansoura University, Egypt with a 1.5 T Ingenia MR scanner (Philips Medical Systems,
Best, Netherlands) using a head/neck circular polarization surface coil. All participants
were fully informed about the aims of the study and provided their informed consent.
The inclusion criteria for the study were untreated patients with thyroid nodules whose
malignancy status was unclear from ultrasound examination. Patients underwent thyroid
core biopsy or surgery after MR imaging. Histopathologic diagnoses were provided by an
experienced cytologist or pathologist. In total, there are 17 malignant nodules in 17 patients
and 40 benign nodules in 32 patients included in our study.

DWI volumes that employ a multislice, single-shot, spin-echo, echo-planar imaging
sequence with TR = 10,000 ms, TE = 108 ms, and 125 kHz bandwidth were extracted. Axial
diffusion-weighted slices over the region of interest were 5 mm thick with an inter-slice
gap of 1 mm, 25 cm or 30 cm FOV, and 256 × 256 acquisition matrix. For DWI, a diffusion
gradient was applied during scanning with b-values of b = 500 s/mm2, b = 1000 s/mm2,
and b = 1500 s/mm2. T2-weighted images are extracted using b-value of b = 0 s/mm2.
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2.2. ADC Map Calculation and Nodule Segmentation

Multiple steps were applied to the collected MR images in order to prepare the dataset
to be used by the training model, see Figure 2. Nodule segmentation was performed
manually in our study. An experienced radiologist segmented each nodule as it appeared
in each T2-weighted slice (b = 0 s/mm2) and in each DWI slice. Diffusion-weighted
MRI scans were taken in the same session and using the same resolution, number of
slices, and inter-slice gap. Therefore, no registration was applied to align the different
b-values. We have future plans to implement an automated segmentation algorithm for
nodule extraction. The produced manual segmentation was stored in the form of binary
images. The binary image produced from DWI slice with b = 0 s/mm2 was re-used
during processing phases on the corresponding slice at all other b-values, and also was
re-used for the corresponding slice at ADC500, ADC1000, and ADC1500. We extracted
each nodule in both T2-weighted images and ADC maps using a square-bounding box.
We regularized the spatial domain by resizing extracted box into unified 48 × 48 × 20
volumes by adding zero-padding channels. We then normalized the voxel-intensity in that
volume to be in 0–1 range. Each segmented nodule was provided for the network model
on a black background and padding. Apparent diffusion coefficients (ADC maps) were
calculated at each non-zero b-value (500, 1000, and 1500) by combining the diffusion images
at the corresponding b-value with the image at b = 0 s/mm2, and then we substituted, at
the voxel level, this into the Stejskal–Tanner equation [21]. The generated images of this
process are referred to as ADC500, ADC1000, and ADC1500. Since diffusion-weighted
MRI (DW-MRI) as an absolute value usually does not reflect direct biological activity, the
relative differences between DW-MRI at different b-values were used instead (i.e., ADC) to
model the diffusivity in the tissue. Usually, a b-value of 0 is taken as reference, and which
is why we computed three ADC values that correspond to 3 b-values of 500, 1000, and 1500
referenced to a b-value of 0.

2.3. Proposed Learning Model: Multi-Input CNN

To build our diagnostic system, we propose a novel multi-input deep-learning net-
work. Our architecture follows the feed-forward convolutional neural network (CNN)
structure. Our implementation uses the Keras package in Python, and the parameters
used in our training model are summarized in Table 1. The proposed architecture, shown
in Figure 3, consists of two identical branches in the structure. The advantages of our
network compared with others is that the generated kernels are governed by the fusion of
T2-weighted images and ADC maps of the training samples during the forward propaga-
tion and backward propagation of our neural network. Additionally, a 1 × 1 × 1 3Dconv
layer was added to the proposed design in order to perform compression for the features
maps. The advantage of this addition is that the number of weights that needs to be learned
during the training phase is extremely minmized, thus ensuring fast learning and diagnosis.
For the analysis, each of the base images and the ADC maps was fed to the respective
branch. The convolution layers were constructed from 3 × 3 × 3 3Dconv (with 32 filters and
3 × 3 × 3 kernel size), 1 × 1 × 1 3Dconv (with 16 filters and 1 × 1 × 1 kernel size), pooling
block (2 × 2 × 1 pool size, maximum value pooling). Each branch had two convolution
blocks before being concatenated into the dense fully connected layers (2 layers). Those lay-
ers were one hidden layer of 10 neurons with ReLU activation function [22] and one output
layer of 1 neuron with sigmoid activation function [23]. The total number of parameters in
our proposed network is 127,829 parameters.

The condition of unbalanced classes during the training phase was handled by con-
figuring the weights in the mean-square error (MSE) loss function we used in the back
propagation of the network. The ratio of the weight of malignant class to the weight of
benign class was set to 16/32 when leaving out one malignant sample for testing, and
the same ratio was set to 17/31 when leaving-out one benign sample for testing. The loss
function used is given in Equation (1), where N is the number of training samples, y is the
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output of the neural network observed during forward propagation, yi is the label of the
sample, and wi is the weight of each training sample.

Loss =
1
N

N

∑
i=0

wi(y − yi)
2 (1)

We used Adam stochastic to update the parameters of the network during learning [24].
The learning rate and other parameters of the optimizer were tuned and kept constant
during our evaluation. Additionally, we used the ratio of 1 to 3 of the samples as validation
data during the learning phase.

Table 1. Summary of the network parameters used during model training.

Parameter Value

Kernel Size 3 × 3 × 3
Number of Convolution Kernels 32
Number of 1 × 1 Kernels 16
Fully Connected Layers 2
Convolutional Layers 2
Activation ReLU
Pooling Size 2 × 2 × 2
Pooling MaxPooling
Number of Epochs 100
Input Shape 48 × 48 × 20

Figure 3. (a) Schematic diagram of the proposed CAD system that shows the design and the layers of the multi-input 3D
CNN deep-learning framework. (b) Illustrative diagram that shows the cross-validation criteria used in our processing.

2.4. Other Learning Models

In order to perform bench-marking for our system, we compared its performance
with other methods. We first compared the results with ML methods that use hand-
crafted features, and then we compared the results with two state-of-the-art CNN models.
Regarding the first comparison, the used hand-crafted features can be classified into three
groups: shape features, statistical features, and hand-crafted texture patterns features.
Starting with the shape features, we used nodule size (in voxels), convex hull ratio (defined
as the ratio between the nodule size and the convex hull size), bounding rectangle ratio
(defined as the ratio between the nodule size and the bounding rectangle size), and spherical
harmonics of 3D contour encapsulating the nodules. We estimated the spherical harmonics
inspired by [25] by the use of infinite set of harmonic functions defined on a spherical
representation. They arise from solving the angular portion of Laplace’s equation in
spherical coordinates using separation of variables. The degree of the spherical harmonics
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can define the level of non-homogeneity of the surface, and we can map this to the ability
to differentiate between malignant and benign nodules.

For the statistical features, we calculated the histogram of each image, and then in
each histogram we summarized their statistical profile using 5 features (mean, standard
deviation, entropy, skewness, kurtosis). This type of features is designed to summarize
the whole image by presenting it using certain values. The overall appearance of thyroid
nodule can reflect the first impression by experienced radiologists while examining the
MRI scan. Finally, for the hand-crafted texture patterns we built a filter-bank of 9 filters to
evaluate intensity variations between neighbor voxels. The used filter-bank is designed to
capture edges in 4 orientations, lines in 4 orientations, and the point response (all-directions
variability). The four orientations are horizontal, vertical and 2 diagonal orientations.

All features from the three hand-crafted features groups were evaluated for malig-
nancy detection capability using four different classifiers: decision tree (DT) [26], random
forest (RF) [27], Naive Bayes (NB) [28] and support vector machine (SVM) [29]. The classi-
fication models used in the benchmark were optimized to ensure appropriate comparison.
In DT, min sample split was examined. In RF, number of estimators and maximum depth
were examined. In SVM, C parameter is examined to tune the soft margin.

In addition to traditional ML methods, we compared our methods accuracy against
other CNN-based methods. For bench marking purpose, we used two state-of-the-art CNN
models for detection; AlexNet [30] and ResNet18 [31]. AlexNet is chosen as it is the first
deep learning computer vision to be recognized as a classification-winner of ILSVRC [32]
back in 2012. ResNet is chosen because it is the first ILSVRC winner that overachieve human
accuracy in classification under different appearance conditions [33]. For both methods, we
used Keras implementations in Python with the default configuration. AlexNet and ResNet
were applied to the combined T2-ADC input in the form of multiple input channels.

2.5. Evaluation Criteria

The evaluation criteria of our system use a leave-one-out cross-validation. We kept
the common network configuration fixed for our reported results, including the ablation
study, as well as when compared with other techniques. The proposed system evaluation
is based on four classification metrics: accuracy, precision, recall, and dice coefficient.

Additionally, further evaluation of the system robustness has been conducted using
the the receiver operating characteristics (ROC) analysis curve. The ROC curve is a plot
between the false positive rate and the true positive rate when we adjust the decision
threshold. Figure 4c shows ROCs of the proposed multi-input CNN framework compared
to the other frameworks discussed in this section. The area under the curve (AUC) of the
voting between two CNNs gives slightly higher value, but our system achieved the best
AUC compared with all other methods.

For the purpose of this analysis, the slice at which each thyroid nodule appears with
biggest size was extracted and processed as a 2D image for each of T2-weighted image and
ADC maps. Local intensity variations were modeled by high-pass filtering using a 3 × 3
Laplacian filter invariant to 45◦ rotations [34]. Tumor pixels were grouped into benign
and malignant groups (35,625 and 15,764 pixels, respectively). Supported by the high
number of samples, a Welch two-sample t-test was applied to determine difference the
mean between groups. A statistical package in R was used to generate the results.
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Figure 4. (a) Training versus validation accuracy curves with the number of epochs during network training. (b) Training
versus validation loss curves with the number of epochs during network training. (c) Receiver operating characteristic
curves (ROCs) of the proposed multi-input CNN framework compared to other methods. AUC is the area under the
curve.“DT”—Decision Tree. “RF”—random forest; “NB”—Naive Bayes; “SVM”—support vector machine.

2.6. Nodule Texture Visualization

Achieved kernels applied to each of the T2-weighted images and the ADC maps were
extracted from CNN network after the last epoch of training cycles. The extracted kernels
are converted from the 3D to 2D form by averaging the 3 depth channels. The kernels were
then clustered using hierarchical agglomerative clustering [35,36]. Silhouette score was
used for evaluating the fit of the estimated clusters [37]. The Sklearn package in Python
was used for both clustering processing and evaluation.

3. Experimental Results

The overall proposed framework is depicted in Figure 3. In this section, we present
our results, which include: (1) preliminary statistical analysis, (2) the performance of the
proposed CAD system compared to other machine learning models that use hand-crafted
features, (3) the performance of the proposed CAD system compared to state-of-the-art
CNN models, and (4) the results obtained of analyzing the texture patterns after learning.

3.1. Significant Differences in T2 and ADC Local Intensity Variations between Malignant and
Benign Groups

The results of analyzing local intensity variations in each of the T2-weighted images
and the ADC maps show that there is a significant difference in the mean of those variations
between benign and malignant groups. Table 2 presents the results obtained from the
Welch two-sample t-test that shows a significant difference with p < 0.05. Table 2 also
presents the achieved t value and the 95% confidence interval (CI). The CI values are
normalized with respect to the standard deviation (SD) of the benign group. By observing
the sign of CI, the malignant group has higher mean observed in T2-weighted images
while the benign group has a higher mean in ADC maps. This result suggests that having
convolution filters of T2-weighted images that are independent from those of ADC maps
enables conducting enhanced texture-learning process. Convolution filters map the conv
kernels in our proposed CNN architecture.
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Table 2. Statistical analysis results for the Welch t-test on the pixel-level intensity variations between
the malignant and benign groups.

Welch Two-Sample t-Test

MRI Parameter CI ∆mean t p

T2 −4% to −1% −2.28 0.023
ADC500 5% to 9% 7.87 <0.001
ADC1000 26% to 34% 14.87 <0.001
ADC1500 4% to 8% 6.12 <0.001

3.2. Comparison with ML Methods That Use Hand-Crafted Features

The results are summarized in Table 3. As can be seen, the proposed multi-input CNN
system outperform all compared classifiers. Our proposed CAD system achieved the best
performance when compared to machine learning models that are based on hand-crafted
features. Our system achieved an AUC of 0.85 compared to 0.59 when using linear support
vector machine (SVM) classifier, see Figure 4c. Additionally, it achieved an accuracy,
sensitivity, and specificity of 0.87, 0.69, and 0.97, respectively, compared to an 0.77, 0.67 and
0.77 when using random forest (RF) classifier, which achieved the best accuracy among the
pool of classifiers used with hand-crafted features. The results in Table 3 show that using
automatic feature selection by the aid of CNN helps in achieving better diagnostic accuracy.

Table 3. Comparative performance for the proposed multi-input CNN system and machine learning
methods that use hand-crafted features. “DT”—Decision Tree. “RF”—Random Forest; “NB”—Naive
Bayes; “SVM”—Support Vector Machine.

Evaluation Metrics

Method Accuracy Sensitivity Specificity Dice Coefficient

DT classifier 0.70 0.66 0.70 0.57
NB classifier 0.76 0.73 0.77 0.63
RF classifier 0.77 0.67 0.77 0.53
SVM classifier 0.56 0.40 0.73 0.48
Proposed Multi-Input CNN 0.87 0.69 0.97 0.79

3.3. Comparison with State-of-the-Art CNNs

In addition to the comparison with the handcrafted-based ML approaches, comparison
against other state of the arts CNN models have been conducted. The comparative results,
shown in Table 4 also showed that the proposed CAD system achieved the best diagnostic
performance. It is worth mentioning that our system has relatively low number of layers
compared to the compared models. It achieved an AUC of 0.85 compared to 0.67 and 0.60
obtained using AlexNet and ResNet 18, respectively. Additionally, it achieved an accuracy
of 0.87, sensitivity of 0.69 and specificity of 0.97. The accuracy, sensitivity and specificity
using AlexNet were 0.61, 0.53, and 0.66, respectively, and those obtained using ResNet18
are 0.49, 1.00 and 0.22, respectively. Results document that using lower number of CNN
layers can achieve better diagnostic accuracy, which is considered an advantage of the
proposed method compare with other CNN-based techniques.

3.4. Texture Features of T2-Weighted Images Are Visually Different Compared to ADC Maps

The convolution kernels (filters) extracted from the CNN after learning were clustered,
see Figure 5a, and the clustering process was repeated for multiple runs each with different
number of target clusters k = 2, 4, 5, ..., 9. Figure 5b shows the evaluation of the generated
clusters using the Silhouette score. The clusters generated from the T2-weighted kernels
(green curve) achieved better clusters compared to ADC kernels (blue curve). Additionally,
k = 3 achieved the highest score in both T2-weighted and ADC images. Figure 5c,d show
the visualization of the generated clusters of T2-weighted and ADC kernels, respectively.
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The runs (with the corresponding number of clusters, or k) are represented on the y-axis.
Each row includes the generated clusters of the corresponding run, and the cluster index
inside each run is presented on the x-axis. Each cluster is illustrated by the mean of its
member kernels, and then each mean is normalized from 0 to 1. A gray-scale visualization
of each normalized mean is presented (at each row-column position) using a 3 × 3 board
image in a way that 0–1 is mapped to a white–black gradient.

Figure 5. Analysis of the patterns extracted from the CNN after training phase. (a) Illustrative diagram of the process
of extracting the kernels from the weights of each layer, and the processing of those kernels using a clustering technique
(hierarchical agglomerative clustering) in order to analyze the patterns found in T2-weighted MRI images and ADC maps.
(b) Evaluation metric of the clustering algorithm by computing Silhouette score while varying the number of clusters in the
clustering algorithm. (c) Visualization of the results of our analysis on the features extracted from T2-weighted images.
(d) Visualization of the results of our analysis on the features extracted from ADC maps. We can notice that the texture
patterns that distinguish between malignant and benign thyroid nodules are having a degree of heterogeneity according to
this visualization.
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Table 4. Comparative performance of the proposed multi-input CNN system with state-of-the-art
CNN-based classification.

Evaluation Metrics

Method Accuracy Sensitivity Specificity Dice Coefficient

AlexNet 0.61 0.53 0.66 0.49
ResNet18 0.49 1.00 0.22 0.58
Proposed Multi-Input CNN 0.87 0.69 0.97 0.79

4. Discussion and Conclusions

We proposed a new CAD system to distinguish between malignant and benign thyroid
nodules. The main contributions of the proposed pipeline is the use of multi-input CNN
that can detect texture patterns from each input independently. The first branch of our
CNN models the fluids patterns in the thyroid tissue by learning the texture patterns
in T2-weighted MRI images. The second branch of our CNN models the dynamics of
tissue fluids by learning the texture patterns in ADC maps. We validated our method by
applying leave-one-out cross-validation on multimodal data collected from 49 patients
with pathologically confirmed nodules. We compared the classification accuracy obtained
from our system with other ML and deep learning approaches. Experimental results from
our system surpass results obtained from other models.

To assess the advantage of integrating multiple MRI modalities as separate inputs of
the proposed network, we conducted a preliminary study that shows heterogeneity in the
intensity variation between malignant and benign samples. In this experiment, a Welch
two-sample t-test was used to assess the significant difference in mean variation between
the two groups (Table 2) across all modalities. The difference in mean between the two
groups in T2-weighted images has an opposite sign when compared to the corresponding
difference in ADC maps (Table 2). This also suggests that using independent features in
each input can enable finding more optimal features.

To assess the performance of our system, we compared it to other ML methods that
use hand-crafted features. In the comparison, we used three categories of hand-crafted
features. The first category is based on the statistical profile of image intensity. We evaluated
that statistical profile using five features (mean, standard deviation, entropy, skewness,
kurtosis). This category is designed to summarize the whole image by presenting it using
the profile of each features. The overall appearance of the tumor can reflect the first
impression by the physician while examining the MRI scan. The linear SVM classifier
exhibited the worst performance, which suggests a lack of a linear border between classes.
Results of the NB classifier showed the possibility of having a fairly distinguished statistical
distribution of the hand-crafted features extracted from benign and malignant nodules.
In order to benchmark our system, Figure 4c shows ROCs of the proposed multi-input
CNN framework compared to the other systems under comparison. As demonstrated, the
area under the curve (AUC) of our system is higher compared with all compared methods,
which highlights the higher accuracy of our method. Figure 4a,b show the training versus
validation accuracy and loss curves during the model training. Overall, the results showed
that handcrafted features failed to provide a good modeling of our classification problem,
and this suggests having multi-input CNNs that learn from paired features can enhance
diagnostic accuracy of the CAD system.

To further support our method, an ablation study has been conducted to assess the
accuracy of the proposed method. The study shows that the proposed fusion using multi-
input CNN outperformed single-input frameworks. In that study, a single input CNN with
the same structure was built and evaluated. Four scenarios were evaluated. Scenarios 1
and 2 use T2-weighted images and ADC maps, respectively. Scenario 3 uses a probability
voting scheme between the prediction of scenarios 1 and 2. We used the following equation
to acquire the resultant probability after voting: Pv = 1

2 (PT2Weighted + PADC). Scenario 4 uses
a single input that combines T2-weighted images and ADC maps in the input channels.
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Results obtained from the four scenarios are shown in Table 5. Using a multi-input CNN
enhances the classification accuracy. The two-CNN voting scenario showed high specificity,
but a low accuracy, sensitivity and dice coefficient compared to the proposed method. This
ablation study suggests that having independent features for each input can enhance the
detection performance of the CAD system.

Table 5. Ablation study results for the proposed system.

Evaluation Metrics

Method Accuracy Sensitivity Specificity Dice Coefficient

Single-Input CNN (T2-Weighted only) 0.76 0.56 0.87 0.62
Single-Input CNN (ADC only) 0.72 0.63 0.77 0.61
Two-CNN voting (base-images + ADC) 0.83 0.63 0.93 0.71
Multi-Input CNN (Proposed Method) 0.87 0.69 0.97 0.79

The main focus of this study is to investigate the ability to extract the texture features
associated with thyroid cancer by combining the texture in two input CNN with two
independent branches. The network was designed to minimize the number of layers in
order to extract the texture patterns that can be linked to the anatomical structure in the
nodules. This optimized architecture also supports fast processing, which can enable
further integration with MRI scanner devices to present the visual features automatically
extracted from MRI images. As a follow-up step in our study to evaluate the heterogeneity
of texture features between MRI modalities, we applied a method to extract and cluster
the learned features for each modality. An illustration is presented in Figure 5a and the
obtained feature visualization in each input is presented in Figure 5c,d. That visualization
suggests a heterogeneity in texture patterns between MRI modalities and supports the use
of our method for thyroid nodule classification.

Our system yielded promising results. However, there are some limitations that need
to be addressed in order to go forward with further clinical trials. The number of samples
is limited under the scope of our study, and the results can reflect the pattern that exists
in this cohort. Our model needs to be applied to another cohort with a higher number of
subjects in order to assess the homogeneity of texture across cohorts. More samples can be
collected to sufficiently cover the full spectrum of thyroid cancer.

In total, this paper shows that extracting texture patterns using deep learning can im-
prove the diagnostic performance and can help in performing accurate diagnosis of thyroid
cancer. For future work, our experiments can be applied to bigger cohort. Additionally, our
model can be adapted to perform classification of the types of thyroid cancer. It can be also
adapted to perform staging of thyroid cancer. Other modalities can be added to the model
to study the heterogeneity of MRI texture patterns in a more advanced way. Our model can
also be adapted to study the texture patterns of thyroid tissues while using other imaging
techniques such as US. Although, US can provide a limited capability of modeling thyroid
cancer compared to MRI, having a model that combines US and MRI can contribute to
establishing more accurate models to ensure precise and personalized medicine.

Data collection can be also expanded to collect multiple scan from each subject in a
different time points. By doing this, we can study the correlation between DWI patterns
and the patterns of the cell proliferation process, which is associated with thyroid nodules
at different stages of thyroid cancer.
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