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1  | INTRODUC TION

A high-density single nucleotide polymorphism (SNP) array has been 
widely utilized in various cattle breeds to detect quantitative trait 
loci (QTL) by genome-wide association studies (GWAS) and to pre-
dict the genomic estimated breeding value (GEBV) by genomic eval-
uation. The power of QTL detection and the accuracy of GEBV are 
dependent on several factors, such as the genetic architecture of 
the traits (e.g. the number of QTL and heritability) and population 

size (e.g. the number of genotyped animals and effective popula-
tion size; Daetwyler, Pong-Wong, Villanueva, & Woolliams, 2010; 
Goddard & Hayes, 2007; Lourenco et al., 2017; Uemoto, Osawa, & 
Saburi, 2017). In particular, population size is a crucial factor, and a 
larger number of animals in the reference population is needed to 
increase the accuracy of GEBV in genomic evaluations (Daetwyler 
et al., 2010; Uemoto et al., 2017; VanRaden et al., 2009). However, 
high-density SNP genotyping entails substantial costs to obtain a 
larger number of genotyped animals.
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Abstract
The objective of this study was to assess the effect of genotyped bulls with differ-
ent numbers of phenotyped progenies on quantitative trait loci (QTL) detection and 
genomic evaluation using a simulated cattle population. Twelve generations (G1–G12) 
were simulated from the base generation (G0). The recent population had different 
effective population sizes, heritability, and number of QTL. G0–G4 were used for pedi-
gree	information.	A	total	of	300	genotyped	bulls	from	G5–G10	were	randomly	selected.	
Their progenies were generated in G6–G11 with different numbers of progeny per bull. 
Scenarios were considered according to the number of progenies and whether the 
genotypes were possessed by the bulls or the progenies. A genome-wide association 
study and genomic evaluation were performed with a single-step genomic best linear 
unbiased prediction method to calculate the power of QTL detection and the genomic 
estimated breeding value (GEBV). We found that genotyped bulls could be available 
for QTL detection depending on conditions. Additionally, using a reference population, 
including genotyped bulls, which had more progeny phenotypes, enabled a more ac-
curate	prediction	of	GEBV.	However,	it	is	desirable	to	have	more	than	4,500	individuals	
consisting of both genotypes and phenotypes for practical genomic evaluation.
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One of the strategies for cost-effective genotyping is to uti-
lize the genotypes of informative animals, such as progeny-tested 
bulls, instead of the phenotyped animals. Progeny-tested bulls 
have been used as a reference population in the genomic eval-
uation	 for	 Holstein	 populations	 in	 Japan	 because	 the	 proge-
ny-tested bulls have reliable information obtained from a larger 
number of their records for their daughters (Uemoto et al., 2017). 
Additionally, Takeda et al. (2020) reported that approximately 
300	genotypes	of	progeny-tested	bulls	with	approximately	4,500	
phenotypes of their progenies could have reliable information for 
QTL detection but might be insufficient for the accuracy of GEBV 
in	Japanese	Black	cattle.	This	indicated	that	a	sufficient	power	of	
QTL detection could be obtained by using progeny-tested bulls 
even if a small number of genotyped animals is used in GWAS. 
However, there is no information regarding the effect of the num-
ber of phenotyped progenies on the power of QTL detection and 
the accuracy of GEBV when the progeny-tested bulls with geno-
types are utilized in a cattle population.

The objective of this study was to evaluate the effect of geno-
typed bulls with different numbers of phenotyped progenies on the 
power of QTL detection and the accuracy of GEBV by using a sim-
ulated cattle population. In the simulation analysis, 300 genotyped 
bulls with no phenotype but with different numbers of phenotyped 
progenies were regarded as the population of GWAS and the refer-
ence population for genomic evaluation. Additionally, the different 
number of progenies with both genotype and phenotype were used 
for comparison with the results of genotyped bulls. The power of 
QTL detection and accuracy of GEBV using these populations were 
evaluated under varying conditions, including different effective 
population size (Ne), heritability (h2), and number of QTL (nQTL).

2  | MATERIAL S AND METHODS

Animal Care and Use Committee approval was not needed because 
data were simulated.

F I G U R E  1   Schematic illustration of the 
simulation process
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2.1 | Simulated population

Populations were simulated based on the forward-in-time process 
(Carvajal-Rodríguez,	 2008)	 using	 QMSim	 software	 (Sargolzaei	 &	
Schenkel, 2009). The schematic illustration of the simulation pro-
cess is shown in Figure 1. A historical population was simulated to 
create a mutation-drift equilibrium and linkage disequilibrium (LD). 
The size of the historical population began with 1,000 individuals 
and was generated as generation 0 to 1,000, with a constant size 
of 1,000. Two different populations with different Ne were gen-
erated with a Ne of 20 and 100, which mimicked the recent Ne of 
Japanese	Black	cattle	populations	(Nomura,	Honda,	&	Mukai,	2001)	
and other cattle breed populations (Lourenco et al., 2017), respec-
tively. Thus, the number of individuals was gradually reduced from 
1,000 to 20 (for the Ne of 20) or 100 (for the Ne of 100) from gen-
eration 1,001–1,030, respectively. It was then expanded to 10,000 
after	three	generations,	resulting	in	5,000	males	and	5,000	females	
in the last generation (i.e., generation 1,033) of the historical popula-
tion.	In	each	population,	50	males	and	3,000	females	were	randomly	
selected from the last historical generation to be founders for the 
recent population.

The recent population was simulated for 12 non-overlapping 
generations (G1 to G12). Each mating produced two progenies with 
equal	chances	of	being	male	or	female,	and	50	male	and	3,000	fe-
male progenies were then randomly selected for mating in each 
generation. The base population (G0) and the first four genera-
tions (G1–G4) were used only for pedigree information in the later 
analyses. Fifty bulls were randomly selected in each generation 
from	G5	to	G10.	Five,	15,	and	30	progenies	with	phenotypic	data	
per the bull from G6 to G11 were also randomly selected. These 
phenotyped progenies were not selected as the sire or dam of the 
next	 generation.	 In	 total,	 300	 non-phenotyped	 bulls	 from	G5	 to	
G10	and	different	numbers	of	their	phenotyped	progenies	(1,500,	
4,500,	and	9,000	progenies)	from	G6	to	G11	were	used	in	the	val-
idation study.

For the population and genome structures, the recent popu-
lation had different conditions with the following varying factors: 
Ne, h2, and nQTL. The simulated genome consisted of 30 autoso-
mal chromosomes with a length of 100 cM and randomly located 
bi-allelic SNPs (n = 3,000) and QTL (n =	50)	 in	each	chromosome.	
Then,	a	total	of	50,000	SNPs	and	different	nQTL	(10,	50,	and	500)	
with minor allele frequencies >0.05	were	randomly	selected	from	all	
chromosomes (total length of 3,000 cM and 30 chromosomes). The 
SNP	mutation	rate	and	QTL	mutation	rate	were	set	at	2.5	× 10–5. 
The QTL effects were sampled from a gamma distribution with a 
shape parameter of 0.4 and a scale parameter determined internally 
for the simulated genetic variance. The simulated phenotypes with 
the set value of phenotypic variance (1.0) were generated with two 
set values of h2	 (0.20	and	0.50)	explained	only	by	simulated	QTL.	
These conditions in each factor are summarized in Table 1. A total 
of 10 replicates of historical and recent populations were simulated 
for each condition.

2.2 | Statistical models using single-step genomic 
BLUP (ssGBLUP)

The ssGBLUP approach proposed by Aguilar et al. (2010) and Wang, 
Misztal, Aguilar, Legarra, and Muir (2012) was applied to perform 
GWAS and genomic evaluation. The GWAS and genomic evalua-
tion were performed using the BLUPF90 family of programs (Aguilar 
et	al.,	2018).	The	detailed	description	of	the	statistical	models	used	is	
in Takeda et al. (2020), and a brief description is as follows. The sin-
gle-trait animal model was used for the genomic analyses as follows: 

where y is the vector of simulated phenotype; 1n is a vector of n ones; 
μ is the mean; Z is the design matrices for u; u and e are the vectors 
of GEBVs with u∼N0,H�u2 and random error effect with e∼N0,I�e2

, respectively, where �u2 and �e2 are additive genetic and error vari-
ances, respectively. I is an identity matrix and the inverse of matrix H 
is calculated as follows: 

where A is the additive relationship matrix (ARM); A22 is the ARM for 
genotyped animals; α and β were weighting factors; G is the genomic 
relationship	matrix	 (GRM)	proposed	by	VanRaden	 (2008).	The	GRM	
was adjusted to be on the same scale of allele frequency in the base 
population using the method of Christensen (2012); this is the default 
setting	for	the	BLUPF90	family	of	programs	(Aguilar	et	al.,	2018).

For GWAS, the weighting factors in H−1 (α and β) were selected 
as 1 and 0, respectively, and variance components were estimated 
using model (1). The GEBVs were then predicted and the estimated 
SNP effects (�

⋀

) were obtained using the following equation: 

where W is a matrix relating to genotypes for each locus; D is a diago-
nal matrix of weights for variances of SNP (initially D = I); and u{g is a 
vector of GEBV of genotyped animals. The procedure, which consists 
of a GEBV computation and the refinement of SNP weights through 
two iterations, was performed to estimate the SNP effect as described 
by Wang et al. (2012). The proportion of genetic variance explained by 
the i-th region was calculated by a window of 20 adjacent SNPs. For 
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TA B L E  1   Factors for different conditions in a simulated 
population

Factors Condition

Effective population size (Ne) 20, 100

Number of QTL (nQTL) 10,	50,	500

Heritability (h2) 0.20,	0.50
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genomic evaluation, the phenotypic variance was 1.0 and the weight-
ing factors in H−1 (α and β)	were	selected	as	0.95	and	0.05,	respec-
tively, which were the default values. The estimated breeding values 
(EBVs) were also predicted by using model (1) with the same variance 
components of prediction for GEBV, but u was replaced as the vector 
of random effects because of EBV with u∼N0,A�u2.

2.3 | Scenarios and validation

For the population of GWAS and the reference population of 
genomic evaluation, the 300 genotyped bulls with no phenotype 
but with three different numbers of phenotyped progenies (9,000, 
4,500,	and	1,500)	were	used	 in	 this	study.	Additionally,	 the	same	
number of progenies with both genotype and phenotype (9,000, 
4,500,	and	1,500),	but	no	genotypes	for	their	sires	were	also	used	
for comparison with the results of the genotyped bulls. The seven 
different scenarios (SCEN0-6) were set and summarized in Table 2 
as	 follows:	SCEN1–3	had	9,000,	4,500,	and	1,500	progenies	with	
both phenotypic and genotypic data, respectively, and SCEN4–6 
had	9,000,	4,500,	and	1,500	progenies	with	only	phenotypic	data	
and genotypic data for their sires (300 bulls), respectively. The gen-
otypic	data	were	composed	of	SNP	data	(i.e.,	50,000	SNPs).	SCEN0	
represented as a true value, which had the same composition as 
that of SCEN1 but had information of both SNP and QTL positions.

For the power of QTL detection, GWAS was performed in 
SCEN0 first, and the QTL explaining more than 1.0% of the genetic 
variance were obtained. The threshold was chosen based on a pre-
vious	 weighted	 single-step	 GWAS	 (Marques	 et	 al.,	 2018;	 Takeda	
et al., 2020), which reported rationale results. Among all the de-
tected QTL, the QTL on the set true QTL positions were regarded as 
a detectable QTL (trueQTL). GWAS with other scenarios (SCEN1–6) 
were then performed, and the number of detected QTL with 1.0% 
of the genetic variance on trueQTL (n_detQTL) was counted. The 

power to detect QTL was defined as the proportion of n_detQTL 
relative to the number of trueQTL. For the accuracy of GEBVs in 
genomic	evaluation,	50	bulls	 that	had	SNP	data	and	true	breeding	
values (TBVs) were randomly selected in each generation from G11 
to G12. These 100 bulls were regarded as the test population. The 
accuracy of GEBV was calculated as the correlation coefficient be-
tween TBV and GEBV in all scenarios (SCEN0–6). Additionally, the 
accuracy of EBV was also calculated to compare with those of GEBV 
according to the scenarios (SCEN7–9) in Table 2, which had 9,000, 
4,500,	and	1,500	progenies	with	phenotypic	data,	 respectively.	 In	
SCEN7–9, no animal had genotypic data. The mean and standard de-
viation (SD) of 10 replicates was calculated in each scenario under 
different conditions.

3  | RESULTS

3.1 | Linkage disequilibrium

The pattern of LD decay of the real and simulated population 
was compared to evaluate the adequacy of the simulation pro-
cess. We obtained r2 values that are measures of LD between any 
two loci in the base population and are supplied by a feature of 
QMSim software (Sargolzaei & Schenkel, 2009). The r2 values in 
two simulated populations (Ne = 20 or 100) were randomly ex-
tracted and are shown in Figure 2. The simulated population with 
Ne = 20 had higher r2 values than did that with Ne = 100 in all 
distances between two loci. Additionally, the r2 values, which were 
obtained	from	547,043	SNP	genotypes	of	362	Japanese	Black	bulls	
as reported by Takeda et al. (2020), are also shown in Figure 2 to 
compare with those of the two simulated populations. To compare 
the difference in the r2	values	between	the	real	data	of	Japanese	
Black bulls and the simulated populations, the scale of intermarkder 
distance (Mbp) in the real data was assumed as cM. The r2 values 
of the two simulated populations did not have the same value as 
that of the real data in less than 1 cM distance between two loci. 
However, the r2 values of the simulated population with Ne = 20 
had similar values to that of the actual data in more than 1 cM dis-
tance between two loci.

3.2 | GWAS

The power of QTL detection in SCEN1–6 is shown in Figure 3. Among 
SCEN4–6, which were considered genotyped bulls with a different 
number of phenotyped progenies, the power of QTL detection was 
generally higher with the increasing number of progeny per bull. In 
the population with Ne = 20, for example, had detection powers in 
SCEN4,	SCEN5,	and	SCEN6	that	ranged	0.13–0.93,	0.16–0.83,	and	
0.09–0.70,	 respectively.	When	the	nQTL	was	10	or	50,	 the	detec-
tion	 powers	were	moderate	 to	 high	 (ranging	 from	0.50	 to	 0.93	 in	
the population with Ne =	20	and	ranging	from	0.40	to	0.87	in	the	
population with Ne =	100).	On	the	other	hand,	 in	the	case	of	500	

TA B L E  2   The reference population dataset for the 10 scenarios

Scenarioa 

Bull (N = 300, 
G5-10) Progenies (G6-11)

Genotype N Genotype Phenotype

SCEN0 × 9,000 〇 〇

SCEN1 × 9,000 〇 〇

SCEN2 × 4,500 〇 〇

SCEN3 × 1,500 〇 〇

SCEN4 〇 9,000 × 〇

SCEN5 〇 4,500 × 〇

SCEN6 〇 1,500 × 〇

SCEN7 × 9,000 × 〇

SCEN8 × 4,500 × 〇

SCEN9 × 1,500 × 〇
aGenotyped animals have both single nucleotide polymorphism (SNP) 
and QTL positions in SCEN0, and they have only SNP data in SCEN1-9. 
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QTL, the detection powers were low (ranging from 0.09 to 0.29 in 
the population with Ne = 20 and ranging from 0.03 to 0.33 in the 
population with Ne = 100). The h2 and Ne did not affect the power 
of QTL detection among SCEN4–6.

For SCEN1–3, which the progenies had both genotypes and phe-
notypes, the powers of QTL detection in SCEN1–3 were generally 
higher than those in SCEN4–6. Additionally, the detection powers 
were higher with an increasing number of animals with both phe-
notypes and genotypes. For example, when Ne = 20, h2 = 0.2, and 
nQTL =	50,	the	highest	detection	power	of	0.98	occurred	in	SCEN1,	

followed	by	 those	of	0.90	and	0.80	 in	SCEN2	and	SCEN3,	 respec-
tively. The detection powers for nQTL =	500	were	lower	than	those	
for nQTL =	10	or	50,	but	the	degrees	were	not	as	remarkable	as	those	
in SCEN4–6. For example, when the Ne was 100 and the h2 was 0.2, 
the detection power in SCEN1 for nQTL =	500	was	0.65,	but	that	in	
SCEN4 was 0.13. Comparing between SCEN1–3 and SCEN4–6, there 
were	differences	 in	 the	detection	power	when	nQTL	was	500,	but	
no significant differences for nQTL =	10	or	50	were	observed.	The	
h2 and Ne did not affect the detection power between SCEN1–3 and 
SCEN4–6.

F I G U R E  2   Average linkage 
disequilibrium coefficient values (r2 
values) plotted against intermarker 
distance for all autosomal chromosomes 
for real and simulated data (Ne = 20 and 
100). The x-axis indicates the distance 
between single nucleotide polymorphisms 
(SNPs) and the y-axis indicates the r2 
values between SNPs

F I G U R E  3   The power of quantitative 
trait loci (QTL) detection in the 
scenarios. (a), Ne of 20; (b), Ne of 100; 
h2, heritability; nQTL, number of QTL. 
The y-axis indicates the power of QTL 
detection

(a)

(b)
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3.3 | Genomic evaluation

The accuracies of GEBVs in SCEN0–6 are shown in Figure 4. 
For comparison among SCEN4–6, a consistent trend was ob-
served in that the higher accuracy of GEBV was obtained with a 
larger number of progeny per bull. The accuracies for SCEN4–6 
in the population with Ne = 20 and Ne =	 100	 ranged	 0.45–
0.54	and	0.43–0.54,	respectively.	The	nQTL	and	Ne	did	not	af-
fect accuracy. On the other hand, the accuracy increased with 
heritability.

The accuracies in SCEN0 were the highest among the seven 
scenarios	 and	 ranged	 0.66–0.81	 and	 0.66–0.82	 in	 the	 popula-
tion with Ne = 20 and Ne = 100, respectively. They were almost 
the	same	as	those	in	SCEN1,	which	ranged	0.65–0.80	and	0.64–
0.80	in	the	population	with	Ne	= 20 and Ne = 100, respectively. 
Comparing among SCEN1–3, the larger number of animals with 
both phenotypes and genotypes led to higher accuracies. Even in 
SCEN1–3, there was no effect of nQTL and Ne. The accuracies in 
SCEN1 and SCEN2 were generally higher than those in SCEN4–
6. In many cases, the results of SCEN3 were slightly lower than 
those	in	SCEN4	and	were	similar	to	those	of	SCEN5.	For	example,	
when the Ne was 20 and h2 was 0.2, the accuracies in SCEN3 
ranged	0.39–0.48	and	were	 lower	than	those	 in	SCEN4,	 ranging	
0.45–0.51.	The	nQTL	and	Ne	did	not	affect	the	power	of	the	accu-
racy of GEBV between SCEN1–3 and SCEN4–6. The accuracies of 
EBVs in SCEN7–9 are shown in Figure S1. Overall, the accuracies 
were <0.1.

4  | DISCUSSION

The size of the reference population is known as an important factor 
for the power of QTL detection and prediction accuracy of GEBV. 
However, the cost of genotyping is still a big issue. Because prog-
eny-tested bulls have progenies with records, genotypes of the bulls 
may be informative for genetic analysis. Therefore, we evaluated the 
availability for genotyped bulls on GWAS and genomic evaluation. 
The quality of information for bull genotypes is dependent on the 
number of progenies per bull. Accordingly, we generated different 
numbers of phenotyped progenies in bulls and examined the power 
of QTL detection and accuracy of GEBV, using genotypes of the bulls 
and phenotypes of the progenies. From the results, the following 
showed the validity of the simulated population, with a discussion 
for GWAS and genomic evaluation.

In	this	study,	two	different	Ne	were	considered	because	Japanese	
Black beef cattle (Ne = 20) and Holstein dairy cattle (Ne = 100) are 
the	major	breeds	 in	Japan.	Almost	 the	same	LD	patterns	between	
the real and simulated populations with Ne = 20 were observed in 
more than 1 cM distance between two loci. Hence, the LD structure 
of the simulated population with Ne = 20 seems to be similar to that 
of the real data. On the other hand, the LD patterns of two simu-
lated populations were not the same as that of the real data with 
less than 1 cM distance between two loci. One of the reasons is that 
the real data had SNP genotypes based on an imputed BovineHD 
SNP array (Takeda et al., 2020), whereas the simulated data had SNP 
genotypes	based	on	a	50	K	SNP	array.	The	LD	pattern	in	a	narrow	

F I G U R E  4   The accuracy of genomic 
estimated breeding values in the 
scenarios. (a), Ne of 20; (b), Ne of 100; 
h2, heritability; QTL, quantitative trait 
loci; nQTL, number of QTL. The y-axis 
indicates the accuracy of genomic 
estimated breeding values

(a)

(b)
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region could be estimated more accurately by utilizing the closely 
located SNP information. Regarding the power of QTL detection and 
the accuracy of GEBV in the two populations (Ne = 20 and 100), no 
large difference was observed in both results. In general, Ne has a 
close relationship with the extent of LD, and thus, a lower Ne can 
lead to a higher LD. Because the LD is higher, the superior ability 
to detect true QTL was observed (Melo et al., 2016). On the other 
hand, it is known that the extent of the LD affects the accuracy of 
GEBV (Garrick, 2010; Goddard, Hayes, & Meuwissen, 2010; Taylor 
et al., 2009). For these reasons, it was expected that some impact 
because of LD would be observed. However, as mentioned below, 
the Ne and LD did not contribute to the power of QTL detection 
and the accuracy of GEBV in the current simulated populations. One 
of the reasons might be that the value of Ne was different, but the 
same Bos taurus	species	as	Japanese	Black	and	Holstein	breeds	were	
assumed. In the simulation study of Melo et al. (2016), the higher 
and lower LD populations mimicked the LD of two different species 
of Bos taurus and Bos indicus. On the contrary, Goddard (2009) pro-
posed a formula to determine the reliability of GEBV using Ne, num-
ber of individuals with phenotypic records (N), h2, and the length of 
chromosome (L), although the number of markers was not consid-
ered. In order to validate our results, we determined the accuracy of 
GEBV considering the square root of reliability depending on the Ne 
(20,	100,	250,	500,	or	1,000)	using	the	conditions	of	our	study	(i.e.,	
N =	9,000,	4,500,	or	1,500;	h2 =	0.5	or	0.2;	and	L	= 30). The results 
are presented in Figure S2. We found that the calculated accuracies 
did not substantially change with the increase in Ne, suggesting that 
the contribution of Ne to the accuracy of GEBV is small under the 
present study conditions. This further supports our results.

For GWAS, previous simulation studies in livestock have re-
ported the effects of various factors on the power of QTL detection, 
such as nQTL, h2 (Van den Berg, Fritz, & Boichard, 2013), pheno-
typic information of non-genotyped animals, and statistical methods 
(Melo et al., 2016). The current study showed that the power of QTL 
detection was low for polygenic traits, agreeing with Van der Berg 
et al. (2013) who performed QTL mapping by estimating the SNP ef-
fects using Bayesian methods. They also reported that higher h2 in-
creased the accuracy of QTL detection. This is inconsistent with the 
current study where h2 did not have a large effect. Our study eval-
uated the effects of the genotyped bulls with a different number of 
progenies, which has not yet been investigated. The results showed 
that a smaller number of progeny per bull led to the lower power 
of QTL detection. When using both genotypes and phenotypes of 
the progenies, higher powers of QTL detection were observed. For 
traits with nQTL =	10	or	50,	the	powers	of	QTL	detection	in	the	case	
of bull genotype use were not lower than those using both geno-
types and phenotypes of the progenies. However, for the traits with 
nQTL =	500,	the	powers	of	QTL	detection	were	low.	This	can	be	be-
cause the proportion of each QTL variance in the total genetic vari-
ance is small when the QTL effects were determined from gamma 
distribution; thus, most QTL effects were small. On the contrary, for 
the traits with nQTL =	10	or	50,	the	proportion	of	each	QTL	variance	
in the total genetic variance is large, although the QTL effect was 

small. Hence, the influence of QTL effect will be larger than that of 
polygenic traits. These results indicated that using the genotype of 
progeny-tested bulls is valuable when the bulls have a large number 
of progenies and the target traits are less polygenic. Additionally, 
the approach is cost-effective for genotyping. However, it should be 
noted that using a population with a small Ne can lead to an increase 
in the length of LD, and thus, it will be difficult to perform QTL fine 
mapping.

For genomic evaluation, the accuracies of EBVs among the sce-
narios (SCEN7–9) were low and cannot be compared to each other 
because of the large standard deviations. In contrast, apparent 
differences in the accuracies of GEBVs among scenarios (SCEN1–
6) were observed. In our study, the influence of h2 seemed to be 
larger than that of nQTL and Ne. This is consistent with the results 
of Brito, Neto, Sargolzaei, Cobuci, and Schenkel (2011) and Piccoli 
et al. (2017). Brito et al. (2011) reported that the accuracy of GEBV 
increased significantly with an increase in h2 from 0.1 to 0.4, using 
a simulated beef cattle population. Piccoli et al. (2017) estimated 
h2 for economic traits, which ranged from 0.10 to 0.46 in Brazilian 
Bradford and Hereford cattle, and showed a higher accuracy of 
GEBV with higher h2. Under any condition, the number of animals in 
the reference population had a large effect on the accuracy of GEBV 
in our study. This is in agreement with previous simulation studies 
(Brito et al., 2011; Lourenco et al., 2017).

In this study, the simulated populations with non-overlapping 
generation were assumed because it is easy to understand the ef-
fects of genotyped bulls with different numbers of phenotyped 
progenies on QTL detection and genomic evaluation and compare 
with the results of Takeda et al. (2020). However, in a real-world 
breeding	 program	 of	 Japanese	 Black	 cattle,	 the	 elite	 bulls,	 which	
have prominent marbling, have been utilized multiple times across 
generations (Nomura et al., 2001). The use of these elite bulls with 
overlapping generations in the genomic study might affect the ac-
curacy of GEBV in genomic evaluation. When these elite bulls are 
included in the reference population, the genomic relationship be-
tween the reference and test populations might become closer, 
and thus, the reliability of GEBV for the test population would in-
crease (Habier, Tetens, Seefried, Lichtner, & Thaller, 2010; Pszczola, 
Strabel,	Mulder,	&	Calus,	2012;	Wu,	Lund,	Sun,	Zhang,	&	Su,	2015).	
Therefore, the accuracy of GEBV in a real cattle population might be 
higher than that obtained in our study.

As	the	Ne	of	Japanese	Black	cattle	is	small	(Nomura	et	al.,	2001),	
it is difficult to collect sufficient genotype data for progeny-tested 
bulls. Accordingly, the number of progeny-tested bulls was assumed 
to be a practical value of 300 in this study. The structure of the refer-
ence	population	in	SCEN5	was	similar	to	our	previous	study	(Takeda	
et al., 2020), which included 3,773 progenies with phenotypes and 
the	295	bulls	with	genotypes.	For	the	power	of	QTL	detection,	Takeda	
et al. (2020) showed that the genomic regions associated with traits 
of interests could be detected by the same approach, and our results 
in	SCEN5	also	showed	a	higher	power	for	QTL	detection	under	lower	
nQTL. For the accuracy of GEBV, Takeda et al. (2020) obtained the 
realized reliability as the indicator of the accuracy of GEBV using 
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de-regressed EBV as true value. Taking the square root of the co-
efficient of determination of regression of de-regressed EBV as the 
GEBV,	the	values	(regarded	as	accuracy)	ranged	from	0.3	to	0.5,	being	
approximately	equivalent	to	the	results	of	the	current	study	in	SCEN5	
with 0.41 to 0.49. This suggests that the current simulation process is 
appropriate, but the accuracies of GEBV in real data and the simulated 
population using genotyped bulls are limited, even if we determined 
that the genotypes of bulls with several phenotyped progenies were 
valuable to the prediction of GEBV in this study. If there were many 
individuals with phenotypic data, obtaining the genotypes of the bulls 
could allow us to accurately determine the QTL regions. However, to 
increase the accuracy of GEBV, it is necessary to enhance the ref-
erence population consisting of individuals with both genotypes and 
phenotypes.	Over	4,500	individuals	are	needed	to	obtain	a	high	accu-
racy of 0.7, such as SCEN2 used in this study.

5  | CONCLUSION

We evaluated the effects of genotyped bulls with a different num-
ber of progenies on the power of QTL detection and the accu-
racy of GEBV. We found that a small number of genotyped bulls 
could be available for QTL detection when the bulls have a large 
number of phenotyped progeny and the genetic background of 
the target trait includes some major QTLs. Therefore, cost-effec-
tive QTL detection could be performed depending on these con-
ditions. Additionally, using a reference population, including the 
genotypes of bulls that have more progenies with phenotypes, 
enabled more accurately predicted GEBV. However, if practical 
use of genomic evaluation, such as the selection of sire candidates 
is	considered,	more	than	4,500	animals	with	both	genotypes	and	
phenotypes would be required.
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