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1  | INTRODUC TION

A high-density single nucleotide polymorphism (SNP) array has been 
widely utilized in various cattle breeds to detect quantitative trait 
loci (QTL) by genome-wide association studies (GWAS) and to pre-
dict the genomic estimated breeding value (GEBV) by genomic eval-
uation. The power of QTL detection and the accuracy of GEBV are 
dependent on several factors, such as the genetic architecture of 
the traits (e.g. the number of QTL and heritability) and population 

size (e.g. the number of genotyped animals and effective popula-
tion size; Daetwyler, Pong-Wong, Villanueva, & Woolliams,  2010; 
Goddard & Hayes, 2007; Lourenco et al., 2017; Uemoto, Osawa, & 
Saburi, 2017). In particular, population size is a crucial factor, and a 
larger number of animals in the reference population is needed to 
increase the accuracy of GEBV in genomic evaluations (Daetwyler 
et al., 2010; Uemoto et al., 2017; VanRaden et al., 2009). However, 
high-density SNP genotyping entails substantial costs to obtain a 
larger number of genotyped animals.
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Abstract
The objective of this study was to assess the effect of genotyped bulls with differ-
ent numbers of phenotyped progenies on quantitative trait loci (QTL) detection and 
genomic evaluation using a simulated cattle population. Twelve generations (G1–G12) 
were simulated from the base generation (G0). The recent population had different 
effective population sizes, heritability, and number of QTL. G0–G4 were used for pedi-
gree information. A total of 300 genotyped bulls from G5–G10 were randomly selected. 
Their progenies were generated in G6–G11 with different numbers of progeny per bull. 
Scenarios were considered according to the number of progenies and whether the 
genotypes were possessed by the bulls or the progenies. A genome-wide association 
study and genomic evaluation were performed with a single-step genomic best linear 
unbiased prediction method to calculate the power of QTL detection and the genomic 
estimated breeding value (GEBV). We found that genotyped bulls could be available 
for QTL detection depending on conditions. Additionally, using a reference population, 
including genotyped bulls, which had more progeny phenotypes, enabled a more ac-
curate prediction of GEBV. However, it is desirable to have more than 4,500 individuals 
consisting of both genotypes and phenotypes for practical genomic evaluation.
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One of the strategies for cost-effective genotyping is to uti-
lize the genotypes of informative animals, such as progeny-tested 
bulls, instead of the phenotyped animals. Progeny-tested bulls 
have been used as a reference population in the genomic eval-
uation for Holstein populations in Japan because the proge-
ny-tested bulls have reliable information obtained from a larger 
number of their records for their daughters (Uemoto et al., 2017). 
Additionally, Takeda et  al.  (2020) reported that approximately 
300 genotypes of progeny-tested bulls with approximately 4,500 
phenotypes of their progenies could have reliable information for 
QTL detection but might be insufficient for the accuracy of GEBV 
in Japanese Black cattle. This indicated that a sufficient power of 
QTL detection could be obtained by using progeny-tested bulls 
even if a small number of genotyped animals is used in GWAS. 
However, there is no information regarding the effect of the num-
ber of phenotyped progenies on the power of QTL detection and 
the accuracy of GEBV when the progeny-tested bulls with geno-
types are utilized in a cattle population.

The objective of this study was to evaluate the effect of geno-
typed bulls with different numbers of phenotyped progenies on the 
power of QTL detection and the accuracy of GEBV by using a sim-
ulated cattle population. In the simulation analysis, 300 genotyped 
bulls with no phenotype but with different numbers of phenotyped 
progenies were regarded as the population of GWAS and the refer-
ence population for genomic evaluation. Additionally, the different 
number of progenies with both genotype and phenotype were used 
for comparison with the results of genotyped bulls. The power of 
QTL detection and accuracy of GEBV using these populations were 
evaluated under varying conditions, including different effective 
population size (Ne), heritability (h2), and number of QTL (nQTL).

2  | MATERIAL S AND METHODS

Animal Care and Use Committee approval was not needed because 
data were simulated.

F I G U R E  1   Schematic illustration of the 
simulation process
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2.1 | Simulated population

Populations were simulated based on the forward-in-time process 
(Carvajal-Rodríguez,  2008) using QMSim software (Sargolzaei & 
Schenkel,  2009). The schematic illustration of the simulation pro-
cess is shown in Figure 1. A historical population was simulated to 
create a mutation-drift equilibrium and linkage disequilibrium (LD). 
The size of the historical population began with 1,000 individuals 
and was generated as generation 0 to 1,000, with a constant size 
of 1,000. Two different populations with different Ne were gen-
erated with a Ne of 20 and 100, which mimicked the recent Ne of 
Japanese Black cattle populations (Nomura, Honda, & Mukai, 2001) 
and other cattle breed populations (Lourenco et al., 2017), respec-
tively. Thus, the number of individuals was gradually reduced from 
1,000 to 20 (for the Ne of 20) or 100 (for the Ne of 100) from gen-
eration 1,001–1,030, respectively. It was then expanded to 10,000 
after three generations, resulting in 5,000 males and 5,000 females 
in the last generation (i.e., generation 1,033) of the historical popula-
tion. In each population, 50 males and 3,000 females were randomly 
selected from the last historical generation to be founders for the 
recent population.

The recent population was simulated for 12 non-overlapping 
generations (G1 to G12). Each mating produced two progenies with 
equal chances of being male or female, and 50 male and 3,000 fe-
male progenies were then randomly selected for mating in each 
generation. The base population (G0) and the first four genera-
tions (G1–G4) were used only for pedigree information in the later 
analyses. Fifty bulls were randomly selected in each generation 
from G5 to G10. Five, 15, and 30 progenies with phenotypic data 
per the bull from G6 to G11 were also randomly selected. These 
phenotyped progenies were not selected as the sire or dam of the 
next generation. In total, 300 non-phenotyped bulls from G5 to 
G10 and different numbers of their phenotyped progenies (1,500, 
4,500, and 9,000 progenies) from G6 to G11 were used in the val-
idation study.

For the population and genome structures, the recent popu-
lation had different conditions with the following varying factors: 
Ne, h2, and nQTL. The simulated genome consisted of 30 autoso-
mal chromosomes with a length of 100 cM and randomly located 
bi-allelic SNPs (n = 3,000) and QTL (n = 50) in each chromosome. 
Then, a total of 50,000 SNPs and different nQTL (10, 50, and 500) 
with minor allele frequencies >0.05 were randomly selected from all 
chromosomes (total length of 3,000 cM and 30 chromosomes). The 
SNP mutation rate and QTL mutation rate were set at 2.5 × 10–5. 
The QTL effects were sampled from a gamma distribution with a 
shape parameter of 0.4 and a scale parameter determined internally 
for the simulated genetic variance. The simulated phenotypes with 
the set value of phenotypic variance (1.0) were generated with two 
set values of h2 (0.20 and 0.50) explained only by simulated QTL. 
These conditions in each factor are summarized in Table 1. A total 
of 10 replicates of historical and recent populations were simulated 
for each condition.

2.2 | Statistical models using single-step genomic 
BLUP (ssGBLUP)

The ssGBLUP approach proposed by Aguilar et al. (2010) and Wang, 
Misztal, Aguilar, Legarra, and Muir (2012) was applied to perform 
GWAS and genomic evaluation. The GWAS and genomic evalua-
tion were performed using the BLUPF90 family of programs (Aguilar 
et al., 2018). The detailed description of the statistical models used is 
in Takeda et al. (2020), and a brief description is as follows. The sin-
gle-trait animal model was used for the genomic analyses as follows: 

where y is the vector of simulated phenotype; 1n is a vector of n ones; 
μ is the mean; Z is the design matrices for u; u and e are the vectors 
of GEBVs with u∼N0,H�u2 and random error effect with e∼N0,I�e2

, respectively, where �u2 and �e2 are additive genetic and error vari-
ances, respectively. I is an identity matrix and the inverse of matrix H 
is calculated as follows: 

where A is the additive relationship matrix (ARM); A22 is the ARM for 
genotyped animals; α and β were weighting factors; G is the genomic 
relationship matrix (GRM) proposed by VanRaden (2008). The GRM 
was adjusted to be on the same scale of allele frequency in the base 
population using the method of Christensen (2012); this is the default 
setting for the BLUPF90 family of programs (Aguilar et al., 2018).

For GWAS, the weighting factors in H−1 (α and β) were selected 
as 1 and 0, respectively, and variance components were estimated 
using model (1). The GEBVs were then predicted and the estimated 
SNP effects (�

⋀

) were obtained using the following equation: 

where W is a matrix relating to genotypes for each locus; D is a diago-
nal matrix of weights for variances of SNP (initially D = I); and u{g is a 
vector of GEBV of genotyped animals. The procedure, which consists 
of a GEBV computation and the refinement of SNP weights through 
two iterations, was performed to estimate the SNP effect as described 
by Wang et al. (2012). The proportion of genetic variance explained by 
the i-th region was calculated by a window of 20 adjacent SNPs. For 

(1)y=1n�+Zu+e

H
−1

=A
−1

+

⎡

⎢

⎢

⎢

⎣

0 0

0
�

αG+�A22

�−1
−A

−1

22

⎤

⎥

⎥

⎥

⎦

�
⋀

=DW
�
�

WDW
�
�−1

u
⋀

g

TA B L E  1   Factors for different conditions in a simulated 
population

Factors Condition

Effective population size (Ne) 20, 100

Number of QTL (nQTL) 10, 50, 500

Heritability (h2) 0.20, 0.50
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genomic evaluation, the phenotypic variance was 1.0 and the weight-
ing factors in H−1 (α and β) were selected as 0.95 and 0.05, respec-
tively, which were the default values. The estimated breeding values 
(EBVs) were also predicted by using model (1) with the same variance 
components of prediction for GEBV, but u was replaced as the vector 
of random effects because of EBV with u∼N0,A�u2.

2.3 | Scenarios and validation

For the population of GWAS and the reference population of 
genomic evaluation, the 300 genotyped bulls with no phenotype 
but with three different numbers of phenotyped progenies (9,000, 
4,500, and 1,500) were used in this study. Additionally, the same 
number of progenies with both genotype and phenotype (9,000, 
4,500, and 1,500), but no genotypes for their sires were also used 
for comparison with the results of the genotyped bulls. The seven 
different scenarios (SCEN0-6) were set and summarized in Table 2 
as follows: SCEN1–3 had 9,000, 4,500, and 1,500 progenies with 
both phenotypic and genotypic data, respectively, and SCEN4–6 
had 9,000, 4,500, and 1,500 progenies with only phenotypic data 
and genotypic data for their sires (300 bulls), respectively. The gen-
otypic data were composed of SNP data (i.e., 50,000 SNPs). SCEN0 
represented as a true value, which had the same composition as 
that of SCEN1 but had information of both SNP and QTL positions.

For the power of QTL detection, GWAS was performed in 
SCEN0 first, and the QTL explaining more than 1.0% of the genetic 
variance were obtained. The threshold was chosen based on a pre-
vious weighted single-step GWAS (Marques et  al.,  2018; Takeda 
et  al.,  2020), which reported rationale results. Among all the de-
tected QTL, the QTL on the set true QTL positions were regarded as 
a detectable QTL (trueQTL). GWAS with other scenarios (SCEN1–6) 
were then performed, and the number of detected QTL with 1.0% 
of the genetic variance on trueQTL (n_detQTL) was counted. The 

power to detect QTL was defined as the proportion of n_detQTL 
relative to the number of trueQTL. For the accuracy of GEBVs in 
genomic evaluation, 50 bulls that had SNP data and true breeding 
values (TBVs) were randomly selected in each generation from G11 
to G12. These 100 bulls were regarded as the test population. The 
accuracy of GEBV was calculated as the correlation coefficient be-
tween TBV and GEBV in all scenarios (SCEN0–6). Additionally, the 
accuracy of EBV was also calculated to compare with those of GEBV 
according to the scenarios (SCEN7–9) in Table 2, which had 9,000, 
4,500, and 1,500 progenies with phenotypic data, respectively. In 
SCEN7–9, no animal had genotypic data. The mean and standard de-
viation (SD) of 10 replicates was calculated in each scenario under 
different conditions.

3  | RESULTS

3.1 | Linkage disequilibrium

The pattern of LD decay of the real and simulated population 
was compared to evaluate the adequacy of the simulation pro-
cess. We obtained r2 values that are measures of LD between any 
two loci in the base population and are supplied by a feature of 
QMSim software (Sargolzaei & Schenkel,  2009). The r2 values in 
two simulated populations (Ne  =  20 or 100) were randomly ex-
tracted and are shown in Figure 2. The simulated population with 
Ne  =  20 had higher r2 values than did that with Ne  =  100 in all 
distances between two loci. Additionally, the r2 values, which were 
obtained from 547,043 SNP genotypes of 362 Japanese Black bulls 
as reported by Takeda et al.  (2020), are also shown in Figure 2 to 
compare with those of the two simulated populations. To compare 
the difference in the r2 values between the real data of Japanese 
Black bulls and the simulated populations, the scale of intermarkder 
distance (Mbp) in the real data was assumed as cM. The r2 values 
of the two simulated populations did not have the same value as 
that of the real data in less than 1 cM distance between two loci. 
However, the r2 values of the simulated population with Ne = 20 
had similar values to that of the actual data in more than 1 cM dis-
tance between two loci.

3.2 | GWAS

The power of QTL detection in SCEN1–6 is shown in Figure 3. Among 
SCEN4–6, which were considered genotyped bulls with a different 
number of phenotyped progenies, the power of QTL detection was 
generally higher with the increasing number of progeny per bull. In 
the population with Ne = 20, for example, had detection powers in 
SCEN4, SCEN5, and SCEN6 that ranged 0.13–0.93, 0.16–0.83, and 
0.09–0.70, respectively. When the nQTL was 10 or 50, the detec-
tion powers were moderate to high (ranging from 0.50 to 0.93 in 
the population with Ne = 20 and ranging from 0.40 to 0.87 in the 
population with Ne = 100). On the other hand, in the case of 500 

TA B L E  2   The reference population dataset for the 10 scenarios

Scenarioa 

Bull (N = 300, 
G5-10) Progenies (G6-11)

Genotype N Genotype Phenotype

SCEN0 × 9,000 〇 〇

SCEN1 × 9,000 〇 〇

SCEN2 × 4,500 〇 〇

SCEN3 × 1,500 〇 〇

SCEN4 〇 9,000 × 〇

SCEN5 〇 4,500 × 〇

SCEN6 〇 1,500 × 〇

SCEN7 × 9,000 × 〇

SCEN8 × 4,500 × 〇

SCEN9 × 1,500 × 〇
aGenotyped animals have both single nucleotide polymorphism (SNP) 
and QTL positions in SCEN0, and they have only SNP data in SCEN1-9. 



     |  5 of 9TAKEDA et al.

QTL, the detection powers were low (ranging from 0.09 to 0.29 in 
the population with Ne = 20 and ranging from 0.03 to 0.33 in the 
population with Ne = 100). The h2 and Ne did not affect the power 
of QTL detection among SCEN4–6.

For SCEN1–3, which the progenies had both genotypes and phe-
notypes, the powers of QTL detection in SCEN1–3 were generally 
higher than those in SCEN4–6. Additionally, the detection powers 
were higher with an increasing number of animals with both phe-
notypes and genotypes. For example, when Ne = 20, h2 = 0.2, and 
nQTL = 50, the highest detection power of 0.98 occurred in SCEN1, 

followed by those of 0.90 and 0.80 in SCEN2 and SCEN3, respec-
tively. The detection powers for nQTL = 500 were lower than those 
for nQTL = 10 or 50, but the degrees were not as remarkable as those 
in SCEN4–6. For example, when the Ne was 100 and the h2 was 0.2, 
the detection power in SCEN1 for nQTL = 500 was 0.65, but that in 
SCEN4 was 0.13. Comparing between SCEN1–3 and SCEN4–6, there 
were differences in the detection power when nQTL was 500, but 
no significant differences for nQTL = 10 or 50 were observed. The 
h2 and Ne did not affect the detection power between SCEN1–3 and 
SCEN4–6.

F I G U R E  2   Average linkage 
disequilibrium coefficient values (r2 
values) plotted against intermarker 
distance for all autosomal chromosomes 
for real and simulated data (Ne = 20 and 
100). The x-axis indicates the distance 
between single nucleotide polymorphisms 
(SNPs) and the y-axis indicates the r2 
values between SNPs

F I G U R E  3   The power of quantitative 
trait loci (QTL) detection in the 
scenarios. (a), Ne of 20; (b), Ne of 100; 
h2, heritability; nQTL, number of QTL. 
The y-axis indicates the power of QTL 
detection

(a)

(b)
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3.3 | Genomic evaluation

The accuracies of GEBVs in SCEN0–6 are shown in Figure  4. 
For comparison among SCEN4–6, a consistent trend was ob-
served in that the higher accuracy of GEBV was obtained with a 
larger number of progeny per bull. The accuracies for SCEN4–6 
in the population with Ne  =  20 and Ne  =  100 ranged 0.45–
0.54 and 0.43–0.54, respectively. The nQTL and Ne did not af-
fect accuracy. On the other hand, the accuracy increased with 
heritability.

The accuracies in SCEN0 were the highest among the seven 
scenarios and ranged 0.66–0.81 and 0.66–0.82 in the popula-
tion with Ne = 20 and Ne = 100, respectively. They were almost 
the same as those in SCEN1, which ranged 0.65–0.80 and 0.64–
0.80 in the population with Ne = 20 and Ne = 100, respectively. 
Comparing among SCEN1–3, the larger number of animals with 
both phenotypes and genotypes led to higher accuracies. Even in 
SCEN1–3, there was no effect of nQTL and Ne. The accuracies in 
SCEN1 and SCEN2 were generally higher than those in SCEN4–
6. In many cases, the results of SCEN3 were slightly lower than 
those in SCEN4 and were similar to those of SCEN5. For example, 
when the Ne was 20 and h2 was 0.2, the accuracies in SCEN3 
ranged 0.39–0.48 and were lower than those in SCEN4, ranging 
0.45–0.51. The nQTL and Ne did not affect the power of the accu-
racy of GEBV between SCEN1–3 and SCEN4–6. The accuracies of 
EBVs in SCEN7–9 are shown in Figure S1. Overall, the accuracies 
were <0.1.

4  | DISCUSSION

The size of the reference population is known as an important factor 
for the power of QTL detection and prediction accuracy of GEBV. 
However, the cost of genotyping is still a big issue. Because prog-
eny-tested bulls have progenies with records, genotypes of the bulls 
may be informative for genetic analysis. Therefore, we evaluated the 
availability for genotyped bulls on GWAS and genomic evaluation. 
The quality of information for bull genotypes is dependent on the 
number of progenies per bull. Accordingly, we generated different 
numbers of phenotyped progenies in bulls and examined the power 
of QTL detection and accuracy of GEBV, using genotypes of the bulls 
and phenotypes of the progenies. From the results, the following 
showed the validity of the simulated population, with a discussion 
for GWAS and genomic evaluation.

In this study, two different Ne were considered because Japanese 
Black beef cattle (Ne = 20) and Holstein dairy cattle (Ne = 100) are 
the major breeds in Japan. Almost the same LD patterns between 
the real and simulated populations with Ne = 20 were observed in 
more than 1 cM distance between two loci. Hence, the LD structure 
of the simulated population with Ne = 20 seems to be similar to that 
of the real data. On the other hand, the LD patterns of two simu-
lated populations were not the same as that of the real data with 
less than 1 cM distance between two loci. One of the reasons is that 
the real data had SNP genotypes based on an imputed BovineHD 
SNP array (Takeda et al., 2020), whereas the simulated data had SNP 
genotypes based on a 50 K SNP array. The LD pattern in a narrow 

F I G U R E  4   The accuracy of genomic 
estimated breeding values in the 
scenarios. (a), Ne of 20; (b), Ne of 100; 
h2, heritability; QTL, quantitative trait 
loci; nQTL, number of QTL. The y-axis 
indicates the accuracy of genomic 
estimated breeding values

(a)

(b)
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region could be estimated more accurately by utilizing the closely 
located SNP information. Regarding the power of QTL detection and 
the accuracy of GEBV in the two populations (Ne = 20 and 100), no 
large difference was observed in both results. In general, Ne has a 
close relationship with the extent of LD, and thus, a lower Ne can 
lead to a higher LD. Because the LD is higher, the superior ability 
to detect true QTL was observed (Melo et al., 2016). On the other 
hand, it is known that the extent of the LD affects the accuracy of 
GEBV (Garrick, 2010; Goddard, Hayes, & Meuwissen, 2010; Taylor 
et al., 2009). For these reasons, it was expected that some impact 
because of LD would be observed. However, as mentioned below, 
the Ne and LD did not contribute to the power of QTL detection 
and the accuracy of GEBV in the current simulated populations. One 
of the reasons might be that the value of Ne was different, but the 
same Bos taurus species as Japanese Black and Holstein breeds were 
assumed. In the simulation study of Melo et  al.  (2016), the higher 
and lower LD populations mimicked the LD of two different species 
of Bos taurus and Bos indicus. On the contrary, Goddard (2009) pro-
posed a formula to determine the reliability of GEBV using Ne, num-
ber of individuals with phenotypic records (N), h2, and the length of 
chromosome (L), although the number of markers was not consid-
ered. In order to validate our results, we determined the accuracy of 
GEBV considering the square root of reliability depending on the Ne 
(20, 100, 250, 500, or 1,000) using the conditions of our study (i.e., 
N = 9,000, 4,500, or 1,500; h2 = 0.5 or 0.2; and L = 30). The results 
are presented in Figure S2. We found that the calculated accuracies 
did not substantially change with the increase in Ne, suggesting that 
the contribution of Ne to the accuracy of GEBV is small under the 
present study conditions. This further supports our results.

For GWAS, previous simulation studies in livestock have re-
ported the effects of various factors on the power of QTL detection, 
such as nQTL, h2 (Van den Berg, Fritz, & Boichard,  2013), pheno-
typic information of non-genotyped animals, and statistical methods 
(Melo et al., 2016). The current study showed that the power of QTL 
detection was low for polygenic traits, agreeing with Van der Berg 
et al. (2013) who performed QTL mapping by estimating the SNP ef-
fects using Bayesian methods. They also reported that higher h2 in-
creased the accuracy of QTL detection. This is inconsistent with the 
current study where h2 did not have a large effect. Our study eval-
uated the effects of the genotyped bulls with a different number of 
progenies, which has not yet been investigated. The results showed 
that a smaller number of progeny per bull led to the lower power 
of QTL detection. When using both genotypes and phenotypes of 
the progenies, higher powers of QTL detection were observed. For 
traits with nQTL = 10 or 50, the powers of QTL detection in the case 
of bull genotype use were not lower than those using both geno-
types and phenotypes of the progenies. However, for the traits with 
nQTL = 500, the powers of QTL detection were low. This can be be-
cause the proportion of each QTL variance in the total genetic vari-
ance is small when the QTL effects were determined from gamma 
distribution; thus, most QTL effects were small. On the contrary, for 
the traits with nQTL = 10 or 50, the proportion of each QTL variance 
in the total genetic variance is large, although the QTL effect was 

small. Hence, the influence of QTL effect will be larger than that of 
polygenic traits. These results indicated that using the genotype of 
progeny-tested bulls is valuable when the bulls have a large number 
of progenies and the target traits are less polygenic. Additionally, 
the approach is cost-effective for genotyping. However, it should be 
noted that using a population with a small Ne can lead to an increase 
in the length of LD, and thus, it will be difficult to perform QTL fine 
mapping.

For genomic evaluation, the accuracies of EBVs among the sce-
narios (SCEN7–9) were low and cannot be compared to each other 
because of the large standard deviations. In contrast, apparent 
differences in the accuracies of GEBVs among scenarios (SCEN1–
6) were observed. In our study, the influence of h2 seemed to be 
larger than that of nQTL and Ne. This is consistent with the results 
of Brito, Neto, Sargolzaei, Cobuci, and Schenkel (2011) and Piccoli 
et al. (2017). Brito et al. (2011) reported that the accuracy of GEBV 
increased significantly with an increase in h2 from 0.1 to 0.4, using 
a simulated beef cattle population. Piccoli et  al.  (2017) estimated 
h2 for economic traits, which ranged from 0.10 to 0.46 in Brazilian 
Bradford and Hereford cattle, and showed a higher accuracy of 
GEBV with higher h2. Under any condition, the number of animals in 
the reference population had a large effect on the accuracy of GEBV 
in our study. This is in agreement with previous simulation studies 
(Brito et al., 2011; Lourenco et al., 2017).

In this study, the simulated populations with non-overlapping 
generation were assumed because it is easy to understand the ef-
fects of genotyped bulls with different numbers of phenotyped 
progenies on QTL detection and genomic evaluation and compare 
with the results of Takeda et  al.  (2020). However, in a real-world 
breeding program of Japanese Black cattle, the elite bulls, which 
have prominent marbling, have been utilized multiple times across 
generations (Nomura et al., 2001). The use of these elite bulls with 
overlapping generations in the genomic study might affect the ac-
curacy of GEBV in genomic evaluation. When these elite bulls are 
included in the reference population, the genomic relationship be-
tween the reference and test populations might become closer, 
and thus, the reliability of GEBV for the test population would in-
crease (Habier, Tetens, Seefried, Lichtner, & Thaller, 2010; Pszczola, 
Strabel, Mulder, & Calus, 2012; Wu, Lund, Sun, Zhang, & Su, 2015). 
Therefore, the accuracy of GEBV in a real cattle population might be 
higher than that obtained in our study.

As the Ne of Japanese Black cattle is small (Nomura et al., 2001), 
it is difficult to collect sufficient genotype data for progeny-tested 
bulls. Accordingly, the number of progeny-tested bulls was assumed 
to be a practical value of 300 in this study. The structure of the refer-
ence population in SCEN5 was similar to our previous study (Takeda 
et al., 2020), which included 3,773 progenies with phenotypes and 
the 295 bulls with genotypes. For the power of QTL detection, Takeda 
et al. (2020) showed that the genomic regions associated with traits 
of interests could be detected by the same approach, and our results 
in SCEN5 also showed a higher power for QTL detection under lower 
nQTL. For the accuracy of GEBV, Takeda et al.  (2020) obtained the 
realized reliability as the indicator of the accuracy of GEBV using 
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de-regressed EBV as true value. Taking the square root of the co-
efficient of determination of regression of de-regressed EBV as the 
GEBV, the values (regarded as accuracy) ranged from 0.3 to 0.5, being 
approximately equivalent to the results of the current study in SCEN5 
with 0.41 to 0.49. This suggests that the current simulation process is 
appropriate, but the accuracies of GEBV in real data and the simulated 
population using genotyped bulls are limited, even if we determined 
that the genotypes of bulls with several phenotyped progenies were 
valuable to the prediction of GEBV in this study. If there were many 
individuals with phenotypic data, obtaining the genotypes of the bulls 
could allow us to accurately determine the QTL regions. However, to 
increase the accuracy of GEBV, it is necessary to enhance the ref-
erence population consisting of individuals with both genotypes and 
phenotypes. Over 4,500 individuals are needed to obtain a high accu-
racy of 0.7, such as SCEN2 used in this study.

5  | CONCLUSION

We evaluated the effects of genotyped bulls with a different num-
ber of progenies on the power of QTL detection and the accu-
racy of GEBV. We found that a small number of genotyped bulls 
could be available for QTL detection when the bulls have a large 
number of phenotyped progeny and the genetic background of 
the target trait includes some major QTLs. Therefore, cost-effec-
tive QTL detection could be performed depending on these con-
ditions. Additionally, using a reference population, including the 
genotypes of bulls that have more progenies with phenotypes, 
enabled more accurately predicted GEBV. However, if practical 
use of genomic evaluation, such as the selection of sire candidates 
is considered, more than 4,500 animals with both genotypes and 
phenotypes would be required.
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