
1.  Introduction
A primary objective of the Magnetospheric Multiscale (MMS) mission (Burch et al.,  2016), launched in 
2016, is to understand the microphysics of magnetic reconnection in the collisionless regime by revealing 
the kinetic processes occurring in and around the central part of the reconnection region, called the elec-
tron diffusion region (EDR), that are responsible for energy conversion, turbulence generation, and particle 
acceleration through reconnection. To this end, it is necessary to elucidate the connection between the ge-
ometrical structure of the EDR and spatiotemporal properties of the kinetic and energy-conversion process-
es manifested in electron velocity distributions and waves. While in-depth investigation of this connection 
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can be made by simulation studies (e.g., Nakamura et al., 2021), it is not a trivial task to reveal such relations 
with in-situ measurements. Efforts to obtain information on the geometrical properties have been made by 
developing data analysis techniques that can reconstruct two- or three-dimensional plasma and/or magnet-
ic field structures from in situ measurements (Chen et al., 2019; Denton et al., 2020; Sonnerup et al., 2016; 
Torbert et al., 2020).

One type of such reconstruction techniques is based on some physical model, such as electron magnetohydro-
dynamics (EMHD) (Sonnerup et al., 2016), and is suited for structures that approximately satisfy the model 
assumptions. It is assumed in the EMHD reconstruction that the structures are approximately two-dimension-
al (2-D) and time-independent in a proper moving frame, and are described by the incompressible, inertia-less 
form of the EMHD equations. The original version of the EMHD reconstruction has been successfully applied 
to MMS observations of a magnetotail reconnection event, reported by Torbert et al. (2018), in which the re-
connecting current sheet was symmetric and magnetic fields were nearly antiparallel (Hasegawa et al., 2019), 
and a magnetopause reconnection event, reported by Burch et  al.  (2016), in which the current sheet was 
weakly asymmetric and the fields were approximately antiparallel (Hasegawa et al., 2017). A weak point of the 
original EMHD reconstruction is that it is applicable neither to guide-field reconnection (or component merg-
ing) because the dissipation term adopted to allow for energy conversion at the X point (Hesse et al., 2011) is 
specifically for antiparallel reconnection, nor to highly asymmetric reconnection because of the incompress-
ibility (spatially uniform density) assumption. This means that it cannot be applied to most of magnetopause 
reconnection events in which both the guide magnetic field (field component along the X-line direction) and 
density jump across the current sheet are often significant (Burch & Phan, 2016).

Some of the above assumptions made in the original EMHD reconstruction have been relaxed in a recent 
work by Korovinskiy et al. (2021), allowing for reconstruction with electron inertia and guide-field effects 
taken into account, but with an additional assumption on the electron velocity field. However, their model 
still assumes electron incompressibility (uniform electron density, i.e.,  const.eE n  ), and we find their as-
sumption on the velocity field, or equivalently, on the magnetic field component zE B  along the direction of 
negligible gradient (  / 0E z  ) to be not well satisfied in and around the EDR (Appendix A). In the present 
study, we present a novel model in the EMHD framework for the reconstruction of the EDR with electron 
compressibility, inertia, and guide-field effects all incorporated. Our model was inspired by a recent study by 
Korovinskiy et al. (2020), showing that in 2-D antiparallel reconnection, the electron density and tempera-
ture are both roughly preserved along the magnetic field in the reconnection plane (see their Figures 3 and 4).

The study is organized as follows. Section 2 presents theory developed for the new version of the EMHD 
reconstruction. Section 3 describes the actual numerical procedures taken in the reconstruction. Section 4 
provides benchmark tests of the new EMHD reconstruction by use of data from fully kinetic simulations of 
both antiparallel and guide-field magnetic reconnection. Section 5 presents first results of the new recon-
struction applied to the EDR of magnetotail reconnection observed by MMS on July 11, 2017, previously 
analyzed by Hasegawa et al. (2019) and Torbert et al. (2018). Summary and discussion are given in Section 6, 
and Appendix A provides some discussions on the assumptions made in the present study and in Korovin-
skiy et al. (2021), along with key differences between the two studies.

2.  Theory
We follow the same steps as taken by Sonnerup et al. (2016) (hereafter referred to as S16) but for compress-
ible electrons with finite inertia. Some parts are repeated, because those would be helpful to better under-
stand the improvements made in the present study.

2.1.  Description of Fields and Flows

We assume a steady (  / 0E t  ), 2-D (  / 0E z  ) geometry in and close to the EDR where ion dynamics 
can be neglected. The electron number density and velocity are defined as eE n n and eE v v , respectively. 
The time-independent form of the continuity equation   · 0E nv  for electrons allows for the use of the 
compressible stream function E  (Sonnerup et al., 2006). The electron number flux as well as the magnetic 
field can then be defined as

Writing – review & editing: T. K. M. 
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       ,ˆ , ˆ,zn n x y v x yv z z� (1)

       , ,ˆ ˆ ˆz zB A B x yB B z z z� (2)

       2
0 0 ,ˆ ˆzB A nej z z v� (3)

where the partial magnetic vector potential is zE A A , and j is the electron current density. From Equa-
tions 1 and 3, it follows that the axial component of the magnetic field is equivalent to the compressible 
stream function via    0zE B e  .

2.2.  Electron Momentum Equation

The time-independent form of the electron momentum equation is

      · · .enm nev v P E v B� (4)

In this expression, we can write          0/ˆ ˆ ˆz z zE v B ne vv v z z z , and     0ˆ, zE x y EE z . Here, 
Faraday's law requires the axial component of the electric field 0zE E  to be constant for steady 2-D structures 
when seen in the frame comoving with the structure (e.g., Sonnerup & Hasegawa, 2005). The reconnection 
electric field may be defined as   0 0 /z z zE E V B E j j  , where E V  is the upstream electron flow velocity 
toward the current sheet and E B  is the upstream in-plane field intensity (see Figure 1 of S16). After some 
vector algebra, the inertia term in Equation 4 becomes

 

      

   
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 
               
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e e z
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� (5)

where    
        

2
0(1 / ) ln · ˆz zE ne B n Bv z is used to reach the final form. As in S16, we assume 

that the electron pressure tensor can be written in the form

      · , , .ˆp x y f x yP z� (6)

This expression assumes that the diagonal terms of the pressure tensor are equal, i.e., equal temperatures 
parallel and perpendicular to the magnetic field, and does not include the effects of the in-plane pressure 
tensor components xyE P  and yxE P  . The inclusion of the effects of xzE P  , zxE P  , yzE P  , and zyE P  nevertheless allows for 
reasonable reconstruction of the streamline pattern in the region of symmetric, antiparallel reconnection, 
as shown in S16. Equation 6 may need to be modified in the future for cases with strong temperature aniso-
tropy and/or asymmetric current sheets.

We also note that the Lorentz force term can be written as

      
             

2 2
01 / ˆ/ 2 · ,z zne B B A Av B j B zB� (7)

where the axial component of the electron convection electric field is defined by Korovinskiy et al. (2020) as

    
      0(1 / ) · .zz ne Bv B B� (8)

Then Equation 4 can be rearranged to become
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� (9)

The in-plane components of Equation 9 give
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Multiplying Equation 10 by the density, we arrive at

      
          
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The three terms on the right-hand side that do not have the appearance of perfect gradients must together 
form a perfect gradient of some function  , ,zE G A B n  :
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ln . .

� (12)

We then find from Equation 11 that

            2 2
0/ 1 / 2 / 2z eK n p e e B nm e v G� (13)

is a global constant, and we can take  0E K  to compute E G along the spacecraft path and at each integration 
step.

Here we assume that the electron density and pressure are functions of E A alone,    ,E n x y n A  , and 
    ,E p x y p A  , which are approximately satisfied in the vicinity of the EDR of symmetric, antiparallel re-

connection (Korovinskiy et al., 2020; see also Figure A1c in the Appendix A). In the presence of significant 
guide field or density jump across the current sheet, these conditions are not satisfied (e.g., Le et al., 2010; 
Pritchett & Coroniti, 2004; see also Figure S5 in Supporting Information S1) and further model improve-
ments are necessary (see Section 6 for how improvements could be made). By use of     /E n dn A dA A , 
we can expand Equation 12 in the form              , / /z z zE G A B G A A G B B  , so that

     
       

2/ / / 2 / ,e zG A m e v dn A dA nv� (14)

                   
2 2

0/ 1 / / ln · ,z e z zG B e m ne B n B� (15)

where a Grad-Shafranov (GS) equation  2
0 zE A nev  (axial component of Equation  3) is used to reach 

Equation 14.

We now turn to the axial component of Equation 9

                0 0, / 1 / · / · .z z e zf x y ne E ne B m e vB v� (16)

With Equation  8, noting that                · / /zE A Av v B  (see Equation 21 of Korovinskiy 
et al., 2020), it follows that

              0, / 1 / / .z e zf x y ne E m e v A� (17)

It is seen from Equation 17 that the electron inertia contribution to the reconnection electric field 0E E  can be 
assessed by the term     / /e zE m e v A ; whether it positively or negatively contributes to 0E E  depends on 
the sign of  /zE v A , given that        zE v B  has the same sign as 0zE E  everywhere around the reconnec-
tion site. In the case when 0zE E  is negative, as in Figure 1 of S16, so that  E  is also negative, E A has a larger value 
in the inflow than in the outflow region. As electrons in the inflow region are advected across the transverse 
magnetic field E B  toward the EDR, moving to a smaller E A region, they are accelerated along the direction 
opposite to the reconnection electric field (along +ˆE z ) and thus zE v  increases, making  /zE v A negative. In 
such regions, the above inertia term makes a positive contribution to 0E E  . On the other hand, in the outflow 
region zE v  (electron current intensity) generally decreases with distance from the X point in the outflow di-
rection, so that  /zE v A is positive. The inertia term then makes a negative contribution to 0E E  . This picture 
is consistent with 2-D kinetic simulations of magnetic reconnection (Divin et al., 2012; Egedal et al., 2019).

3.  Reconstruction Procedure
Our new reconstruction method requires as input magnetic field, electric field, and electron moment data 
taken by a single spacecraft during a properly selected interval, while electric field data are not necessarily 
required in the original EMHD method (S16). The coordinate system (the invariant axis orientation ˆE z , and 
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velocity of the frame in which the structure is seen to be time-stationary) for the reconstruction can be esti-
mated by single- or multi-spacecraft methods, as reviewed by Shi et al. (2019), with successful applications to 
MMS observations of both magnetopause and magnetotail current sheets (Denton et al., 2016, 2018, 2021).

The magnetic vector potential E A , stream function E  , and electrostatic potential E  on the E x axis, de-
fined as the projection of the spacecraft path onto the plane perpendicular to ˆE z , can be obtained 
by            ,0 / d ,0 dyE A x A x x B x x ,               ,0 / d ,0 ,0 dyE x x x n x v x x , and 
            ,0 / d ,0 dxE x x x E x x , respectively. Since magnetic field data are generally more reliable 

than electron moment data, we use measured zE B  to set the initial condition for E  via    0zE B e  , rather 
than the E y component of the electron flux integrated in the E x direction. In the following three subsections, 
we describe how the actual reconstruction, namely, integration along E y of E A , zE B  (equivalent to E  ), and E  is  
conducted.

3.1.  Reconstruction of the Transverse Magnetic Field

We assume that the E z component of the current density is a function of E A only, which means that zE v  is also 
assumed to be a function of E A alone under the previously made assumption  E n n A  , so that the GS equa-
tion is

         2
0 0 .z zA j A en A v A� (18)

This is because these assumptions are roughly satisfied in the region of antiparallel reconnection (Fig-
ures A1a and A1c in Appendix A) and allow for a sufficiently good reconstruction of the transverse magnet-
ic field (Hasegawa et al., 2017, 2019; Korovinskiy et al., 2020, 2021; Sonnerup et al., 2016). The functional 
forms of  E n A  and  zE v A  (and also  E p A  ) can be determined by polynomial or exponential fitting to the data 
taken during an analysis interval. The reconstruction of E A is done in a similar way to the classical GS re-

construction (Hau & Sonnerup, 1999), that is,               
 

2 2 2, Δ , Δ , Δ / 2 /xE A x y y A x y yB x y y A y  , 

in which  2 2/E A y  is computed from Equation 18. Likewise, the reconstruction of xE B  can be done by use 
of     2 2/ /xE B y A y  . During this stepwise integration, running three-point averages are used to smooth 
the values after each integration step, in a manner similar to that described by Hau and Sonnerup (1999). 
Once the 2-D map of E A is obtained, those for E n , zE v  , and E p can also be constructed from the corresponding 
functions of E A .

3.2.  Reconstruction of the Axial Magnetic Field Component

The reconstruction of the E z component of the magnetic field zE B  , equivalent to that of the compressible 
stream function E  , requires  2 2/zE B y  to be obtained at each step of integration along E y . It also involves the 
reconstruction of xE v  by use of

 
 

   
         

2

2
0 0

ln1 1 .z zx
x

nB Bv v
y y en y en yy

� (19)

We discuss two possibilities to perform this integration.

3.2.1.  Case 1: General Case With Unspecified Model For f(x,y)

We make use of the following relation

             

        

G A B x G A A x G B B x

G A B G B

z z z

y

, / / / / /

/ / zz yenv  0

� (20)

Substituting Equation 15 into Equation 20, it follows that

      
             

2
2 0 1ln ·z z y

e y

e G GB n B B
m v x A� (21)
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where  /E G A can be computed from Equation 14,            / / / / xE n y dn A dA A y dn A dA B  , and 
    0/z xE B y env  . Note that the zE B  reconstruction using Equation 21 does not require any specific expres-

sion for the axial component of the electron pressure tensor term  ,E f x y  . The zE B  reconstruction can be 

performed by use of           
 

2 2 2, Δ / Δ / 2 /z z zE B x y y B y y B y  , in which Equation 21 is used to compute 

 2 2/zE B y  . However, the second term on the right-hand side of Equation 21 has yE v  in the denominator, so 
that the zE B  integration may encounter numerical problems in the region where yE v  is small. In such regions 
or for specific boundary conditions, the following expression for  ,E f x y  may be used.

3.2.2.  Case 2: Hesse-Kuznetsova Dissipation Term

For near antiparallel reconnection, Hesse et al. (2011) shows that the part of the electron pressure tensor 
term due to nongyrotropic electrons can be modeled as follows,

  



, 2 ,L

e e
vf L N n m kT
L� (22)

where the LMN coordinate system is used, so that the E L axis is directed along the local tangent to the cur-
rent sheet, with      / / 0E M z  . Following the same approach as taken by Sonnerup et al. (2016), but 
including the compressibility effect, and considering that E L and E N are equivalent to E x  and E y  , respectively, 
in S16 (see Section 3.1, Figure 1, and Equations 19–23 in S16 for details of the coordinate transformation), 
Equation 22 can be rewritten as

     
2 2 2

02 2
0

2 2
0

2 1, cos2 sin2
2

cos sin ,

e e z z z
y x

x y

m kT B B B n nf x y e v v
e x y x yy x

n ne v v
x y

  


  

                        
  

      

� (23)

where the E L axis is rotated counterclockwise about the E z axis by an angle E  . Thus Equation 17 becomes

   
2 2 2

2 2
0 02 2 2

0

0

2 1cos2 sin 2 cos sin
2

1 ,

e e z z z
y x x y

ze
z

m kT B B B n n n ne v v e v v
x y x y x yne y x

vmE
e A

     




                                    
 

    
� (24)

where                     
2

0 0/ / ln / /z x x xE B x y env x en v n x v x  . Provided that 0zE E  , which is as-
sumed constant, is known,  2 2/zE B y  can be computed from Equation 24 at each integration step, from 
which we can get 2

zE B  as well. The average of the axial component of the measured electric field in the 
structure frame can be used as 0zE E  . Alternatively, when multi-spacecraft information is available, the 0zE E  
value may be optimized as a free parameter in such a way that the correlation coefficient is maximized 
between the field and electron velocity components measured by spacecraft not used in the reconstruction 
and those predicted from the field maps along the paths of the spacecraft, as implemented by Hasegawa 
et al. (2017).

3.3.  Reconstruction of G and the Electrostatic Potential 

We make use of the following relation

             

       
G A B y G A A y G B B y

G A B G B

z z z

x z

, / / / / /

/ /  0envx
� (25)

Since  /E G A and  / zE G B  can be computed by Equations 14 and 15, respectively, Equation 25 can be used 
to integrate E G in the E y direction. The electrostatic potential E  can then be computed by use of Equation 13. 
In Case 1 with no electron pressure tensor model,  / zE G B  can be directly computed from substituting 
Equation 14 into Equation 20.
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4.  Test With Simulation Data
4.1.  Reconstruction of Antiparallel Reconnection

We apply our new EMHD reconstruction code with electron compressibility and inertia effects to synthetic 
data from a 2-D fully kinetic simulation of symmetric, antiparallel reconnection, as used by S16. The initial 
conditions of the particle-in-cell (PIC) simulation are similar to the ones employed in the Geospace Envi-
ronmental Modeling (GEM) magnetic reconnection challenge (Birn et al., 2001; Pritchett, 2001). The ion 
to electron mass ratio is set at 400, so that the ion inertial length is 20 times the electron inertial length. See 
Nakamura et al. (2016) for details of the settings of the simulation (Run 6 in their Table 1), and S16 for the 
path in the simulation box of a synthetic spacecraft making virtual observations and how physical quanti-
ties are normalized. The data used to initiate the reconstruction were taken from a simulation phase (simu-
lation time 20  1ΩiE  where ΩiE  is the ion cyclotron frequency) when the reconnection electric field is gradually 
decreasing after reaching a maximum, corresponding to the dimensionless reconnection rate ∼0.2, and the 
field configuration appeared approximately steady. See Figure 1 of Nakamura et al. (2016) for the time evo-
lution of the reconnection electric field for a similar simulation run. The normalized forms of the equations 
used in the new EMHD reconstruction are given in Text S1 in Supporting Information S1.

Figure 1 shows the quantities ( zE v  , E n , and E p ) from the virtual observations, which are assumed in the recon-
struction to be functions of E A only, plotted against the vector potential E A computed along the spacecraft path. 
The path is similar to the one in Figure 5 of S16 with the angle between the axis and the current sheet plane 
set at   20E  , except that the X point is now set to be located at      0, 12, 2 eE x y  in the reconstruction 

coordinate system (see Figure 2). Here the electron inertial length    
1/2

2
0 0 0/e eE m n e  , where the den-

sity at the center of the initial Harris-type current sheet is 0E n n  , with the density outside the current 
sheet E n  and  0 / 5E n n  . Overall, all the quantities increase toward the center of the reconnecting current 
sheet, as expected (larger E A values correspond to the inflow regions, and smaller values to the current sheet 
center). It is seen that those quantities can be roughly expressed by single exponentials (thick curves).

We have also tested fitting by polynomial functions, but find that reconstruction errors, as discussed in the 
following paragraphs, are larger in this particular case. Our present study and earlier ones using this kind 
of function in the Grad-Shafranov reconstruction (Hasegawa et al., 2007; Sonnerup et al., 2006) show that 
higher-order polynomial fitting often gives rise to larger errors. Applications to real observational events 
(e.g., Hasegawa et al., 2006, 2019) also show that the use of very high order polynomial function may lead to 
worse agreement between the field values measured by other nearby spacecraft not used in the reconstruc-
tion and those predicted by the reconstruction along the paths of those spacecraft. This is probably because 
higher-order fitting potentially leads to overfitting and produces a larger slope of the function; larger slope 
generally means larger gradient of the corresponding quantity ( zE v  , E n , or E p in the present case), which may 

Figure 1.  (a) Axial component of the electron velocity zE v  , (b) electron density, and (c) electron pressure (average of the 
three diagonal components of the electron pressure tensor), plotted as a function of partial vector potential E A based on 
virtual spacecraft observations in a fully kinetic simulation of symmetric, antiparallel reconnection (S16). Circles and 
crosses are data from the path toward (inbound) and away from (outbound) the center of the current sheet, respectively. 
Thick curves are exponential fits to the data.
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become the source of numerical instabilities. Moreover, in real events with some 3-D or time-dependent 
wave effects, the model assumptions may not completely be satisfied, so that lower-order fittings can be 
appropriate.

In principle, (18) can be solved by use of the fitted function  z zE j j A  , rather than those fitted to zE v  and 
E n individually. If exponential fitting as shown in Figure 1 is chosen, the resulting field maps do not de-

pend on whether a combination of  zE j A  and  E n A  or of  zE v A  and  E n A  is used. On the other hand, if 
polynomial fitting is chosen, the results are affected by which combination is used. If input data points 
in the zE j A plane are better expressed by  zE j A  than     zE en A v A  , the transverse field (E A ) map may 
be better reconstructed by use of  zE j A  . However, it is possible that the streamline (or zE B  ) map based on 

 zE j A  and  E n A  have larger errors than that based on  zE v A  and  E n A  . This is because the second term in 
the bracket on the right-hand side of Equation 24, used for the zE B  reconstruction, should be replaced by 

                           

22/ / / (1 / ) / / /e z e z zE m e v A m e n A j A A j A n A n A A  with  E n A  and  2E n A  in 

Figure 2.  Results from the compressible electron magnetohydrodynamics reconstruction with electron inertia, compared with the particle-in-cell simulation 
results. The left panels show simulation values in the reconstruction domain: (a) magnetic vector potential E A , (d) axial magnetic field component zE B  , equivalent 
to the electron stream function E  , (g) electrostatic potential E  , (j) electron density E n , and (m) electron pressure E p . The middle column shows the corresponding 
reconstructed solutions, with the path of the virtual spacecraft along  0E y  . Errors in the right panels are in % of the maximum magnitude of the simulated 
values in the reconstruction domain.
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the denominator; if the data points in the E n A plane are not well expressed by  E n A  or if  E n A  has a value 
close to zero in some E A region, errors may develop in the course of the integration.

Figure 2 shows a comparison of the field maps reconstructed from the new EMHD code with the simulation 
results. A combination of Case 1 and Case 2 (Hesse-Kuznetsova dissipation term) is used to reconstruct zE B  , 
in which Case 1 is used in the part of the reconstruction domain where  0.01yE v  (this parameter should be 
adjusted by trial and error for each event application) while Case 2 is used in the other parts (see Section 3.2 
for details). Since the simulation results show that 2

zE B  is significant only in the region near the center 
of the current sheet,  2 0zE B  is imposed in the part of the reconstruction domain where the intensity of 
the transverse magnetic field E B  exceeds a threshold value (see Appendix A for details). The comparison 
shows that E A , zE B  , and E  are all well reconstructed, with large errors only around some of the four corners 
of the reconstruction domain (Figures 2c, 2f, and 2i). Figure 2e, in particular, shows that the inflow and 
outflow pattern of the electron flows is well recovered, with a stagnation point close to the expected location 
     0, 12, 2 eE x y  . The bottom two sets of panels shows that the new code recovers the tendency that the 
density and pressure are both high near the current sheet center. Small-scale features are not very well re-
covered because of the model assumptions (E n and E p preserved along the transverse field lines); large errors 
associated with such small-scale structures around  0E y  should not be used to conclude inaccuracy of our 
numerical model.

Figure 3.  Comparison of errors as a function of E y among four versions of the electron magnetohydrodynamics 
reconstruction. “S16” stands for the incompressible inertia-less version, originally developed by S16, “in” for the 
incompressible version with finite inertia, and “com” for the compressible version with finite inertia. See Section 3.2 for 
how zE B  is reconstructed in Case-1 and Case-2. The errors for the results in Figure 2 are shown by blue curves.
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Figure 3 shows a comparison of errors for E A , zE B  , and E  from a few variants of the EMHD reconstruction as 
a function of E y , in which the same initial conditions are used. See Figures S1–S3 in Supporting Informa-
tion S1 for reconstruction results and corresponding error maps from the three incompressible versions 
(“S16," “in Case-2 only," and “in Case-1&2”) in which the density and pressure are set at constant values. 
Since even at an equal E y location the errors have different values at different E x locations, the first quartile, 
median, and third quartile of the errors are shown in the left, middle, and right panels, respectively. As 
expected, the errors generally increase with distances from the spacecraft path (  0E y  ) where the initial 
conditions are set. The error in the electrostatic potential E  for S16 is not zero even at  0E y  , because electric 
field data are not used to reconstruct E  in S16 (E  is computed from Equation 25 in S16).

The top panels of Figure 3 show that the E A errors are comparable between the incompressible and com-
pressible versions. All the three incompressible versions have the same solution and thus the same errors for 

E A . We also note that the E A errors in the present S16 case are smaller than those from the original S16 code 
because we find that the errors can be reduced by using the  2 2/E A y  value at the previous integration step 
in E y if the  2 2/E A y  magnitude exceeds a threshold (∼0.5 in the normalized unit), that is, by avoiding very 
large values of  2 2/E A y  . On the other hand, the middle and bottom panels show that both zE B  and E  errors 
are significantly smaller for the new versions incorporating electron inertia effects than the inertia-less 
(S16) version. Since the constraint of  2 0zE B  in the regions away from the current sheet (see Appendix A) 
is used in the present S16 as well as new versions (while it was not used in the results reported by S16), the 
improvement in the zE B  and E  reconstructions is exclusively due to incorporating the inertia terms. While 
the zE B  errors are comparable among the three finite-inertia versions (Figures 3d–3f), the E  errors for the 
compressible version are smaller in the negative E y region and appear more symmetric with respect to  0E y  
than for the incompressible versions. In summary, one may conclude that although no particular version is 

Figure 4.  Data used to initiate the reconstruction of guide-field reconnection. (a) Magnetic field geometry from the 
particle-in-cell simulation, with the E L component of the electron velocity xE v  in color and spacecraft path indicated by 
the white arrow. (b) Axial component of the electron velocity zE v  versus magnetic vector potential E A based on the virtual 
spacecraft observations. The thick curve is a 5th-order polynomial fit to the data, used in the E A and zE v  reconstructions. 
(c) Three components in the reconstruction coordinate system of the magnetic field, (d) electric field, (e) electron 
velocity, and (f) electron density and pressure taken along the path.
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better than all the others in reconstructing all quantities, the most general version with both compressibility 
and inertia effects, as shown in Figure 2, performs best as a whole.

4.2.  Reconstruction of Guide-Field Reconnection

We now apply our new EMHD reconstruction code to data from a PIC simulation of symmetric, guide-
field reconnection. The simulation settings are the same as for antiparallel reconnection, as shown in Fig-
ures 1–3, except that the guide field is set equal to the reconnecting field component. The path of the syn-
thetic spacecraft observations is the same as in the antiparallel reconnection case, as shown in Figure 4a, 
with the X point at      0, 12, 2 eE x y  in the reconstruction plane. Figures 4c–4f show input values of the 
magnetic and electric fields and electron velocity, density, and pressure taken from the virtual observations. 
Since the spacecraft did not encounter the inflow region on the negative-E N side of the current sheet (Fig-
ure 4a), E A continuously decreases along the path from zero to a minimum in the outflow region (Figure 4b), 
with a zE v  peak near the X point (Figures 4b and 4e). See Le et al. (2010) and Pritchett and Coroniti (2004) for 
general properties of guide-field reconnection in PIC simulations.

Figure 5 shows the reconstruction results from the incompressible, finite-inertia version compared with the 
simulation results. The top and middle panels show that the transverse field lines and electron streamlines, 
respectively, are well reconstructed, although the E A errors are large around the two upper corners of the 
reconstruction domain and the reconstructed electron flow pattern is not as asymmetric as seen in the sim-
ulation. The bottom panels show that the E  errors are substantial around the two upper corners but small 
at small E y  regions. Importantly, a quadrupolar electrostatic potential pattern seen in the simulation result 
(Figure 5g) is roughly recovered in the reconstructed   ,E x y  .

We note that the reconstructed  ,zE B x y  (Figure 5e) is good enough, despite the fact that only Case 2 (Hes-
se-Kuznetsova dissipation term for antiparallel reconnection) is used in the zE B  integration. The results from 
the combined Cases 1 and 2 version “in Case-1&2” and from the compressible version are similar to those 
shown in Figure 5, but have slightly larger errors on average (see Figure S4 in Supporting Information S1 for 
the plots of errors from the variants of the EMHD code in the guide-field reconnection case, corresponding 
to Figure 3 in the antiparallel reconnection case, and Figure S5 in Supporting Information S1 for the maps 

Figure 5.  Results from the incompressible finite-inertia version “in Case-2," applied to data from particle-in-cell simulation of guide-field reconnection. The 
format is the same as in Figure 2, but only for E A , zE B  , and E  . The zE B  error here is defined to be     ,rcstr ,sim ,sim,max ,sim,min/z z z zE B B B B  , where subscripts “rcstr," 
“sim," “max," and “min” represent the reconstructed, simulation, maximum, and minimum values, respectively.
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reconstructed by the compressible version including the density and pressure maps). The larger errors for 
the compressible case is possibly because in the presence of significant guide field, the electron density 
is not even approximately preserved along the transverse field lines (Le et al., 2010; Pritchett & Coroni-
ti, 2004), violating the present model assumption  E n n A  . We also note that Hesse et al. (2011) give an 
expression for  ,E f L N  in the case of guide-field reconnection as well, but we could not incorporate it into 
our reconstruction code because of numerical difficulties. In summary, the test results demonstrate that our 
newly developed EMHD code can reconstruct general properties of the magnetic field, electron velocity, 
and electrostatic potential in and around the EDR of guide-field as well as antiparallel reconnection.

5.  Application to MMS Data
As a demonstration that the new EMHD code works for actual observations, the incompressible, finite-in-
ertia version with Case 2 only has been applied to MMS observations of a magnetotail EDR on July 11, 
2017, 2234:01.7 0.1–2234:03.1 UT. The results from the compressible version are not shown because the 
results were not improved by use of the compressible version. This is probably because the electron den-
sity and temperature both remained approximately constant in the present event (Figure 2 of Hasegawa 
et al., 2019, hereafter referred to as H19), well satisfying the incompressibility assumption. This EDR is of 

Figure 6.  Results from the incompressible, finite-inertia version “in Case-2 only” of the electron 
magnetohydrodynamics reconstruction, applied to Magnetospheric Multiscale 3 observations of the magnetotail 
electron diffusion region on July 11, 2017 (Torbert et al., 2018). The magenta arrows are the projections onto the 
reconstruction plane of the measured components of (a) the magnetic field, (b) electron velocity, and (c) electric 
field in the structure frame. The measured electric field data were obtained by the double-probe instruments (Ergun 
et al., 2016; Lindqvist et al., 2016). The blue, green, and red bars the projections of the unit vectors of the geocentric 
solar ecliptic (GSE) x, y, and z axes (the green bar is barely visible). GSE components of the reconstruction axes are: 
ˆE x  = (0.9950, −0.0979, 0.0178), ˆE y  = (0.0143, 0.3174, 0.9482), and ˆE z  = (−0.0985, −0.9432, 0.3172).
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nearly antiparallel, symmetric reconnection, and was previously studied by Torbert et al. (2018) and recon-
structed with the original EMHD code by H19. In this event, the MMS3 spacecraft was located at (−21.6, 4.2, 
3.6) RE in the geocentric solar ecliptic (GSE) coordinate system. Magnetic field and electron moment data 
used to set the initial conditions are from the fluxgate magnetometers (FGM) (Russell et al., 2016) and Fast 
Plasma Investigation (FPI) instruments (Pollock et al., 2016), respectively. The coordinate axes (see Figure 6 
caption), structure velocity (    str 225.3, 142.8, 51.8E V  km/s in GSE), function  zE v A  , and reconnection 
electric field (  0 2.91zE E  mV/m) used in the reconstruction are the same as used by H19 (see Table S1 of 
their paper). Reconstruction results are sensitive to the choice of these parameters, and thus they are opti-
mized by a trial-and-error procedure as described in H19 and Hasegawa et al. (2017). The only difference in 
the initial conditions is that the E x component of the electron convection electric field    cx xE E v B  in the 
structure frame is used to compute the electrostatic potential   ,0E x  along the spacecraft path in the present 
study, while in H19 it is not used but E  is computed from Equation 25 in S16.

Figure 6 shows the maps of the magnetic field, electron velocity, and electrostatic potential E  reconstructed 
by the incompressible, finite-inertia version of our new EMHD code from the data taken by MMS3 that ap-
proached closest to the X point (the field maps from the other three spacecraft are included as Figures S6–S8 
in Supporting Information S1). The reconstructed transverse field lines are very similar to those from the 
S16 version (see Figure 4a of H19), while the electron streamlines are more or less symmetric with respect 
to the electron stagnation point located at     , 230, 10 kmE x y  . The latter feature is in stark contrast with 
the skewed pattern of the streamlines reconstructed by H19, with likely large errors around the upper-left 
and lower-right corners of the reconstruction domain in their Figure 4b. Consistent with the earlier result 
(H19), the stagnation point is displaced ∼90 km, about three times the electron inertial length (  27eE   km), 
in the earthward direction from the reconstructed X point. In the normal direction, on the other hand, one 
may conclude that the stagnation point is near the center of the current sheet, on the assumption that the 
position error is at most eE  when the reconstructed stagnation point is located within ∼ 2 eE  of the spacecraft 
path  0E y  (Figure 5; Sonnerup et al., 2016). The out-of-plane field component zE B  at the stagnation point is 
nearly zero, consistent with near antiparallel reconnection with no or only a weak guide field component. 
The E  map is also consistent with the previous study (Figure 4c of H19), with a potential minimum at the 
central portion of the reconnecting current sheet.

Figure 7 shows scatter plots of the three GSE components of the magnetic field, electron velocity, electric 
field (in the structure frame), and axial current density predicted from the MMS3 maps (Figure 6) at points 
along the paths of the other three spacecraft (MMS1, MMS2, and MMS4) and those actually measured by 
the three spacecraft. Here, the measured electric field data are from the double-probe instruments (Ergun 
et al., 2016; Lindqvist et al., 2016), not of the electron convection. The confidence intervals of the corre-
lation coefficients corresponding to  1E  sigma were estimated by the bootstrap method (e.g., Kawano & 
Higuchi, 1995). In this method, the correlation coefficient is calculated for a large number of (5,001) sets 
of the bootstrap samples randomly selected out of the actual measured and predicted values. Each set has 
the number of data equal to that of the original data set. The statistical errors are then estimated from the 
correlation coefficient distribution for the bootstrap sample set.

The correlation coefficient (0.9945) for the magnetic field is nearly equal to that (0.9942) obtained by H19, 
indicating a sufficient accuracy of the reconstructed magnetic field. The correlation coefficient (0.9646) 
for the electron velocity (Figure 7b) is slightly higher than that obtained by H19 (0.9632). This is an im-
provement from including the inertia term (the last term on the right-hand side of Equation 17, because 
by disabling this term the correlation coefficient becomes lower. In this particular event, the electron beta 

    2
0 0 0 0/ / 2e eE n kT B  was high (∼2), where 0E n  and 0eE T  are the mean electron density and temperature, 

respectively, and 0E B  is the magnitude of the reconnecting field component, so that on average the inertia 
term contribution must have been smaller than that of the electron pressure tensor term. Note, however, 
that the exact contribution of each term in the generalized Ohm's law to the reconnection electric field 0E E  
depends on the location in the reconnection region (e.g., Figure 2 of Divin et al., 2012; Figure 4 of Egedal 
et al., 2019).

The correlation coefficient for the electric field ( cc 0.7832EE  ) is slightly higher than that (0.7816) ob-
tained by H19 (Figure  7c). Figure  7d shows that the correlation for the axial current density zE j  is high  
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( cc 0.9370jzE  ), and the points in the large zE j  range are distributed near the line with slope equal to unity. 
This suggests that the model assumption  z zE j j A  is well satisfied in the present event. We also emphasize 
that for all quantities shown in Figure 7, the correlation coefficient between the predicted and measured 
values is larger than that between the input values measured by MMS3 and the values measured during 
the same interval by the other three spacecraft but interpolated to the times of the MMS3 measurements 
(correlation coefficients in the parentheses in Figure 7). As a more stringent way to test the accuracy of the 
reconstruction, we investigated the correlation between the difference between the predicted values and 
those measured by MMS3 and the difference between the values measured by the three spacecraft and those 
measured by MMS3. The correlation coefficients for the magnetic field, electron velocity, and electric field 
are 0.9643, 0.7910, and 0.8533, respectively. These results demonstrate that the MMS3 reconstruction gives 
good predictions of the timing of the current sheet crossing and spatial variations in and around the EDR 
seen by the other three MMS probes.

In summary, the magnetic field, electric field, and electron velocity field are all better reconstructed by 
the new EMHD code than the inertia-less version (S16). Table S1 in Supporting  Information S1 gives a 
summary of reconstruction results from each of the four MMS spacecraft, which demonstrates that the 
performance of the new EMHD code is comparable or better than the S16 code in recovering the magnetic 
field, electric field, and electron velocity structures. The table also includes ccEE  in the case when   ,0E x  is 

Figure 7.  Scatter plots of the predicted and observed values of (a) the geocentric solar ecliptic components of 
the magnetic field, (b) electron velocity, (c) electric field, corresponding to Figures 5j–5l of H19, and (d) the axial 
component of the current density. The black, red, and blue points are the data from Magnetospheric Multiscale 
(MMS)1, MMS2, and MMS4, respectively. The value in the parenthesis of each panel is the correlation coefficient 
between the values measured by MMS3 (used as input for the reconstruction) and those measured during the same 
interval by the other three spacecraft, with an aim to demonstrate whether the reconstruction provides good predictions 
along the paths of the other three spacecraft.
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computed from xE E  measured by the double-probe instruments, which are comparable to ccEE  based on the 
use of    cx xE E v B  .

6.  Summary and Discussion
We have extended a method based on electron magnetohydrodynamics (EMHD) to reconstruct 2-D plasma 
and magnetic field structures in and around the EDR from data taken by a single spacecraft, originally de-
veloped by Sonnerup et al. (2016). In contrast to the original method, the new method accommodates non-
uniform density and temperature (compressibility), finite electron inertia, and guide magnetic field in the 
reconnection region, and thus has more applicability. Benchmark tests by use of results from fully kinetic 
simulations of both antiparallel and guide-field reconnection show that the new method gives better results 
than the original one, with generally smaller errors in the reconstructed vector potential, stream function, 
and electrostatic potential (Figure 3). It has further been applied to an EDR of magnetotail reconnection 
observed by the MMS spacecraft on July 11, 2017 (Hasegawa et al., 2019; Torbert et al., 2018), and a better 
performance in reconstructing the electric field and electron velocity structure has been demonstrated.

One significant advantage of our new method is that Case 1 for the streamline ( zE B  ) reconstruction does not 
require any model for the off-diagonal terms of the electron pressure tensor in the EDR (Section 3.2.1), so 
that it is applicable to guide-field as well as antiparallel reconnection. While it was confirmed in Section 4.2 
that the Hesse-Kuznetsova dissipation term for antiparallel reconnection (Case 2) is sufficiently good in 
the case of the guide field intensity comparable to that of the reconnecting field, the use of Case 1 may be 
needed for reconnection with a very intense guide field, as observed in the turbulent magnetosheath (Phan 
et al., 2018). Even in such cases, Case 2 will have to be used in the part of the reconstruction domain where 

yE v  in the reconstruction coordinate system is very small.

One issue that needs to be addressed in applications to guide-field reconnection is that in the presence of 
strong guide field, the electron density cannot be a function of E A only (Le et al., 2010; Pritchett & Coroni-
ti, 2004), that is, the density is lower around the separatrices with larger zE B  (Hall plus guide field) magnitude 
than around the other separatrices (Figure 5d), so that the density varies substantially along the transverse 
field lines around the separatrices. In such situations,  E n A  (and probably  E p A  also) should be modeled 
to have double branches, one for two of the four Hall-field quadrants with positive zE B  perturbations and 
one for the other two quadrants with negative zE B  perturbations. The double-branch fitting would require 
observations in which single or multiple spacecraft traverse both quadrants with positive and negative zE B  
perturbations, and reconstruction using double branches will be attempted in the future.

The newly developed compressible EMHD code could be applicable to highly asymmetric reconnection, as 
observed at the magnetopause (Burch & Phan, 2016), as well as to approximately symmetric reconnection 
to which the incompressible S16 code has been applied (Hasegawa et al., 2017, 2019). Since magnetopause 
current layers have a higher density and lower temperature on the magnetosheath side than on the mag-
netospheric side (Burch & Phan, 2016), different functional behaviors of both  E n A  and  E p A  are expected 
for the magnetosheath and magnetospheric sides, even in the absence of the guide field. Note that the 
magnetosheath and magnetospheric regions on the inflow side of the separatrix magnetic flux surfaces are 
on different field lines, but can have an equal E A value. In such situations, the functional forms should be 
determined separately for the magnetosheath and magnetospheric sides, by separating the input data by 
the polarity of LE B  (  0LE B  on the magnetosheath side and  0LE B  on the magnetospheric side). This type 
of double-branch fitting technique was first developed by Hu and Sonnerup (2003) in applications of the 
magnetohydrostatic GS reconstruction to magnetopause crossings.

It may be helpful to discuss how the reconstruction of one quantity is coupled to or decoupled from that 
of others. By use of Equation 18, the reconstruction of the transverse magnetic field (E A ) is independent of 
that of the in-plane velocity field ( zE B  ) and electrostatic potential (E  ). This explains why E A is recovered so 
accurately that the E A error is much smaller than those of zE B  and E  (Figure 3). On the other hand, it is seen 
from Equation 21 that the zE B  reconstruction in Case 1 depends on how accurately both E A and E  (or E G ) are re-
constructed, while from Equation 24 the zE B  reconstruction in Case 2 is coupled to that of E A , but is decoupled 
from that of E  (or E G ). As for the E  (or E G ) reconstruction, it is seen from Equation 25 that it is coupled to both 
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the E A and zE B  reconstructions. Thus, the lower correlation coefficient for the electric field in the application 
to the MMS event (Figure 7c) may be a combined effect of not completely accurate reconstruction of E A and 

zE B  and less accurate measurements of the electric field by the double-probe instruments or by use of the 
convection electric field (as compared to the magnetic field measurements) that can lead to larger error in 
the E  reconstruction.

While electron beta eE  was relatively high (∼2) in the magnetotail EDR event on July 11, 2017, magne-
totail reconnection can occur under lower beta conditions, especially during intense substorms (Nagai 
et al., 1998). For lower beta cases the inertia terms (terms with eE m  in Equations 10 and 17) make a larger 
contribution to the electron momentum equation, and a larger difference is expected in the streamlines 
reconstructed with the inertia-less (S16) and finite-inertia EMHD codes. However, low beta events should 
be analyzed with care, because when eE  is low the density is often low, so that electron moment data may 
become less reliable because of lower counting statistics. A comparison of the EDR structure and energy 
conversion process between higher and lower beta cases is an interesting topic that needs to be addressed in 
a future study of more events from the MMS mission.

Appendix A:  Assumptions on ∇2A and ∇2Bz

In the present reconstruction, it is assumed that 2E A , or equivalently zE nv  under negligible ion and displace-
ment currents, can be expressed as a function of E A only. We assess whether this assumption is a good ap-
proximation in a 2-D fully kinetic simulation of antiparallel magnetic reconnection (Nakamura et al., 2016). 
Figure A1 shows that although zE nv  is not strictly preserved along the transverse field lines and that on a 
selected field line is larger at locations closer to the X point, zE nv  may be approximated as a function of E A 
only. On the other hand, 2

zE B  can be a function of neither E A nor zE B  only, contrary to the assumption made 
by Korovinskiy et al. (2021) in their Model 2 or 1, respectively.

Another interesting feature seen in the simulation is that the magnitude of 2
zE B  is significantly large only 

in the regions close to the center of the current sheet (Figure A1b). Taking advantage of this feature, our 
reconstruction imposes  2 0zE B  in the part of the reconstruction domain where the magnitude of the 
transverse magnetic field E B  is larger than a threshold value (∼0.5 in the normalized unit) and the magni-

Figure A1.  (a) zE nv  , (b) 2
zE B  , (c) electron density, and (d) zE B  in the E xy plane from the 2-D fully kinetic simulation of symmetric, antiparallel magnetic 

reconnection (Nakamura et al., 2016). The black curves in panels (a) and (c) are in-plane magnetic field lines (equi-E A lines). The coordinates are normalized to 
the electron inertial length  0eE  with mass ratio / 400i eE m m  , where iE m  is the ion or proton mass.
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tude of  2 2/zE B y  based on Equation 21 when Case 1 is used or Equation 24 when Case 2 is used exceeds 
a threshold value (∼0.1 in the normalized unit), so that     2 2 2 2/ /z zE B y B x  is used in such a domain.

Finally, we summarize the key differences between our new EMHD method and reconstruction models 
developed by Korovinskiy et al. (2021). In their Model 1 2

zE B  is taken to be a function of zE B  only (their Equa-
tion 18), while in their Model 2 is a function of only (their Equation 22). On the other hand, such a strong 
constraint is not imposed in our EMHD method by use of Equation 21 where E G is a function of both E A and zE B  
(see Equations 14 and 15). Their Model 3 is somewhat similar to our Case 2 (Section 3.2.2), but their model 
assumes incompressible electrons (  const.E n  ).

Data Availability Statement
The MMS data are available from the MMS Science Data Center: https://lasp.colorado.edu/mms/sdc/pub-
lic/. The present study used version 3.3 of the FPI burst-mode data. Data access and processing was done us-
ing SPEDAS V4.1 (Angelopoulos et al., 2019): http://spedas.org/blog/. The Matlab code for the new EMHD 
reconstruction can be found at the Zenodo (https://doi.org/10.5281/zenodo.5144478).
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