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Abstract

Background

This study aims to develop artificial intelligence (AI) system to automatically classify patients

with maxillary sinus fungal ball (MFB), chronic rhinosinusitis (CRS), and healthy controls

(HCs).

Methods

We collected 512 coronal image sets from ostiomeatal unit computed tomography (OMU

CT) performed on subjects who visited a single tertiary hospital. These data included 254

MFB, 128 CRS, and 130 HC subjects and were used for training the proposed AI system.

The AI system takes these 1024 sets of half CT images as input and classifies these as

MFB, CRS, or HC. To optimize the classification performance, we adopted a 3-D convolu-

tional neural network of ResNet 18. We also collected 64 coronal OMU CT image sets for

external validation, including 26 MFB, 18 CRS, and 20 HCs from subjects from another

referral hospital. Finally, the performance of the developed AI system was compared with

that of the otolaryngology resident physicians.

Results

Classification performance was evaluated using internal 5-fold cross-validation (818 training

and 206 internal validation data) and external validation (128 data). The area under the

receiver operating characteristic over the internal 5-fold cross-validation and the external

validation was 0.96 ±0.006 and 0.97 ±0.006, respectively. The accuracy of the internal 5-

fold cross-validation and the external validation was 87.5 ±2.3% and 88.4 ±3.1%, respec-

tively. As a result of performing a classification test on external validation data from six oto-

laryngology resident physicians, the accuracy was obtained as 84.6 ±11.3%.
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Conclusions

This AI system is the first study to classify MFB, CRS, and HC using deep neural networks

to the best of our knowledge. The proposed system is fully automatic but performs similarly

to or better than otolaryngology resident physicians. Therefore, we believe that in regions

where otolaryngology specialists are scarce, the proposed AI will perform sufficiently effec-

tive diagnosis on behalf of doctors.

1 Introduction

Maxillary sinus fungal ball (MFB) is a common cause of unilateral chronic maxillary sinusitis

and is a condition that requires surgical treatment because it causes severe mucosal inflamma-

tion and does not respond to medical treatment. The fungal ball on computed tomography

(CT) shows characteristic features such as intralesional calcification, the spiculated surface of

soft tissue density, complete opacification of the sinus cavity, and bony wall thickening involv-

ing the sinus [1, 2]. A well-trained otolaryngologist or radiologist can distinguish between

chronic maxillary sinusitis without a fungal ball, which may respond to medical treatment,

and MFB requiring surgery by understanding the radiological characteristics of MFB.

Recently, CT scans, including cone-beam CT, have become popular and are frequently

used in primary care clinics [1]. However, a primary care provider who is not familiar with

sinus imaging may miss the diagnosis of a fungal ball requiring surgery, and they might try

medical treatment for MFB. Therefore, there is a need to provide primary care doctors with a

tool that can help them to make a correct diagnosis if they are not experts in this field.

As a solution to these problems, artificial intelligence (AI) and deep learning are increas-

ingly being used in the medical image-based analysis [2]. Among them, convolutional neural

networks (CNNs) are a widely used deep learning method tool. Some studies have used CNN

techniques for CT-based image analysis in the area of paranasal sinuses and nasal cavities [3–

5]. In previous studies, osteomeatal complex inflammation, anterior ethmoidal artery location,

and middle turbinate pneumatization were classified by a trained 2-dimensional convolutional

neural network (2-D CNN) using a single slice of coronal CT image. However, 2-D CNN

essentially has disadvantages in terms of the 3-D context of original images and may not reflect

the real condition of the patient. To further increase the accuracy of this technology and its

clinical application, it would be better to use a 3-dimensional CNN (3-D CNN) that has

employed the entire section of the CT images. As Huang et al. reported, 3-D CNNs were more

sensitive than 2-D CNNs for analyzing and detecting lung nodules from a stereoscopic per-

spective [6].

Herein, we propose an AI system that uses 3-D CNN techniques to automatically classify

MFB, non-fungal maxillary sinusitis (i.e., chronic rhinosinusitis, CRS), and normal maxillary

sinus (i.e., healthy control, HC). We will also evaluate the accuracy of the trained 3-D CNN

model by internal and external validation and compare its performance with that of otolaryn-

gology resident physicians.

2 Methods

In this section, we introduce the proposed AI technology (Section 2.3). Then, the data

collection and labeling process (Section 2.1) and novel data preprocessing (Section 2.2) are

shown.
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2.1 Data acquisition and annotation

We collected internal and external datasets from Samsung Medical Center, Gangnam-Gu,

Seoul, Korea, and Samsung Changwon Hospital, MasanHoiwon-gu, Changwon-si, Gyeong-

sangnam-do, Korea, respectively, after approval by the Institutional Review Board of Samsung

Seoul Hospital (SMC 2020-07-173). In other words, the internal and external datasets were col-

lected from different hospitals, and they consisted of different patients. The internal dataset

(n = 512) was captured from 425 General Electric, 37 Toshiba, 31 Siemens, and 19 Philips CT

scanners. The external dataset (n = 64) was obtained from 54 Siemens, 11 Philips, and 1

Toshiba scanners. Each scanner has the same imaging parameters for 120 kVP and 2mm of

slice thickness in the coronal plane. All Digital Imaging and Communications in Medicine

(DICOM) data of CT scans were preprocessed in a homogenous course to minimize differ-

ences between scanners. Hounsfield Unit (HU) was used to measure the radiodensity of CT

scans, and finally, it was converted into voxel values for training and validation. For image

contrast enhancement, we also restricted the upper and lower gray levels of DICOM data by

setting the window level and window width to 0 and 2000, respectively. We used these values

as recommended to optimize the observation of fungal balls [7]. After passing the filter, all

images were rescaled with a consistent image size of 512 × 512 and were normalized for each

image to range from 0 to 255.

The internal dataset included 512 3-D stacks of ostiomeatal unit computer tomography

(OMU CT) images of the coronally observed entire head. The manifestation of a target disease

in a single 3-D stack consisted of 254 patients with MFB, 128 patients with CRS, and 130 HCs.

Similarly, we collected an external dataset from 26 patients with MFB, 18 patients with CRS,

and 20 HCs. Fig 1 shows an example of each of MFB, CRS, and HC.

All MFBs included in this study were patients with pathologically proven fungal material

through previous endoscopic sinus surgery. In this process of annotating the other two classes

(i.e., CRS and HC) for each 3-D hemi-stack for the left or right side of OMU CT slices (i.e.,

annotating one of the three classes according to whether the corresponding symptom pre-

sented at each of both sides of the maxillary sinus), five experts, four otolaryngologists with

less than ten years of experience, and one otolaryngologist with more than ten years of

Fig 1. Coronal computed tomography images of representative cases with (A) healthy control, (B) chronic rhinosinusitis,

and (C) maxillary sinus fungal ball on half coronal CT slices.

https://doi.org/10.1371/journal.pone.0263125.g001
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experience were individually asked to label each class on both sides of the maxillary sinus.

Afterward, they discussed their evaluations to arrive at one common opinion per stack, sup-

ported by three or more experts.

2.2 Data preprocessing through division

For both datasets, it is helpful to note that most of the patients with MFB had the disease on

only one side of their left and right maxillary sinuses. Therefore, if one side of the maxillary

sinus has a disease (i.e., MFB or CRS) but the other side does not have it, this 3-D hemi-stack

without the disease can be considered HC.

Owing to this feature, we cut each original 3-D stack of the head CT set in half and gener-

ated two 3-D hemi-stacks for the right and left head voxels. Each 3-D hemi-stack was created

with a single (i.e., left or right) maxillary sinus located in the center of this 3-D image, whereas

the original 3-D stack before the division showed both maxillary sinuses. Accordingly, as the

central focus of the hemi-stack was on the entire interior of the maxillary sinus, through the

division, we were able to diagnose the presence or absence of diseases in each maxillary sinus

by letting AI scan the entire interior of the maxillary sinus at each 3-D hemi-stack to classify

MFB, CRS, and HC.

Through this division, the number of 3-D stacks for MFB, CRS, and HC subjects in the

internal dataset increased from 254, 128, and 130 to 266, 256, and 502, respectively. Using the

same method, the number of 3-D stacks for MFB, CRS, and HC subjects in the external dataset

increased from 26, 18, and 20 to 27, 32, and 69, respectively. In other words, the number of

total images for training the AI-based system increased from 512 to 1024; in particular, the

number of HCs increased by approximately four times from 130 to 502. This increase in HCs

provided additional AI information for the healthy control group, allowing the AI to differen-

tiate between abnormal and normal subjects more effectively. Tables 1 and 2 summarize the

number of internal and external data sets of whole and half 3-D stacks, respectively.

2.3 Overview of the proposed algorithm

In this section, we describe the proposed AI-based classifier, whose overall architecture is illus-

trated in Fig 2. The proposed algorithm consists of two steps with a fully automated process

using the entire stack of OMU CT slices; the first step is for a 2-D CNN to select a subset of

coronal slices, including the maxillary sinus from the whole OMU CT stack. We performed

this process to improve the classification performance by focusing only on the maxillary sinus

Table 1. The number of 3-D full-stacks (patients) of OMU CT images for each class in the internal and external

dataset (total n = 512 and 64 respectively).

Subjects Internal dataset, n (%) External dataset, n (%)

MFB 254 (49.6) 26 (40.6)

CRS 128 (25.0) 18 (28.1)

HC 130 (25.4) 20 (31.3)

https://doi.org/10.1371/journal.pone.0263125.t001

Table 2. The number of 3-D hemi-stacks of OMU CT images for each class in the internal and external dataset

(total n = 1024 and 128 respectively).

Subjects Internal dataset, n (%) External dataset, n (%)

MFB 266 (26.0) 27 (21.1)

CRS 256 (25.0) 32 (25.0)

HC 502 (49.0) 69 (53.9)

https://doi.org/10.1371/journal.pone.0263125.t002
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part of the entire CT stack with limited training data. This step is shown in Fig 2A. We selected

approximately 20 coronal slices with the maxillary sinus from various numbers of full-stack

slices (n = 40–100). In the second step, as shown in Fig 2B, we used a 3-D CNN to classify the

MFB, CRS, and HC subjects at each of the left and right maxillary sinuses. Given the coronal

sub-slices selected by the first step, we split into left and right hemi-slices as described in Sec-

tion 2.2, horizontally flipped the left-sided hemi-slices to the right-sided ones, and took this

right-sided 3-D stack of hemi-slices as an input of the 3-D CNN. We illustrated these processes

in Fig 3. These splitting and flipping processes doubled the amount of training dataset, thereby

improving the classification performance of AI. We used a high-performance system, includ-

ing an Intel Core i7-7700 CPU and NVIDIA GeForce GTX 1080 Ti GPU, to train and test our

Fig 2. Overview of the proposed network algorithm. In the first stage (A), key slices were automatically extracted from

the entire section of the coronal CT image using the 2D-CNN technique. In the second stage (B), disease classification was

performed through the 3D-CNN by taking a 3D stack composed of only key CT slices as input. MFB; maxillary sinus

fungal ball, CRS; chronic rhinosinusitis, HC; healthy control, CNN; convolutional neural network.

https://doi.org/10.1371/journal.pone.0263125.g002

Fig 3. Illustration of cropping, division, and flipping processes.

https://doi.org/10.1371/journal.pone.0263125.g003
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two-stage algorithm. All image processing and deep learning were performed using Pytorch

1.6 with Python 3.6.

2.3.1 The first-stage sub-algorithm: Key-slice selector based on neural network.

Because MFB and CRS exist in the maxillary sinus if only the coronal slices of the 3-D voxel

for the entire head can be automatically and successfully selected, the ability to detect abnor-

malities can be improved. In this sense, as the first step of the proposed AI framework, we used

a 2-D CNN and made it fully automatically extract sub-slices belonging to the maxillary sinus

region among a 3-D stack of OMU CT whole slices.

As a key-slice selector, this CNN model scanned each coronal slice and provided a value of 1 if

the maxillary sinus was visible on the slice and 0 otherwise. To train the network to perform this

binary classification task, the five otolaryngologists mentioned previously had annotated whether

the maxillary sinus was visible in each coronal slice of each patient’s head 3-D stack among the

internal dataset of CRS and HC (i.e., marking 1 or 0 at each coronal hemi-slice). This annotated

training dataset consisted of 258 (i.e., 128 for CRS and 130 for HC) 3-D stacks of whole slices,

where each slice was annotated by 1 or 0 according to the presence or absence of maxillary sinus,

respectively, and was used to train the 2-D CNN network to predict the annotation value (i.e., 1 or

0) and discriminate the slice with or without the presence of maxillary sinus.

We utilized EfficientNet as the backbone of our 2-D CNN [8]. To prevent issues of over-fit-

ting and vanishing gradient, we selected the smallest model (i.e., EfficientNet-b0) among vari-

ous EfficientNet models (i.e., from EfficientNet-b0 to -b7) [9]. We applied center cropping to

300 × 300 at all slices to eliminate unnecessary space. In addition, as the original CT slice has

1-channel, we duplicated it to create 3-channel images for the network input and applied the

model’s weight pre-trained by ImageNet to our model’s initial weight.

We trained the neural network for 30 epochs with a mini-batch size of 256. An Adam opti-

mizer with a cosine annealing scheduler from an initial learning rate of 10−5 was used (Ref

Adam, Ref cosine). Binary cross-entropy was used as the loss function in training. We com-

puted the probability using sigmoid activation at the outputs of the 2-D CNN, where the

binary classification criteria for key-slice estimation were set to 0.5.

2.3.2 The second-stage sub-algorithm: Classification using 3-D CNN. Unlike 2D CNN,

the 3D CNN additionally uses information on adjacent associations between slices to effec-

tively detect subtle differences in disease expression phenomena caused by adjacent changes

between coronal slices. Based on this fact, we used a 3-D CNN to classify the three cases,

including MFS, CRS, and HC subjects. The proposed 3-D CNN takes a right-sided (flipped as

left-sided) or left-sided 3-D stack of hemi-slices, each of which was extracted from the key-

slice selector of 2-D CNN, as input and provides a predicted value i2{1, 2, 3} of what the actual

class is among MFS, CRS, and HC as one of the values of 1, 2, and 3, respectively.

Each 2-D slice was split into both right and left hemi-slices. The left-sided hemi-slices were

then horizontally flipped to the right-sided slices. Finally, we converted the 2-D hemi-slices

into 3-D data using area interpolation. The interpolation was performed using the MONAI

package (https://monai.io). The height, weight, and thickness of the 3-D data were 160, 160,

and 160, respectively, as cubic-like structures. This data size showed the best performance in

our study, and cubic data performed well in the 3-D CNN. In addition, we applied various aug-

mentation techniques, such as random shift (±5 pixels) and random scale transformation

(±10%) at all axes to overcome the limitation of a small dataset.

As the base model for the 3-D CNN, we adopted ResNet18 [10], in which the initial param-

eter was pre-trained using the Kinetics dataset [11]. We trained the 3-D CNN for 50 epochs

with a mini-batch size of 16. We used the Adam optimizer with a cosine annealing scheduler

and a warm-up scheduler. The initial learning rate of the schedulers was 10−5. We employed

cross-entropy as a loss function for training the 3-D CNN.
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2.4 Evaluation metrics for classification performance

Classification performance was evaluated according to the following five statistical analyses:

accuracy, the area under curve (AUC) for receiver operator characteristics (ROC), sensitivity,

precision, and F1 score.

The accuracy is denoted by the percentage of the total number of test samples that CNN

actually identifies with the true labels, and the precision and sensitivity are the class-wise aver-

ages of the proportions that were detected correctly among all samples detected by the target

class and all samples of the target class, respectively. The F1 score is denoted as the harmonic

mean of precision and sensitivity. As our task was a multi-label (i.e., three-label) classification,

we expressed the MFB, CRS, and HC cases as 1, 2, and 3 and calculated three groups of true

positive (TP), false positive (FP), and false-negative (FN) by selecting a target label i2{1, 2, 3}

as positive and the other labels excluding the label as negative.

Accuracy ¼
PC

i¼1
Ti

Dtest

Precision ¼
1

C
�
XC

i¼1

Precisioni ¼
1

C
�
XC

i¼1

TPi

TPi þ FPi

Sensitivity ¼
1

C
�
XC

i¼1

Sensitivityi ¼
1

C
�
XC

i¼1

TPi

TPi þ FNi

F measure ¼
1

C
�
XC

i¼1

F measurei ¼
2

C
�
XC

i¼1

Precisioni � Sensitivityi
Precisioni þ Sensitivityi

;

where C (i.e., 3) is the number of classes, Ti is the number of testing samples with both labels

and estimates equal to i2{1, 2, 3}, Dtest is the total number of testing samples, and TPi, FPi, and

FNi denote true positive, false positive, and false negative, respectively, and Precisioni, Sensitivi-
tyi and F_measurei denote the precision, sensitivity, and F1 score, respectively, when a label i2

{1, 2, 3} is selected as positive. Then, we calculated the final precision and sensitivity values

using their class-wise averages. All statistical analyses were performed using 5-fold cross-vali-

dation in the internal dataset. The external dataset was evaluated from five models trained

using the internal dataset according to 5-fold cross-validation. We also calculated AUC (rang-

ing from 0 to 1) according to both the micro and macro-average scales (i.e., sample-wise and

class-wise averages, respectively).

3 Results

In this section, we reported the classification performance of the proposed AI and humans in

Sections 3.1 and 3.2 (i.e., internal and external validations, respectively) and supplemented the

result in Sections 3.3 and 3.4 (i.e., the effect of slice selector and visualization, respectively).

3.1 Cross-validation results on the training set

Before comparing the performance results of AI and humans via external validation, in this

section, we first introduced the AI’s performance via internal validation. Then, Table 3 sum-

marizes the AUC and accuracy of AI. As shown in Table 3, the proposed AI algorithm had

micro-average and macro-average AUCs of 0.960±0.005 and 0.955 ±0.006 for internal valida-

tions, respectively. Accordingly, this observation supports the high diagnostic accuracy and
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reliability of the proposed AI system in that all fold results show an AUC of 0.95 or more. In

addition, as observed with no significant difference between the micro-average AUC and

macro-average AUC, our test data were well balanced for each class.

As one would naturally expect from these high AUCs of AI, the proposed AI system

achieved a high accuracy of approximately 90%. More specifically, in Table 4, the proposed AI

system also had a micro-average accuracy of 87.5 ±2.3%.

As shown in Table 4, we also executed the performance evaluation of AI using the sensitiv-

ity, precision, and F1 score. By setting each class as positive and the remaining negative, we cal-

culated the sensitivity, precision, and F1 score per class and presented their macro-averages

over the classes in the rightmost column. The class-wise averages of these measurements pro-

vided more than 85% values, showing similar performance trends to those of the accuracy.

3.2 External validation and performance evaluation through comparison

with resident physicians

A total of 64 image sets of OMU CT (i.e., 26 MFB, 18 CRS, and 20 HC) were presented to six

resident physicians working in the Department of Otolaryngology at Samsung Medical Center,

and we asked them to read each image set. This group of majors in otolaryngology was selected

from doctors who did not participate in the study or in the study data extraction.

Note that the AI system evaluated in this section is fully automatic. In other words, the pro-

posed AI scheme takes a single OMU 3-D stack without any preprocessing as input, passes it

through the aforementioned image preprocessing and the two-stage classification process

shown in Fig 2, and executes the three-label classification for each of the left and right maxil-

lary sinuses. We used the five AI models pre-trained using a 5-fold cross-validation internal

dataset, unaffected by the external validation dataset. Based on the presence or absence of key-

slice detection, the performance comparison, the first stage of our two-stage prediction pro-

cess, is discussed in Section 3.3.

Before presenting the performance measurements introduced in Section 2.4, we showed a

comparison result in the form of a confusion matrix, as all performance measurements were

derived from it. We commonly evaluated these results using the external validation data of 64

3-D stacks with OMU CT images. The averages and standard deviations of the proposed AI

Table 4. Sensitivity, precision, and F1 score of AI in the internal validation. The average and standard deviation in

5-fold cross-validation were denoted.

Dataset Sensitivity, %

Normal CRS MFB Average

Internal 93.0 ±2.3 73.1 ±6.1 91.1 ±3.4 85.7 ±3.9

Precision, %

Internal 90.9 ±1.9 80.3 ±5.2 87.8 ±6.6 86.3 ±4.6

F1 score, %

Internal 91.9 ±1.5 76.4 ±4.7 89.2 ±3.4 85.8 ±3.2

https://doi.org/10.1371/journal.pone.0263125.t004

Table 3. AUC and accuracy of AI in the internal validation. The average and standard deviation were derived from

each of 5-fold cross-validations.

Metrics Internal validation results

Micro-average AUC of AI 0.960 ±0.005

Macro-average AUC of AI 0.955 ±0.006

Accuracy of AI, % 87.5 ±2.3

https://doi.org/10.1371/journal.pone.0263125.t003
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and human tests were derived from each of the five AI models individually trained by 5-fold

cross-validations and each evaluation of the aforementioned six resident physicians, respec-

tively. As shown in Table 5, except for one case (i.e., the case where the actual is CRS and the

predicted one is MFB), the proposed AI system predicted better than humans for the other five

cases for misclassification. In each of these five error cases, AI had a value of at least 23% less

than that of humans. Therefore, we believe that AI has the potential for better or at least com-

parable performance to that of humans. Furthermore, given that the test subjects were resi-

dents who majored in otorhinolaryngology, Table 5 suggests that AI has the potential to make

a better diagnosis than non-otolaryngologists.

Table 6 summarizes the AUCs and accuracies of AI and humans for external validation. As

shown in Table 6, the proposed AI algorithm had micro-average and macro-average AUCs of

0.966 ±0.005 and 0.969 ±0.006, respectively. Similarly, with the internal validation result, the

proposed AI achieved a high accuracy of approximately 90% and 88.4 ±3.1%. Furthermore,

compared to the micro-average accuracy of humans (i.e., 84.6 ±11.3%), as shown in Table 5

(B), this result indicates that the proposed AI caused a 2.9% improvement in accuracy and 8%

reduction in its standard deviation, demonstrating the usefulness of the proposed AI

technology.

To support the rationale for the accuracy improvement, we also present in Table 7 a perfor-

mance comparison between AI and humans by using the sensitivity, precision, and F1 score.

Compared to the class-wise average results of humans, the proposed AI produced a 4.7%

(4.7 = 87.6–82.9) improvement in sensitivity, 2.3% (2.3 = 85.2–82.9) improvement in preci-

sion, and 3.8% (3.8 = 85.7–81.9) improvement in F1 score. In particular, for the case of sensi-

tivity, AI improved the sensitivity of MFB by 12.6% (12.6 = 89.6–77.0) and the sensitivity of

CRS by 5.8% (5.8 = 80.6–74.8) compared to humans. These results help doctors prevent FP

diagnosis of the disease (i.e., MFB or CRS).

Comparing Tables 3–6, we observed that the difference in AUC or accuracy between the

internal and external validation was less than 2%. Similarly, comparing Tables 4 and 7, we also

Table 5. Performance comparison between the proposed AI system and resident test. Confusion matrices for external validation data.

Confusion matrix Predicted Confusion matrix Predicted

HC CRS MFB HC CRS MFB

Actual HC 64.0 ±2.1 4.0 ±2.1 1.0 ±0.0 Actual HC 61.1 ±11.4 6.3 ±10.2 1.5 ±1.2

CRS 0.2 ±0.4 25.2 ±2.4 6.6 ±2.7 CRS 0.7 ±0.5 25.2 ±5.0 6.2 ±5.5

MFB 1.0 ±0.0 2.0 ±0.7 24.0 ±0.7 MFB 1.3 ±0.5 3.7 ±2.3 22 ±2.3

(a) AI result (Accuracy, 88.4±3.1%).

(b) Resident result (Accuracy, 84.6±11.3%).

https://doi.org/10.1371/journal.pone.0263125.t005

Table 6. AUC and accuracy of AI and humans in the external validation. The external validation was evaluated

from each AI model trained by 5-fold cross-validation or each of six human classification tests, of which average and

standard deviation were given.

Metrics External validation results

Micro-average AUC of AI 0.966 ±0.005

Macro-average AUC of AI 0.969 ±0.006

Accuracy of AI, % 88.4 ±3.1

Accuracy of human residents, % 84.6 ±11.3

https://doi.org/10.1371/journal.pone.0263125.t006
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observed that the average difference of each performance index (i.e., sensitivity, precision, and

F1 score) between internal and external validation was less than 2%. These results support the

generalizability of the proposed AI system.

Furthermore, to improve the AI performance, we compared the performance of five models

trained with 5-fold internal cross-validation as an ensemble model [12]. In other words, we

predicted the final label through a majority vote of five label estimates, where they were indi-

vidually generated from each pre-trained model. In addition, if there were two or more candi-

date groups, the final label was randomly selected.

Although the ensemble AI model cannot provide the second momentum (i.e., standard

deviation) in measuring the accuracy as the five models were integrated into one model, we

observed that the ensemble model provided higher accuracy than those individually obtained

from each of the five pre-trained AI models. In Table 8, we summarize the performance of AI

models with and without considering the ensemble technique in the external validation. These

results indicate that the ensemble AI model improved the accuracy by 1.4% and 5.2%, sensitiv-

ity by 0.7% and 5.4%, and precision by 2.9% and 5.2% over the individual AI models and the

human residents, respectively. Although it cannot be confirmed from our experimental results

that the proposed AI model is superior to any doctor, we believe that these ensemble results

provide additional evidence to support the superiority of our AI model in diagnosing MFB

and HC. We omitted the F1 score because it showed the same pattern as that of sensitivity and

precision.

Table 7. Performance comparison between human and AI in the external validation. Sensitivity, precision, and F1

score of each class were given. The average and standard deviation were denoted from each model trained by the 5-fold

internal validation.

Subject Sensitivity, %

Normal CRS MFB Average

Human 96.9 ±1.1 74.8 ±18.9 77.0 ±1.3 82.9 ±9.7

AI 92.5 ±1.9 80.6 ±6.0 89.6 ±1.7 87.6 ±3.2

Precision, %

Human 88.6 ±16.5 78.6 ±15.5 81.5 ±8.4 82.9 ±8.8

AI 98.2 ±0.7 80.9 ±7.1 76.4 ±6.1 85.2 ±4.6

F1 score, %

Human 91.8 ±10.5 75.8 ±15.8 78.1 ±6.0 81.9 ±10.5

AI 95.4 ±1.7 79.7 ±6.6 82.0 ±3.7 85.7 ±4.0

https://doi.org/10.1371/journal.pone.0263125.t007

Table 8. Performance comparison between AI models with and without considering the ensemble technique in

the external validation. The class-wise average and its standard deviation was given in measuring the sensitivity and

precision of the ensemble AI.

Metrics External validation results (%)

Accuracy of human residents 84.6 ±11.3

Accuracy of AI (without ensemble) 88.4 ±3.1

Accuracy of AI (with ensemble) 89.8

Sensitivity of human residents 82.9 ±9.7

Sensitivity of AI (without ensemble) 87.6 ±3.2

Sensitivity of AI (with ensemble) 88.3 ±6.9

Precision of human residents 82.9 ±8.8

Precision of AI (without ensemble) 85.2 ±4.6

Precision of AI (with ensemble) 88.1 ±6.5

https://doi.org/10.1371/journal.pone.0263125.t008
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3.3 Ablation study for the key-slice selector

In the previous section, we performed various experiments with the proposed approach to

improve the classification and localization of MFBs or CRSs by using the selected key-slice set.

In this section, we conduct additional experiments on the effect of key-slice selectors to pro-

vide further evidence of their originality.

By applying a simple key-slice detection of 2-D CNN (i.e., EfficientNet), we observed in

the internal 5-folds cross-validation that the sub-slices including maxillary sinus were auto-

matically extracted with an accuracy of 93.58 ±0.23%, demonstrating the excellent perfor-

mance of our slice selector. Specifically, we compared the performance of the proposed key

slice detector for various 2-D CNN models, as shown in Table 9. In order to prevent a poten-

tial overfitting issue due to learning with small data, a comparative experiment was per-

formed with the version having the fewest parameters among the distributed versions of

each model. In Table 9, the average performance results of all 2-D CNN models were similar

within 1% accuracy and had a high accuracy of more than 93%. Therefore, we simply used

EfficientNet, which is known as the latest among them, as a model for the key slice detector

proposed.

To validate the effectiveness of the proposed key-slice selector, we also tested how the per-

formance of the 3D-CNN (i.e., the second stage in the proposed AI system) changes with and

without using the trained key-slice selector. When the key-slice selector was not used, all

hemi-slices of each left- and right-sided 3D OMU CT were resized to 160 cubics (160 ×160

×160) and used as input for the 3D-CNN. Table 10 shows this comparison result, where the

3-label (MFB, CRS, and HC) classification was evaluated in terms of micro and macro-average

AUCs for the external validation. As this result shows, the key-slice selector increases the

micro and macro-average AUCs by 1.4% and 2.0%, respectively. Although this performance

improvement of 2% can be seen as a relatively small performance improvement, it reduces the

error rate by 40%. This is because the key-slice selector reduced the error rate of the external

validation from 5.1% to 3.1%, as shown in Table 10. This performance improvement prevented

the AI system from diagnosing in areas other than the maxillary sinus, thereby validating the

usefulness of our key-slice detector.

Table 9. 2-D CNN performance comparison for detecting key-slices. The average and standard deviation were

derived from each of 5-fold cross-validations.

Models Internal validation accuracy

EfficientNet 93.58 ±0.23

VGG 93.45 ±0.15

DenseNet 93.36 ±0.09

ResNet 93.75 ±0.22

ResNext 93.42 ±0.30

https://doi.org/10.1371/journal.pone.0263125.t009

Table 10. 3-D CNN performance comparison of 3-label classification with and without using the proposed key-

slice selector. The external validation was evaluated from each of the five pre-trained models.

Metrics External validation results

Macro-average AUC (without key-slice selector) 0.949 ±0.005

Macro-average AUC (with key-slice selector) 0.969 ±0.005

Micro-average AUC (without key-slice selector) 0.952 ±0.009

Micro-average AUC (with key-slice selector) 0.966 ±0.005

https://doi.org/10.1371/journal.pone.0263125.t010
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3.4 External validation and performance evaluation through comparison

with other algorithms and models

The proposed method sequentially combined 2-D CNN (key slice detector) and 3-D CNN

(final disease classification) over two stages. To verify its originality, we performed compara-

tive verification with other configurations, as shown in Fig 4. This figure showed the three con-

trast models: Contrast model 1 (Fig 4(B)) denotes the aforementioned model where the key

slice detector is removed from the proposed method. Contrast model 2 (Fig 4(C)) denotes a

model where the 3-D CNN used in the second stage in the proposed method is replaced by a

2-D CNN. By averaging coronal slices of 3-D input for the 3-D CNN used in the proposed

method, we obtained a 2-D image used as input for the 2-D CNN in contrast to model 2. Like

our key slice detector, the corresponding model also used EfficientNet. Contrast model 3 (Fig

4(D)) is where the proposed key slice detector is removed in contrast model 2. In each case

with and without using a key slice selector at the first stage, we observed in Fig 4 that using

3-D CNN at the second stage increased macro-average AUC by more than 3% in comparison

with using 2-D CNN at the second stage. In addition, in each case with and without using 3-D

CNN at the second stage, we also observed that using a key slice selector improved macro-

average AUC more than 2%. Considering both perspectives, we demonstrated that the combi-

nation (Fig 4(A)) of the proposed key slice detector and 3-D CNN-based disease classification

shows the best performance compared to the algorithms (Fig 4(B)–4(D)) of other configura-

tions. This verified the structural validity of the proposed technique compared to the other

configurations/algorithms.

Fig 4. Performance comparison of the proposed scheme and the other configurations. The external validation

results of macro-average AUCs were given from each of the five pre-trained models. K; the proposed key slice detector.

Average-based 2-D CNN; 2-D CNN that takes the input as the average of 2-D coronal slices.

https://doi.org/10.1371/journal.pone.0263125.g004

PLOS ONE Detection of maxillary sinus fungal ball with artificial intelligence

PLOS ONE | https://doi.org/10.1371/journal.pone.0263125 February 25, 2022 12 / 19

https://doi.org/10.1371/journal.pone.0263125.g004
https://doi.org/10.1371/journal.pone.0263125


It is also worth comparing the performance of various base models for our 3-D CNN at the

second stage. These external validation results are given in Table 11. As these results did not

show a significant performance difference when using different 3-D CNNs, we performed all

experiments by selecting ResNet18 as our 3-D CNN, with the smallest number of parameters.

3.5 Qualitative analysis with visualizing the feature maps

Therefore, we have shown that AI has excellent diagnostic performance, but we did not suffi-

ciently illustrate how these results were obtained. To present this, we used a technique called

gradient-weighted class activation mapping (Grad-CAM) [13], which is useful in understand-

ing which part of the input image led to the final classification decision of the target AI net-

work. Fig 5 shows the visualization results for the internal and external datasets. This shows

that there was a tendency to localize the partial areas of the maxillary sinus well.

In particular, compared to CRS, MFB is generally observed to have hyperdensity lesion

inside the maxillary sinus or irregular surface margin. In other words, the shadow area inside

the maxillary sinus can be regarded as the most critical imaging feature in MFB and CRS

detections. As shown in Fig 5, the proposed AI classifier generally detected the entire inner

surface of the maxillary sinus of a sample and was mainly activated on the area of soft tissue

density in this surface. In other words, these results indicate that AI also views the most impor-

tant feature of disease classification like radiologists, supporting the validity/interpretability of

the high diagnostic results of AI. It is also helpful to note that our study only exploited the

information that the maxillary sinus was visible in a specific coronal 2-D slice but did not uti-

lize any information for the maxillary sinus’s location on each coronal 2-D slice in training the

network. From this point of view, AI has learned the disease location in the maxillary sinus by

itself, demonstrating that these AI results were not accidental.

4 Discussion

A CT scan is the most common and essential tool for diagnosis among the tests available as a

tool for preoperative evaluation of endoscopic sinus surgery. The most representative finding

of a fungal ball in a CT scan is intralesional calcification or metallic densities [14, 15]. Calcifica-

tion or metallic densities in the maxillary sinus are thought to arise from metal ions deposited

in the necrotic area of the mycelium [16]. However, when zinc deficiency is present, intracellu-

lar storage is reduced due to homeostasis [17], sinonasal calcifications or metallic densities

may not be visible. In previous studies, hyperdense lesions inside the fungal ball were observed

in 80–82.8% [18, 19] and had a high specificity (99–100%) [7, 20]. Other common CT findings

include unilateral involvement, bony thickening of the involved sinus wall, total haziness of

the sinus with mass effect, and irregular surface of the materials [7, 21]. Bony erosion or thick-

ening of the involved sinus is associated with the degree of chronic inflammation of the

mucosa surrounding the fungal ball [22]. When performing endoscopic sinus surgery, a dirty,

clay-like appearance can be viewed as typical findings of mycetoma, and these findings can

reveal the spiculated surface on the CT scan.

Table 11. Performance comparison of 3-D CNN used for the second stage. The external validation was evaluated

from each of the five pre-trained models.

Models Macro- / Micro-average AUCs

ResNet18 (Ours) 0.969 ±0.005 / 0.966 ±0.005

ResNet34 0.967 ±0.008 / 0.962 ±0.008

DenseNet121 0.959 ±0.017 / 0.956 ±0.014

https://doi.org/10.1371/journal.pone.0263125.t011
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Therefore, the detection and differentiation of fungal balls through a CT scan are essential

for determining further treatment strategies. However, general physicians, not otolaryngolo-

gists or radiologists, cannot distinguish maxillary sinus fungal balls on CT scans. To solve this

problem, deep learning using the CNN algorithm shows excellent potential for medical image-

based analysis. Deep learning is a type of machine learning that includes convolutional layers,

fully connected layers, and an output layer with the help of neural networks, images, videos,

and unstructured data that can be analyzed with the less human intervention [23]. The differ-

ence from machine learning is that deep learning algorithms use the original data to define the

representations for classification, similar to the human brain. In many previous studies, CNNs

have performed the image-based analysis with accuracy similar to that of physicians. Studies

have performed deep learning techniques using plain radiographs to detect and classify maxil-

lary sinusitis [24–26]. When only the Waters’ view radiograph was used, the diagnostic perfor-

mance was approximately 0.88–0.94 AUC [25], and when a multi-view model was made with

Waters’ and Caldwell view radiographs, it showed a higher AUC than the single Waters’ view

Fig 5. The internal (A and B) and external (C and D) validation results of the Grad-CAM of the patients with CRS and MFB.

https://doi.org/10.1371/journal.pone.0263125.g005
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model [26]. In addition, in a study of MRI-based machine learning techniques, Fujima et al.
investigated the predictive power of the treatment outcome of sinonasal squamous cell carci-

nomas. The validation dataset was able to predict local control and failure with an accuracy of

0.92 [27]. In another study, Ramkumar et al. reported that AI could differentiate squamous

cell carcinomas from sinonasal IP through MRI-based texture analysis, showed an accuracy of

89.1%, and did not significantly differ from the neuroradiologist’s review (87.0%) [28].

There have been three studies on CT-based image analysis using CNN in the rhinology

area. Huang et al. performed supervised analysis through a coronal sinus CT scan to classify

the location of the anterior ethmoidal artery and reported an accuracy of 82.7% and AUC of

0.86 using 675 images [3]. One slice was selected to represent the anterior ethmoidal foramen,

and the lamina papyracea, anterior skull base, and middle turbinate were included in the

image, and the contralateral hemi-slice was flipped on the vertical axis for consistent training

data. In the aforementioned study, two ENT residents trained the AI after classifying the ante-

rior ethmoidal location using CT scans. However, training using histopathologically con-

firmed fungal balls is likely to result in more minor training errors in our study. Parmar et al.
were able to classify the existence of concha bullosa, which could be missed from the checklist

when performing sinus surgery using a CNN (Inception-V3) [4]. A total of 447 coronal CT

slice images were used, with a diagnostic accuracy of 81% and an AUC of 0.93.

Similarly, in a previous study, some false-negative cases may occur when using only one

coronal CT slice. Chowdhury et al. revealed the classification of osteometal complex occlusion

in CRS patients using a 2-D CNN (Inception-V3) [5]. Their results showed 85% classification

accuracy and an AUC of 0.87. The aforementioned three studies used one 2-D CT slice, which

does not reflect how trained real-world physicians analyze.

Recently, 3-D CNNs have been developed to preserve the 3-D context of CT images com-

posed of successive sequence slices since 3-D CNNs can better capture spatial information and

extract more real features [29]. In particular, a computer-aided diagnosis (CAD) system using

3-D CNN to detect and classify lung cancer or pulmonary nodules has been developed using

CT images in several studies [6, 30, 31]. These studies revealed that 3-D CNN has advantages

over 2-D CNN and that deep 3D CNN can improve the performance of CAD systems. While

this study has been limited to a binary classification between CRS and HC groups, we have

solved the more difficult problem of simultaneously discriminating CRS and MFB against HC

(i.e., 3-label classification). In our study, as the proposed AI algorithm used a whole stack of

CT images via the 3-D CNN, image classification was possible by additionally exploiting infor-

mation on adjacent associations between slices. Therefore, as it can effectively detect subtle dif-

ferences (i.e., correlation) between adjacent coronal slices, our algorithm was able to produce a

superior result compared to previous studies with AUC 0.97 in this 3-label classification. In

addition, as we introduced in Section 3.3, we applied a novel key-slice detection method to fur-

ther optimize the generalization performance for a given limited number of training samples.

As the sub-slices, including the maxillary sinus, were automatically extracted, the classification

error was reduced by 40%, supporting the originality and validity of our AI system.

The 2-D CNN and 3-D CNN used in our algorithm were pre-trained using ImageNet and

Kinetics datasets, respectively, as these datasets have various classes and a sufficient number of

samples for each class. Therefore, these datasets are suitable as data for pre-training AI. How-

ever, they are not medical images, probably reducing the performance of fine-tuning with our

medical data. If a large set of 2-D or 3-D medical images (e.g., OMU CTs) with various classes

can be used for pre-training our AI system in the future, we expect its diagnostic performance

to be further improved. It is also helpful to note that our AI system did not use any annotation

(e.g., segmentation or localization) for disease location. Even though this annotation was not

performed, our system successfully predicted the location of the target disease, as shown in
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Section 3.4. Nevertheless, localization can be more accurate with less training data if the corre-

sponding annotation is utilized. We will proceed with these studies in future work.

We illustrated in Fig 6 some examples of misclassified images for external validation to

obtain some insight into the network’s logic. We excluded cases of misclassification between

MFB and HC. It rarely happened (e.g., it happened once at most in our external validation,

making it difficult to discuss the cause of the error). In both examples of AI predicting CRS as

MFB or MFB as CRS in Fig 6A and 6B, the AI correctly chose a location with abnormality.

However, it is difficult to differentiate these two cases radiologically because of the full haziness

of the unilateral maxillary sinus (Fig 6A) or polypoid mucosal surface (Fig 6B). In the example

of AI predicting HC as CRS in Fig 6C, the image was misdiagnosed as abnormal by focusing

on the area with minimal mucosal swelling at the inferolateral part of the maxillary sinus. In

other words, this example is a case clinically suitable for HC and labeled as HC by an experi-

enced otolaryngologist. However, it can be classified as CRS in the radiological aspect.

Fig 6. Examples of the Grad-CAM misclassified by the AI system on the external validation. MFB; maxillary sinus fungal ball, CRS; chronic

rhinosinusitis, HC; healthy control.

https://doi.org/10.1371/journal.pone.0263125.g006
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Therefore, this example provides a rationale for certain AI misclassifications. In the example of

AI predicting CRS as HC in Fig 6D, the AI-focused on the outside of the maxillary sinus,

which led to incorrect classification. We could not determine why the AI-focused elsewhere,

which is considered the limit of deep learning methods. Nevertheless, we believe that these

low-probability misclassifications can be further improved by adopting more learning data

and by further advancing AI technology.

5 Conclusion

The proposed system is the first fully automated MFB (or CRS) recognition algorithm that uti-

lizes a deep learning approach in OMU CT to the best of our knowledge. Our novel method

automatically selected key sub-slices with the presence of maxillary sinus in the first stage

using 2-D CNN, robustly distinguished MFB, CRS, and HC, in the second stage using 3-D

CNN and finally localized the target disease area. Our model achieved a high AUC value of

0.97 and a higher accuracy of 88.4% than the 84.6% of the otolaryngology majors with lower

variance. We believe our AI approach will facilitate diagnostic inspection and provide a useful

diagnostic inspection screening tool for the region where otolaryngology specialists are scarce.
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