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A global assessment of the drivers of threatened
terrestrial species richness
Christine Howard 1✉, Curtis H. Flather 2 & Philip A. Stephens 1

High numbers of threatened species might be expected to occur where overall species

richness is also high; however, this explains only a proportion of the global variation in

threatened species richness. Understanding why many areas have more or fewer threatened

species than would be expected given their species richness, and whether that is consistent

across taxa, is essential for identifying global conservation priorities. Here, we show that,

after controlling for species richness, environmental factors, such as temperature and insu-

larity, are typically more important than human impacts for explaining spatial variation in

global threatened species richness. Human impacts, nevertheless, have an important role,

with relationships varying between vertebrate groups and zoogeographic regions. Under-

standing this variation provides a framework for establishing global conservation priorities,

identifying those regions where species are inherently more vulnerable to the effects of

threatening human processes, and forecasting how threatened species might be distributed

in a changing world.
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Safeguarding species against threatening processes is a major
global priority1–3. Yet, despite the adoption of numerous
international agreements aimed at addressing the biodi-

versity crisis, biodiversity continues to be lost4,5. An ambitious
global strategy is now required that clearly defines the actions and
policies necessary to restore ecosystems to levels that help both
people and nature thrive6–8. This will require the establishment of
global conservation priorities, so that limited resources can be
focussed on those areas of highest conservation value most at risk
from environmental change6,9,10. Currently, conservation plans
often target overall species diversity, under the assumption that it
can act as an adequate surrogate for other dimensions of biodi-
versity11–15. Biodiversity indices, however, are seldom spatially
congruent11–13,15–17, and total species richness can only partially
explain spatial gradients in threatened species richness (Fig. 1,
see methods). Areas of South America, sub-Saharan Africa, India
and Southeast Asia all have far greater numbers of threatened
species than would be expected given the total size of the species
pool. Understanding why these areas are hotspots of imperilment
and how the mechanisms driving these patterns differ between
taxonomic groups, is key for identifying global conservation
priorities and the actions and policies required to prevent
further loss of biodiversity6–8,18. The processes underlying global

patterns of threatened species richness, however, remain largely
unexplored.

Extinction is often driven by threatening human activities19,20.
Increasing human populations, long-term land cover change, and
pressures from invasive alien species have all been linked to the loss
of biodiversity21–23. Environmental conditions can, however, pre-
dispose species to the effects of these threatening processes13.
Energy availability and habitat heterogeneity have been linked with
speciation rates via increases in available niche space and retention
of rare species through the provision of refugia, and by providing
opportunities for isolation and divergent adaptation24–27. Threa-
tened species richness is likely driven by the interaction between
the predisposing environmental conditions that promote the
occurrence of extinction-prone, narrow-range endemic species and
the threatening human processes that erode biodiversity13. Despite
substantial efforts being dedicated to deciphering the determinants
of spatial gradients in total species richness24,26, there is only
limited understanding of the drivers of spatial gradients in threa-
tened species richness and how they differ from those of total
species richness28. If we are to fully understand the distribution of
imperilment, we require a global assessment that disentangles the
effects of predisposing ecological conditions from those attributable
to threatening human processes.
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Fig. 1 Global variation in threatened species richness, having accounted for total species richness. The maps show the mean residuals from 10 global
scale models of threatened species richness when explained by total species richness, for a terrestrial vertebrates, and four separate taxonomic groups:
b amphibians, c reptiles, d birds and e mammals. The colour scale indicates model residuals in terms of the number of threatened species and uses Jenks
natural breaks81 to determine the break points. Note the scales differ between a, and b–e. Grey indicates areas where there are no species classified as
threatened. Model performance was moderate (Table 1 and Supplementary Table 2). Source data are provided as a Source Data file.
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Here, we present a global assessment of the drivers of threatened
species richness patterns, revealing the importance of extrinsic
threatening processes and predisposing environmental conditions
in shaping concentrations of imperilment. Our models of threa-
tened species richness are based on a data set of 26,746 species of
terrestrial vertebrates, 20% of which are considered ‘threatened’
with extinction (IUCN Red List status of critically endangered,
endangered, or vulnerable). Specifically, we quantify the impor-
tance of a suite of environmental and human impact covariates,
previously shown to correlate with extinction risk and species
richness patterns, in driving spatial variation in global threatened
vertebrate species richness. To identify the drivers of threatened
species richness independent of the drivers of the size of the species
pool, we account for the role of total species richness within our
models. We then assess the influence of the covariates on four
taxonomic groups individually (amphibians, reptiles, birds and
mammals) and at the level of individual zoogeographic regions29 to
establish how the drivers of threatened species richness vary
between taxa and across space. Finally, we explore how the form of
the relationship between these variables and species richness differs
when that richness is restricted to threatened species or includes
the total species pool.

Our results show that environmental covariates are typically
more important than human impacts for explaining global var-
iation in threatened species richness. Nevertheless, we identify
substantial variation between zoogeographic regions and taxo-
nomic groups in the importance of individual environmental and
human impact variables in driving threatened vertebrate species
richness. Specifically, we demonstrate that individual human
impact variables can be influential at regional scales. These results
suggest that some regions and taxonomic groups may be inher-
ently more vulnerable than others to the effects of threatening
human activities, which has important implications for identify-
ing global conservation priorities.

Results and discussion
Global drivers of threatened species richness. Global models of
threatened vertebrate species richness revealed a greater influence
of environmental parameters than extrinsic human threats
(Fig. 2a, Tables 1 and 2), although human impacts still had an
important role. Specifically, insularity, or the area of land mass to
which a cell belonged, was of the greatest importance for
explaining global threatened vertebrate species richness. Island
regions generally support a higher number of endemic, extinction-
prone species than continental land masses30 (Supplementary
Fig. 10). Two variables associated with the amount of productive
energy in a system, namely temperature seasonality and annual
precipitation, were also highly influential in our models (ranked
3rd and 4th, respectively, of 16 variables). Given that our models
account for total species richness, this result is not a consequence
of more productive regions harbouring higher numbers of
threatened species simply because they have more species overall.
Furthermore, and contrary to previous reports31, the limited
influence of human impact variables at a global scale suggests that
this result is unrelated to enhanced human influence in areas of
greater net primary productivity32–34. Rather, our results suggest
that the processes that drive speciation may also be responsible for
driving extinction35. Areas of high levels of speciation are asso-
ciated with small range, specialist species that often persist at low
population sizes and are therefore vulnerable to demographic
stochasticity or extinction from local catastrophes or human
disturbance33,36,37. Of the human impact variables, those of most
importance were long-term land cover change and invasive alien
species (ranked 6th and 7th, respectively). These results are in line
with previous findings, with habitat loss widely cited as the most

common cause of species’ extinctions38,39, and the impacts of
invasive alien species as the second most common cause40.

Variation between taxonomic groups. Models for separate taxa
indicated that the dominant processes leading to concentrations
of threatened species richness differed substantially between the
four vertebrate classes. Specifically, whilst total species richness
was the most influential variable for determining the richness of
threatened species from all vertebrate classes, the importance of
environmental and human impact variables differed substantially
between the four groups (Fig. 2). These differences may be driven
by varying sensitivities of species to different threatening pro-
cesses41. For example, for amphibians the diversity of elevation
was the most influential variable after total species richness
(Fig. 2b), with the highest numbers of threatened amphibians
occurring in the most topographically diverse areas, see below.
Topographic diversity has been linked with increased speciation
rates, and the occurrence of small range, endemic species which
are more naturally prone to extinction36,37. This effect, however,
was particularly strong in the South American, Amazonian
and Australian regions, reflecting the distribution of Chy-
tridiomycosis, an infectious fungal disease partially responsible
for the worldwide declines of amphibian populations and pre-
valent in the montane habitats of those regions42. For birds,
temperature seasonality ranked as the most influential variable
after total species richness (Fig. 2d), with concentrations of
threatened birds occurring in areas of particularly high or low
temperature variation, see below. More seasonal environments
are often associated with the occurrence of migratory species,
which can be more vulnerable than their non-migratory coun-
terparts43. Conversely, benign, less seasonal environments may
allow the persistence of naturally rare, extinction prone species44.
Differences in the major processes affecting different taxa may
also be linked to dispersal ability. More mobile species tend to be
less restricted by local heterogeneities in habitat structure, and
more likely to be at equilibrium with climatic conditions45. Thus,
those habitat variables that vary over a finer resolution, such as
topography and human influence, may be more influential in
explaining the distribution of threatened amphibians and reptiles,
which tend to be less dispersive than birds and mammals.

Spatial variation in the drivers of threat. To assess the con-
sistency of drivers of threat across space, we fitted separate models
of threatened vertebrate species richness for individual zoogeo-
graphic regions29. Apart from the universally high importance of
total species richness, the importance of individual environmental
and human impact variables in driving threatened vertebrate
species richness showed substantial variation between zoogeo-
graphic regions, as well as from the global model (Fig. 3). In areas
where threatened species richness is greater than expected given
the total species richness (Fig. 1a), the most influential variables
were often related to threatening human processes. For example,
long-term land cover change was of the greatest influence in
driving threatened vertebrate species richness in the Amazonian
region, whilst the area of human-dominated land uses was the
most important variable in Madagascar (Fig. 3). This may be
driven by the prevalence of small range, endemic species within
these regions, which are vulnerable to the effects of habitat loss33.
In contrast, however, across Southeast Asia, variables related to
the environment were of greater importance, with insularity in the
Indo-Malayan region, temperature seasonality in the Chinese
region and annual precipitation in the Oriental region all emer-
ging as important. The finding that human impact variables can
be of greater importance than environmental covariates emerges
despite the relatively coarse resolution of our analyses. Climatic

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-14771-6 ARTICLE

NATURE COMMUNICATIONS |          (2020) 11:993 | https://doi.org/10.1038/s41467-020-14771-6 | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


variables (i.e., temperature and precipitation) can explain a lot of
the variation in land cover distribution, including human-related
variables46. Hence, climatic variables may be identified as being of
greater importance than land cover in coarser resolution analyses.

Our large-scale analysis offers important insights into the drivers
of broad-scale irreversible changes47. Clearly, our global analysis is
less well suited to identifying the drivers of fine-resolution changes
in threatened species richness.
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Fig. 2 Importance of individual variables for predicting global threatened species richness. Top panel a indicates the importance of individual variables
from the global models of vertebrate threatened species richness, whilst the bottom panels indicate the measures of individual variable importance from
the global models of amphibian (b), reptile (c), bird (d) and mammal (e) threatened species richness. Variables are grouped into broader classes, which
are indicated by the capital letters on the side of the variable names: Total Species Richness (S), Environmental (E), and Human Impact (H) covariates.
Variables are ranked first by groups and then by their median importance in the global model of vertebrate threatened species richness. The vertical line
across each box indicates the median and the box boundaries indicate the interquartile range (IQR). Whiskers identify extreme data points that are not
more than 1.5 times the IQR on both sides; the dots are more extreme outliers. Source data are provided as a Source Data file.
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The lack of congruence in the importance of variables across
space could be linked to differences between regions in how much
ecological factors vary23. For example, in contrast to the global
models, insularity was of very low importance in most of the
region-level models (Fig. 3). This is surprising, given the
importance of insularity in the global models and the role of
geographic range size in classifying species’ extinction risk48. This
finding is likely because, relative to its variation at a global scale,
land mass area shows limited variation within many regions.
Similarly, invasive alien species were also of limited importance in
some regions. This may be an artefact of the national measurement
scale for this covariate, which could limit variation within some
regions. Furthermore, the lack of congruence in variable
importance may, in part, be attributable to spatial variation in
sampling effort. Global data on species occurrence and threat levels
are likely to be heterogeneous in both quality and precision.
Threatened species richness may be elevated or depressed in
proportion to total species richness in regions with incomplete
sampling, potentially biasing results. Sampling effort is also likely
to vary between taxonomic groups. The completed assessment for
the distribution of reptiles is not currently available49. To test for
an effect of spatial variation in sampling effort we repeated our
analyses including data deficient (DD) species richness under
several alternative assumptions of threat status. The distribution of
DD species is geographically non-random, with greatest DD
species richness in tropical regions50. These additional analyses
produced qualitatively similar results that did not substantially
differ from the main analysis of absolute threatened species
richness (Supplementary Fig. 13), suggesting that our results are
robust to spatial variation in sampling effort. Nevertheless,
enhanced efforts to address gaps in biodiversity monitoring, such

as across tropical regions and for reptiles, will help to address any
remaining uncertainties in regional variations in the drivers of
imperillment50.

Responses of total and threatened species richness differ. To
explore the functional form of relationships between covariates
and species richness patterns, we fitted separate models to both
threatened and total global vertebrate species richness. In several
cases, there were striking differences in the responses of total and
threatened species richness to both environmental and human
impact processes (Fig. 4). For amphibians, variation in elevation
was positively related to threatened species richness, but nega-
tively related to total species richness. Topographically diverse
environments promote speciation and diversification through
geographic isolation26, yielding narrow-range endemic species,
which are more susceptible to extinction owing to a lack of
refuges from adverse environmental conditions. The decline in
amphibian species richness contrasts with what would be
expected from the mid-domain effect (i.e., the peak in species
richness towards the centre of a shared geographic domain due to
boundary constraints51), but has been reported previously52. It is
likely caused by reductions in temperature associated with
increasing elevation gradients that occur at too fine a spatial
resolution to be reflected by our coarse resolution measure of
annual mean temperature53. Threatened amphibian species
richness showed a broadly linear positive relationship with long-
term land use change, whilst total amphibian species richness
remained relatively constant. Similarly, total reptile species rich-
ness remained relatively constant with long-term land use change.
Threatened reptile species richness, however, showed a positive
asymptotic relationship with long-term land use change (Fig. 4).

Table 1 Performance (R2) of models of threatened species richness.

Total vertebrates Amphibians Reptiles Birds Mammals

Total species richness only Global 0.49 ± 0.03 0.04 ± 0.03 0.45 ± 0.04 0.37 ± 0.08 0.36 ± 0.05
Total species richness, environmental and anthropogenic
covariates

Global 0.94 ± 0.01 0.72 ± 0.05 0.87 ± 0.02 0.92 ± 0.01 0.94 ± 0.01

Regional 0.81 ± 0.14 0.63 ± 0.20 0.70 ± 0.19 0.77 ± 0.16 0.79 ± 0.15

Models are fitted at the global scale with only total species richness as a predictor, and at the global and regional scales using total species richness and a range of environmental and human impact
covariates. Each datum represents the mean model performance, measured using R2, and standard deviation, across random forest models (mean ± SD). A full summary of model parameters and of
regional level model performance can be found in Supplementary Tables 1 and 2. Source data are provided as a Source Data File.

Table 2 Comparing the importance of environmental and human impact covariates.

Estimate Standard error z-value p-value

Total vertebrates
(ANOVA: F2,18= 5817.1, p < 0.01)

Environmental—human impact 0.58 0.05 11.64 <0.01
Total species richness—human impact 4.93 0.05 98.69 <0.01
Total species richness—environmental 4.35 0.05 87.05 <0.01

Amphibians
(ANOVA: F2,18= 1673, p < 0.01)

Environmental—human impact 0.29 0.03 10.45 <0.01
Total species richness —human impact 1.52 0.03 54.50 <0.01
Total species richness—environmental 1.23 0.03 44.04 <0.01

Reptiles
(ANOVA: F2,18= 2756.4, p < 0.01)

Environmental—human impact 0.38 0.04 9.42 <0.01
Total species richness—human impact 2.73 0.04 68.49 <0.01
Total species richness—environmental 2.36 0.04 59.07 <0.01

Birds
(ANOVA: F2,18= 7346.1, p < 0.01)

Environmental—human impact 0.18 0.03 5.67 <0.01
Total species richness—human impact 3.46 0.03 107.69 <0.01
Total species richness—environmental 3.28 0.03 102.03 <0.01

Mammals
(ANOVA: F2,18= 4602.9, p < 0.01)

Environmental—human impact 0.99 0.06 15.96 <0.01
Total species richness—human impact 5.60 0.06 89.92 <0.01
Total species richness—environmental 4.61 0.06 73.96 <0.01

Repeated measures ANOVAs, and post-hoc analyses, comparing the mean measures of relative importance of environmental and human impact covariates and total species richness in explaining global
threatened vertebrate species richness. Source data are provided as a Source Data File.
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For both birds and mammals, the area of human dominated land
uses showed a positive relationship with the number of threa-
tened species in an area, whilst the relationship with total species
richness had an intermediate maximum (Fig. 4). These relation-
ships may indicate two processes at work. The initial positive
relationship between species richness and human-dominated land
uses may reflect how both respond positively to net primary
productivity32. The subsequent reduction in total species richness
and increase in threatened species richness may be a consequence
of the associated increase in habitat loss and fragmentation in
areas of extensive human-dominated land uses54,55. The rela-
tionship between insularity and mammal species richness also
differed between the total and threatened species pools. Whilst
the highest total mammal species richnesses were observed in
areas with the greatest land mass, the highest threatened species
richnesses were observed in the most insular areas. Islands are
known to be centres for range-restricted species, more prone to
extinction30. They are also, however, acknowledged for having a
lower species richness than mainland regions, with species rich-
ness increasing with area56,57.

Implications for conservation planning. Our global assessment
of the drivers of threatened species richness reveals that those
environmental characteristics that predispose species assemblages
to threat may be more influential than threatening human pro-
cesses for determining where concentrations of imperilled species
occur. This finding does not suggest that threatening human
activities are unimportant for driving species’ extinctions; indeed,
we shown that human impact variables are influential, and

particularly at regional scales. Rather, it suggests that some
regions and taxonomic groups may be inherently more vulnerable
than others to the effects of those threatening processes. This
finding has important implications for conservation planning.
Knowing the inherent vulnerability of a region can aid decisions
regarding global conservation priorities and could form the basis
for a biodiversity conservation roadmap8. For example, areas that
are inherently more imperilled might also be at greater risk from
the effects of threatening human processes, and could therefore
be prioritised for stricter protective actions whilst mitigation—by
remediation, for instance—may be more appropriate in less vul-
nerable areas. Furthermore, we uncover striking variation both
between taxonomic groups and across space in the environmental
mechanisms that are responsible for driving spatial gradients in
threatened species richness. Any future coordinated global con-
servation strategy must consider the full range of scales at which
the drivers of threat operate on biodiversity and the varying
sensitivities of species to different threatening processes7,8. Whilst
our results cannot supplant local-scale, species-specific assess-
ments, they offer the information necessary to understand the
processes acting at a global scale. This is critical, as this is the scale
at which large, irreversible changes occur and at which many of
the economic and political processes that ultimately drive
extinction operate. By identifying the drivers of spatial gradients
of threatened species richness, our approach has the potential to
inform proactive conservation policy and action to minimise the
effects of future environmental change. Combining our models
with projections of environmental change would provide a
baseline from which to predict how threatened species richness
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Fig. 3 Importance of variables in predicting threatened vertebrate species richness in different zoogeographic regions. Variables are grouped into
broader classes, which are indicated by the capital letters on the side of the variable names: Total Species Richness (S), Environmental (E), and Human
Impact (H) covariates. The mean importance of each variable from the models of threatened vertebrate species richness is indicated by the yellow (low
importance) to black (high importance) colour gradient. Variables are ordered from top to bottom first by group, and then according to their importance in
the global model of threatened vertebrate species richness. Average performance of each regional set of models, measured with R2, is indicated at the top
of each column, with regional models ranked by decreasing mean R2. Heat maps of variable importance for the individual taxonomic groups can be found in
Supplementary Figs. 5–8. Source data are provided as a Source Data file.
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will respond to varying elements of global change and identify
where concentrations of imperilment may occur in the future.

Methods
Species richness data. Global distribution data for 6401 species of amphibians,
4450 reptiles and 5312 mammals were obtained from49, whilst distribution data for
10,583 bird species were obtained from58. Data were available as spatial polygons of
distribution boundaries, which were projected onto a Behrman equal-area pro-
jection and converted to a grid with a cell size of 0.5° at 30°N and 30°S latitude.
Where a species’ range polygon intersected with a grid cell, the species was treated
as present within the entire cell. For each species, we only considered parts of the
range where the species is designated as native, extant and either breeding or
resident. Assessments of global extinction risk were taken from the IUCN49.
Species richness was calculated as the total number of species present in a grid cell.

Threatened species richness was calculated as the total number of threatened
species in a grid cell, where threatened species were those classified as either
‘vulnerable’, ‘endangered’ or ‘critically endangered’ by the IUCN. Total species
richness and total threatened species richness were also calculated for the four
individual taxonomic groups (amphibians, reptiles, birds and mammals, Supple-
mentary Figs. 1 and 2).

Environmental covariates. Data on four bioclimatic variables were obtained from
WorldClim (Version 1.459); including annual mean temperature, temperature
seasonality, annual precipitation and precipitation seasonality. Data were available
on a 4.5 km grid for the 30-year period between 1960 and 1990. We derived
minimum elevation and standard deviation of elevation using the Global Multi-
resolution Terrain Elevation Data 2010 (GMTED201060), available at a resolution
of 7.5 arc-seconds. Land cover data were derived from GlobCover version 2.3 2009
(http://due.esrin.esa.int/page_globcover.php), which are available as a raster with
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Fig. 4 Relationships between a selection of the most important environmental and human impact covariates and global amphibian, reptile, bird, and
mammal species richness. Lines indicate the mean partial relationships between variables and threatened (purple) and total (orange) species richness
from across 10 random forest models for amphibians (a, b), reptiles (c, d), birds (e, f) and mammals (g, h). Shaded areas indicate the standard deviation
around the mean partial relationships. The x-axis is limited to the central 90% of a variable’s range. Note the separate y-axes for threatened and total
species richness. Plots of all variable relationships can be found in the Supplementary Figs. 10 and 11. Source data are provided as a Source Data file.
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23 land cover classes at a resolution of 300 m. These data were used to estimate the
diversity of land cover classes using the Shannon information index61. The total
area (km2) of the land mass of which a grid cell is part was calculated to provide a
measure of insularity, or how isolated a grid cell is from other land masses. Smaller
and more isolated landmasses (i.e., islands) have a smaller value of insularity, whilst
grid cells on continental landmass have a larger value. As range size is used as one
of the criteria for classifying species’ extinction risk, the inclusion of insularity may
introduce circularity into these analyses. However, when compared with mainland
areas, islands are known for their higher levels of endemic, range-restricted species
that are potentially more vulnerable to imperilment30. By including insularity, we
can explore the role of islands in promoting concentrations of threatened species
richness alongside the suite of other variables considered here. A measure of
temporal climate stability since the last interglacial period (present to 125,000 years
ago) was derived from palaeo-climatic data made available by the Bristol Research
Initiative for the Global Environment (BRIDGE, http://www.bridge.bris.ac.uk/).
Details of the calculation of the model used to derive the paleo-climate data are
provided by62,63. Data on precipitation and temperature were sampled at 4,000
year intervals. For each temporal transition, the Euclidean distance was calculated
between z-transformed temperature and precipitation in bivariate space. The mean
Euclidean distance was used as a measure of long-term climate stability in a grid
cell, with smaller values indicating more stable climates64.

Human influence covariates. The total area of land within each grid cell classified as
intensively used by humans, as agricultural crop land or as urbanised areas, was
obtained from GlobCover 200965. As the occurrence of intensively used lands can
manifest in areas with minimal human settlement66, we also included the Human
Influence Index (HII, http://sedac.ciesin.columbia.edu/wildareas/) as an additional
measure of human impact. As a proxy for protection status, the total area of land
falling in the International Union for Conservation of Nature (IUCN) protected area
categories I–VI was calculated using the World Database on Protected Areas (WDPA:
https://www.protectedplanet.net/). Short-term land cover change was quantified using
global land cover data obtained from the European Space Agency Climate Change
Initiative (ESA CCI, https://www.esa-landcover-cci.org/?q= node/1). These data
were used to calculate the percentage change in the area of human influenced land
cover classes between 1992 and 2015. To quantify long-term land cover change, the
percentage change in the area of cropland between 1700 and 1992 was estimated
using data derived from67. Data on the number of invasive alien species in each
country were obtained from68. All human impact and environmental covariate data
were aggregated onto the same 0.5° equal area grid used for the species distribution
data. Further information on the derivation of explanatory variables can be found
in the Supplementary Methods.

Zoogeographic regions. Zoogeographic regions were the 20 regions identified
in29. These data were available as range polygons, which were also intersected with
the same grid used for the species distribution data. Grid cells were classed as the
region with the greatest coverage within the cell. As fewer than 10 cells were
classified as belonging to the Polynesian region, this region was excluded from all
analyses.

Statistical models. Random Forests were used to assess the potential of the
covariates to explain the distribution of threatened species richness. A machine
learning technique, random forests are a bootstrapped-based classification and
regression tree method that are robust to overfitting, and are recognised as pro-
ducing good predictive models69. They make fewer assumptions than correlative
approaches about the distributions of predictor and response variables. Tests of
collinearity between predictor variables revealed that only temperature seasonality
and mean annual temperature had an absolute correlation of greater than 0.7 (ρ=
0.85, Supplementary Fig. 4). Models were fitted using the ‘randomForest’ package
in R70,71. All analyses were carried out in R 3.3.171.

First, we modelled threatened species richness in relation to total species
richness alone. Models were fitted at a global scale for the threatened species
richness for the four individual taxonomic groups (amphibians, reptiles, birds and
mammals) as well as the total threatened vertebrate species richness (i.e., the four
taxonomic groups combined). Second, we modelled threatened species richness in
relation to the suite of environmental and human impact covariates detailed above.
These models also included total species richness as a covariate, to account for the
size of the species pool. This approach enables both the independent effect of
the total species richness to be controlled for, whilst also allowing for potential
interactions with other covariates72. To explore the potential of taxonomic
variation in the drivers of threatened species richness we fitted models both for the
total threatened vertebrate species richness as well as for the threatened species
richness for the four individual taxonomic groups. To explore spatial variation in
the drivers of threatened species richness, we then fitted separate models for the 19
individual zoogeographic regions. Again, we did this for both total threatened
vertebrate species richness and for the four individual taxonomic groups. Finally, to
verify the results from these models, we also modelled the residual threatened
species richness from the first set of models where threated species richness was
modelled in relation to total species richness alone (Fig. 1). This third set of models
used the same environmental and human impact covariates as before but omitted

total species richness. The results from these models were qualitatively very similar
to those from the models of absolute threatened species richness and are reported
in Supplementary Fig. 12. The model fitting process was the same for all models,
regardless of scale or response, and is described below.

To account for potential spatial autocorrelation73, we utilised a blocking
method74, to split the data into ten sampling blocks to be used for cross-validation.
The creation of each sampling block was based on ecoregions75 (http://www.
worldwildlife.org/science/data). Within our study area, each non-contiguous area
of an ecoregion was classified as a separate sampling unit. These sampling units
were then grouped into ten blocks so that the mean value of each environmental
variable was similar across all blocks, but each block covered the full range of
environmental variables within the area of study76. As all blocks cover a similar
range of environmental data, this method ensures that a similar range of data was
used for both calibrating and testing models, whilst also ensuring that the
calibration and testing data are spatially segregated77. This method performs well at
a large spatial scale, by minimising the influence of spatial autocorrelation whilst
allowing models to capture complex spatial processes74.

We used ten-fold cross-validation to find the optimal values of both the number
of trees (nt) and the number of predictors (m) used to build each regression tree,
which form the random forests. We initially fitted a random forest with nt set to
1000 and m set to 1. The initial model was calibrated on 9 of the 10 sampling
blocks and performance was evaluated on the omitted sampling block. We used the
coefficient of determination (R2) to assess model performance on the evaluation
data. A further 500 trees were then added to the model and the R2 was recalculated
on the evaluation data. If the additional trees improved model performance by
more than 1% they were accepted. This was repeated iteratively until model
performance was not improved by additional trees. We then repeated this process
with m set to 2 and 3. This process of fitting models with varying values of nt and
m, was repeated ten times, omitting a different sampling block each time. The
values of m and nt that maximised R2 across the ten iterations were then used to fit
the final set of models. Again, this used a ten-fold cross-validation approach, fitting
the model to nine of the ten sampling blocks and evaluating performance on the
omitted block using R2, omitting a different sampling block each time. This
resulted in ten random forest models of threatened vertebrate species richness. A
full summary of final model parameters and performance can be found in
Supplementary Tables 1 and 2.

Calculating variable importance. The importance of individual variables was
calculated using a randomisation approach. We initially assessed model perfor-
mance using mean squared error (MSE) on predictions made to the full data set.
We then randomised a variable, made new predictions and recalculated MSE. The
importance of the variable in the model was then calculated using Eq. 1:

VI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MSErand �MSEobs

MSEobs

s

ð1Þ

where VI is variable importance, MSErand is the mean squared error from the
predictions using the randomised variables, and MSEobs is the mean squared error
from the predictions with the variable as observed. We repeated the process 1000
times for each variable in the model and reported the mean VI.

To investigate the potential for spatial inconsistencies in the drivers of
threatened vertebrate species richness, we repeated the above analyses for
individual zoogeographic regions. Both global and zoogeographic regional level
analyses were repeated for the four individual taxonomic groups to assess cross-
taxon congruence in the drivers of threatened species richness. Owing to the small
sample size of some sampling blocks for the individual regions, some models lacked
explanatory power (i.e., R2 < 0.2578). These models were excluded from calculations
of variable importance and any further analyses. All other models showed medium
to excellent performance (Supplementary Table 1). We used repeated measures
ANOVAs to identify differences in the explanatory power of environmental and
human impact covariates. For this we aggregated the variables into two broad
categories (and total species richness), and then took the mean importance across
all variables within each category79.

Variable relationships. To explore the functional form of relationships between
individual variables and species richness patterns, we fitted separate models to both
threatened and total species richness, using the model fitting procedure outlined
above. This was performed for the individual taxonomic groups at a global scale,
using the same set of predictor variables, barring total species richness. Predictions
were then made to a data set where all but the focal variable were held at their
mean (or modal) value. This was repeated for each variable for both responses
(total and threatened species richness) for the four taxonomic groups. Here, we
present a selection of the most important environmental and human impact
variables from the taxa specific global models of threatened species richness, for
which the response of total species and threatened species richness differs, while
also being ranked in the top three of variable importance for each of the envir-
onmental and human impact categories. Plots of the relationships between all
variables and both threatened and total species richness, along with the measures of
variable importance for these additional models, can be found in Supplementary
Figs. 9, 10 and 11.
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Accounting for data deficient species richness. There is some evidence that data
deficient (DD) species are far more likely to be threatened than categorised spe-
cies80. Furthermore, there is evidence that the distribution of DD species is spatially
non-random, with concentrations of DD species occurring throughout low latitude,
tropical regions50 (Supplementary Fig. 3). To explore the sensitivity of our results
to the inclusion of DD species, we refitted our models, using the process outlined
above, but including DD species under several different assumptions of threat
status. For this, we randomly classified 0, 50 and 100% of DD species that occur in
each grid cell as threatened, and then included these species in our calculations of
total and threatened species richness, accordingly. The different assumptions of
threat status for the DD species produced qualitatively similar results that did not
substantially differ from the main analysis of absolute threatened species richness
(Supplementary Fig. 13).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The species richness data generated and analysed during this study are included in the
Source Data files. The other datasets utilised in this study are derived from published
sources, cited in the methods section. The source data underlying Figs. 1–4,
Supplementary Figs. 1–13, Tables 1–2, and Supplementary Tables 1–2 are provided as a
Source Data file.

Code availability
Code to carry out analyses is publicly available on https://github.com/
christinehoward399/Global-Rarity.
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