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Myocardial dysfunction is well-recognized manifestations of organ dysfunction in sepsis, which is the leading cause of death in
critically ill patients. The underlying mechanisms associated with sepsis-induced myocardial injury (SIMI) include cardiac
contractility, inflammatory response, oxidative stress, and apoptosis. Kudzu celery decoction (KCD) is composed of a variety
of traditional Chinese medicine (TCM) such as kudzu and celery. The previous study found that the main ingredients in
kudzu and celery have also been proved to have anti-inflammatory, antioxidative, and other biological activities. In this
study, the therapeutic effects of KCD were evaluated in the cecal ligation and puncture (CLP) model of BALB/c mice. The
effects of KCD on cardiac function, myocardium damage, inflammation, and fibrosis in CLP-injured mice were analyzed with
echocardiography, histological staining, and quantitative real-time PCR. The results showed that KCD treatment improved
the anal temperature, sepsis score, blood routine parameters, and blood biochemical parameters in CLP-injured mice. Then,
we observed that KCD could remarkably alleviate cardiac dysfunction, myocardial fibrosis, oxidative stress, and inflammation
in CLP-injured mice. In this study, we confirmed that KCD has a significant protective effect on SIMI, which may favor
KCD a potential cardioprotective drug candidate to alleviate SIMI and further amplify the application of TCM prescription
in clinic.

1. Introduction

The Third International Consensus Definition for Sepsis and
Septic Shock (Sepsis-3.0) defined that sepsis is a life threaten
organ dysfunction caused by the host’s dysfunctional
response to infection in 2016 [1]. Clinical studies have con-
firmed that sepsis causes multiple organ dysfunction syn-

drome with extremely high mortality rate and seriously
threatens human health [2]. Myocardial dysfunction is a rec-
ognized manifestation of sepsis and septic shock, which
leads to insufficient perfusion of blood flow to various
organs throughout the body and significantly increases the
occurrence of sudden cardiovascular events [3]. Studies have
confirmed that the underlying mechanisms associated with
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Figure 1: Continued.
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sepsis-induced myocardial injury (SIMI) include myocardial
systolic dysfunction, inflammatory response, oxidative stress,
myocardial fibrosis, and apoptosis [4, 5]. However, the spe-
cific pathogenic mechanism of SIMI has not been fully eluci-
dated. Moreover, numerous studies have attempted to
identify agents that are protective against SIMI, but very
few candidates have achieved profoundly beneficial effects.

The main ingredients of kudzu celery decoction (KCD)
are kudzu, celery, hawthorn, cassia seed, Chinese yam, Fruc-
tus lycii, stigma maydis, and lactose. Puerarin is an isofla-
vone extracted from kudzu roots and has been reported to
possess antioxidative, anti-inflammatory, antiapoptotic,
and antidiabetic properties [6]. Previous studies have shown
that kudzu extract and its bioactive isoflavones could be
effective for multiple cardiovascular diseases such as hyper-
tension, atherosclerosis, and myocardial infarction in clini-
cal therapy [7]. Moreover, celery has abundant flavonoid
luteolin, which exerts prominent antioxidative and anti-
inflammatory activities [8]. The KCD was originally devel-
oped by Shaanxi Health Chi Biological Pharmaceutical
Co., Ltd., and passed the safety standard requirements
under the instructions of the inventor, and obtained the
National Science and Technology Commission utility patent
number 202110493275.3. Moreover, the product has formed
a solid beverage in China and passed the national certifica-
tion (product standard number: Q/SXJCNNN0001S and
production license: SC10661990500017). Meanwhile, the
company has demonstrated that KCD not only lower blood
pressure but also reduce triglycerides and cholesterol,
restore vascular elasticity, and improve arteriosclerosis.
Moreover, they also found KCD can effectively reduce the
blood glucose of diabetic patients (China Patent Application
No: CN201510070734.1). However, whether KCD can exert
beneficial effects on SIMI has not been elucidated yet.
Therefore, the main purpose of this study is to investigate
whether KCD has protective effects on SIMI. It also pro-
vides a theoretical basis for KCD as a clinical cardioprotec-
tive drug in the future.

2. Materials and Methods

2.1. Animals. Male BALB/c mice (22-25 g) aged 8-10 weeks
were obtained from the animal center of PLA Air Force Mil-
itary Medical University (Xi’an, Shaanxi, China). All animal
experiment protocols were performed in accordance with
the guidelines of Animal Care and Use Committees at
Northwest University (Xi’an, Shaanxi, China) and were in
compliance with the Guidelines for the Care and Use of Lab-
oratory Animals (NIH Publication No. 85–23, revised 1996).
All mice had free access to food and water and were bred at
26°C in a 12h light/12 h dark cycle. The main ingredients of
KCD are kudzu (8-12 parts), celery (6-8 parts), hawthorn
(15-25 parts), cassia seed (15-25 parts), Chinese yam (6-8
parts), Fructus lycii (3-6 parts), stigma maydis (5-8 parts),
and lactose. To determine the optimum protective effects
of KCD (Health Chi Biological Pharmaceutical Co., Ltd.,
Xi’an, Shaanxi, China) on CLP-injured mice, KCD (0.75,
1.5, and 3 g/kg, i.g.), dissolved in phosphate buffer salt solu-
tion (PBS), was given once a day for 15 days (Figure 1(a)).
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Figure 1: The effects of KCD on body weight, sepsis sore, and anal temperature in CLP-injured mice. (a) A schematic diagram of the
experimental group and protocol. (b) Body weight analysis of normal mice within 15 days. (c) The picture of the CLP modeling process.
(d) Sepsis score. (e) Anal temperature. ∗P < 0:05, ∗∗∗P < 0:001, ∗∗∗∗P < 0:0001 vs. CLP group; ns: nonsignificant; n = 6.

Table 1: Sequence of primers used in PCR amplification.

Gene Sequence

NLRP3
Forward GGAGTTCTTCGCTGCTATGTA

Reverse GGACCTTCACGTCTCGGTTC

IL-1β
Forward GTGTCTTTCCCGTGGACCTT

Reverse CATCTCGGAGCCTGTAGTGC

IL-6
Forward TTGGGACTGATGCTGGTGAC

Reverse GGTATAGACAGGTCTGTTGGGAGT

TNF-α
Forward ACTGAACTTCGGGGTGATCG

Reverse TGGTGGTTTGCTACGACGTG

CXCL2
Forward CCACCAACCACCAGGCTACA

Reverse CTGTAGCCTGGTGGTTGGT
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2.2. Cecal Ligation and Puncture (CLP) Model. All mice were
fasted for 8 h before the operation, but water was allowed ad
libitum. Mice were anesthetized with 2% inhaled isoflurane.
The abdominal hair of mice was shaved off, and the abdom-
inal skin of mice was sterilized with 75% alcohol. A 1-2 cm
midline laparotomy was performed to expose the cecum
with adjoining intestine. The cecum was tightly ligated at
1/3 site from its end using 4-0 nylon suture, and double
punctures of the cecal wall were performed with a 25G nee-
dle. A small droplet of feces was squeezed through the punc-
ture site to ensure patency, and it was returned to the
peritoneal cavity, then the incision of peritoneum, fasciae,
abdominal musculature, and skin was sutured with a sterile
6-0 silk. Except for cecum ligation and perforation, the other
operations in the sham operation group were the same as
those in the operation group. All operated mice were resus-
citated by injecting prewarmed normal saline (1mL/100 g,
37°C) subcutaneously. Sepsis score was conducted by two
investigators after the induction of sepsis for 8 h by murine
sepsis score (MSS). The MSS system involves observing
seven components: appearance, level of consciousness, activ-
ity, response to stimulus, eyes, respiratory rate, and respira-
tory quality. Each of these variables are given a score
between 0 and 4 and are referred with Shrum et al. [9].
The established MSS score is the total of these seven compo-
nents. Subsequently, the anal temperature was determined at
post-CLP 8h with the animal thermometer (Calvin Biotech-
nology Co., Ltd., Nanjing, Jiangsu, China).

2.3. Detection of Blood Routine Parameters and Blood
Biochemical Parameters. At 8h post-CLP, at least 10μL
blood was collected from the left eyeball into a heparin-
coated tube. The levels of white blood cells (WBC), red
blood cells (RBC), platelets (PLT), and lymphocytes (LYM)
were detected by an automatic blood analyzer (Genrui Tech-
nology Co., Ltd., KT6200VET, Shenzhen, Guangdong,
China). After that, 150μL serum was isolated from the rest
of the whole blood by being centrifuged at 3000 rpm for
10min. The levels of CK (creatine kinase), aspartate amino-
transferase (AST), albumin (ALB), and blood urea nitrogen
(BUN) were detected by an automatic blood biochemical
analyzer (XinRui Technology Co., Ltd., XR210, Zhongshan,
Guangdong, China).

2.4. Echocardiography Evaluation. Transthoracic echocardi-
ography was performed using an animal-specific instrument
(VisualSonics Vevo3100, VisualSonics, Toronto, ON, Can-
ada) at 8 h post-CLP in mice. Mice were anaesthetized with
2% isoflurane in an induction chamber for 1-2min. Next,
mice were, respectively, laid supine on a warm platform
and kept anesthetized by 2% isoflurane until they lost body-
righting reflex. Then, a series of M-mode images at the level
of papillary muscles were obtained. Stroke volume (SV), car-
diac output (CO), left ventricular posterior wall thickness of
systole period (LVPWs), left ventricular posterior wall thick-
ness of diastole period (LVPWd), left ventricular diastolic
volume (LVEDV), and left ventricular systolic volume
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Figure 2: The effects of KCD on blood routine parameters and blood biochemical parameters in CLP-injured mice. (a) Blood routine
parameters. (b) Blood biochemical parameters. ∗P < 0:05, ∗∗P < 0:01, ∗∗∗P < 0:001, ∗∗∗∗P < 0:0001 vs. CLP group; ns: nonsignificant; n = 6.
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Figure 3: Continued.
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(LVESV) were measured using Vevo LAB 3.0.0. All measure-
ments were based on three consecutive cardiac cycles.

2.5. Histological Stating. To analyze the histopathological
changes in the myocardium, the heart was excised, and
one part of the myocardium was fixed overnight in 4% para-
formaldehyde, embedded in paraffin, and dehydrated in an
ascending series of ethanol (70, 80, 90, and 100%). The tis-
sue samples were embedded in paraffin wax and cut into 4-
5μm thick sections. The sections were mounted on standard
glass slides and stained with hematoxylin and eosin (H&E)
for 2min before histological examination. Images of the
stained sections were obtained using a light microscope
(EVOSM5000, Thermo Fisher Scientific, Carlsbad, CA,
USA). The degree of myocardial fibrosis was examined by
Masson staining (Solarbio, Co., Ltd., Beijing, China). For
immunostaining, paraffin-embedded slices were stained with
the respective primary antibodies against Ly6G (1 : 200, Servi-
cebio, Wuhan, China), F4/80 (1 : 200, Servicebio, Wuhan,
China), NOX2 (1 : 200, Servicebio, Co., Ltd., Wuhan, Hubei,
China), and 8-OHdg (1 : 200, Santa Cruz Biotechnology, Dal-
las, TX, USA), then incubated with a secondary biotinylated
anti-rabbit IgG, stained with 3,3′-diaminobenzidine (DAB),
and imaged using a microscope (Invitrogen EVOS M5000,

Thermo Fisher Scientific, Waltham, MA, USA). Finally, IHC
were quantified using Image-Pro plus 6.0 software.

2.6. Quantitative Real-Time PCR (qRT-PCR). Total RNA
was extracted from myocardium using the TRIzolTM total
RNA Extraction Kit (Takara Bio Inc. Kusatsu, Shiga, Japan),
and reverse transcription was performed using the Prime
Script RT Master Mix (Takara Bio Inc. Kusatsu, Shiga,
Japan). Then, NLRP3, IL-1β, IL-6, TNF-α, and CXCL2
mRNA levels were detected using quantitative real-time
reverse transcriptase PCR analysis with SYBR Premix Ex
Taq in Table 1 (Hunan Accurate Biotechnology Co., Ltd.,
Changsha, Hunan, China). The reaction conditions were as
follows: (1) 95°C for 10min, (2) 40 cycles of 95°C for 5 s
and 60°C for 30 s, (3) 94°C for 30 s, 60°C for 90 s, and 94°C
for 10 s. The expression levels of the examined transcripts
were compared to that of β-actin and normalized to the
mean value of the controls.

2.7. Statistical Analysis. Data were analyzed by using Graph-
Pad Prism 9.0.0 (GraphPad Software Inc., San Diego, CA,
USA). All values are presented as the mean ± standard
deviation (SD). For the difference analysis of experimental
data, t test was used for any two groups, and one-way
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Figure 3: The effects of KCD on cardiac function in CLP-injured mice. (a) Representative echocardiography images of the long axis, n = 6.
(b) Statistical graph of SV, CO, LVESV, LVEDV, LVPWs, and LVPWd. (c) Representative echocardiography images of the short axis, n = 6.
(d) Statistical graph of SV, CO, LVESV, LVEDV, LVPWs, and LVPWd. ∗P < 0:05, ∗∗P < 0:01, ∗∗∗P < 0:001, ∗∗∗∗P < 0:0001 vs. CLP group;
ns: nonsignificant.
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ANOVA was used for more than two groups. P < 0:05 indi-
cated that the date had significant differences.

3. Results

3.1. The Effects of KCD on Body Weight of Normal Mice,
Sepsis Score, and Anal Temperature in CLP-Injured Mice.

First, the body weight of the mice was observed every day.
KCD, especially at high doses, slightly increased the body
weight of normal mice, but there was not a significant differ-
ence (compared with the control group, Figure 1(b)). CLP is
one of the most widely used model for experimental sepsis.
The establishment of CLP model mainly consists of two
steps: cecal ligation and puncture (Figure 1(c)). Moreover,
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Figure 4: The effects of KCD on myocardial structure and myocardial fibrosis in CLP-injured mice. (a) H&E staining, n = 3. (b) Masson
staining, n = 3.
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Figure 5: Continued.
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the sepsis score and anal temperature were performed 8h
post CLP. As shown in Figure 1(e), KCD treatment signifi-
cantly increased the anal temperature in CLP-injured mice
(compared with the CLP group, P< 0.05). In this study, a
murine sepsis score system was introduced to monitor the
mice based on their appearance, level of consciousness,
activity, response to stimuli, eyes, respiration rate and qual-
ity (from 0 to 4 points for each criteria). The results showed
that CLP significantly increased sepsis score, while KCD
treatment reversed these results (compared with the CLP
group, Figure 1(d), P < 0:05).

3.2. The Effects of KCD on Blood Routine Parameters and
Blood Biochemical Parameters in CLP-Injured Mice. Then,
blood routine parameters and blood biochemical parameters
were detected. Compared with the CLP group, KCD remark-
ably increased the levels of WBC and PLT and decreased the
level of RBC (Figure 2(a), P < 0:05), whereas KCD had no
significant effect on LYM level in the blood. In addition,
CLP injury markedly rose the levels of blood biochemical
parameters (CK, BUN and AST) and decrease the level of

ALB. However, KCD treatment could reverse these alters
except for ALB (Figure 2(b), P < 0:05). The protective effect
was obvious with high dose of KCD, so this concentration of
KCD was adopted for further studies.

3.3. The Effects of KCD on Cardiac Function and Myocardial
Fibrosis in CLP-Injured Mice. The indicators of cardiac func-
tion were detected by echocardiography. As shown in
Figures 3(a) and 3(b), CLP resulted in severe myocardial
injury in long axis view, as evidenced by decreased SV,
CO, LVESV, and LVEDV and increased LVPWs and
LVPWd (compared with the sham group, P < 0:05). KCD
treatment showed obvious cardioprotective effect by restor-
ing these parameters of cardiac function (compared with
the CLP group, P < 0:05). Results from the short axis view
took on the same trend (Figures 3(c) and 3(d)). Besides,
H&E staining and Masson staining have shown obvious
structural abnormalities and myocardial fibrosis in CLP-
injured myocardium, while KCD treatment remarkably
reversed these pathological changes induced by CLP
(Figures 4(a) and 4(b)).
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Figure 5: The effects of KCD on inflammatory response in CLP-injured mice. (a) The representative images of Ly6G IHC staining, n = 3. (b)
Statistical graph of Ly6G IHC staining. (c) The representative images of F4/80 IHC staining, n = 3. (d) Statistical graph of F4/80 IHC
staining. (e) qRT-PCR analysis of NLRP3, IL-1β, IL-6, TNF-α, and CXCL2, mRNA by normalizing to β-actin, n = 6. ∗P < 0:05, ∗∗P <
0:01, ∗∗∗P < 0:001, and ∗∗∗∗P < 0:0001 vs. CLP group; ns: nonsignificant.
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3.4. The effects of KCD on structure and fibrosis in CLP-
injured mice. As shown in Figure 5(e), the qRT-PCR assay
demonstrated that CLP injury significantly increased
NLRP3, IL-1β, IL-6, TNF-α, and CXCL2 mRNA expres-
sions. However, KCD treatment could reverse these effects
except for IL-1β and IL-6 (Figure 5(e), P < 0:05). Moreover,
the IHC staining of Ly6G and F4/80 was also performed to
visualize their expressions in the myocardium. As expected,
KCD significantly attenuated the inflammatory response,
as indicated by decreased expressions of Ly6G and F4/80
(compared with the CLP group, P < 0:05, Figures 5(a)–
5(d)). In addition, this study also investigated the effect of
KCD on the expression of oxidative stress markers (NOX2
and 8-OHdg) in the myocardium. The results showed that
KCD significantly attenuated the oxidative stress, as indi-
cated by decreased expressions of NOX2 and 8-OHdg (com-
pared with the CLP group, P < 0:05, Figures 6(a)–(d)).

4. Discussion

Sepsis is a comprehensive disease with high mortality and is
characterized by systemic inflammatory response syndrome.
The clinical manifestations of sepsis are various complica-

tions. SIMI is closely related to sepsis mortality rate [10].
Previous studies have shown several progress with great sig-
nificance in SIMI, including extravagant inflammatory
response, apoptosis, and fibrosis [10]. It is reported that the
main ingredients of KCD (kudzu and celery) have various
biological activities such as anti-inflammatory and antioxida-
tive, which are responsible for its extensive therapeutic effects
[11, 12]. In this study, we found that KCD exerted signifi-
cantly protective effects against SIMI by alleviating inflam-
mation, oxidative stress, and myocardial fibrosis (Figure 7).

Inflammatory response plays an important role in myo-
cardial injury, and the production of proinflammatory cyto-
kines is a key step in SIMI [13]. Clinical and experimental
studies have shown that the massive release of proinflamma-
tory cytokines (IL-6 and TNF-α) can trigger sepsis-induced
cardiac dysfunction [14], and inhibition of the expressions
of IL-6 and TNF-α can significantly attenuate SIMI [15].
Zeng et al. found that CLP-injured can increase the levels
of IL-1β, IL-6, and TNF-α in the heart of septic mice [16].
In this study, KCD significantly reduced NLRP3, IL-1β, IL-
6, TNF-α, and CXCL2 mRNA expressions. Neutrophils are
the firstly recruited cells that release chemotactic factors
and elicit the invasion of monocytes into the injured
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Figure 6: The effects of KCD on oxidative stress in CLP-injured mice. (a) The representative images of NOX2 IHC staining, n = 3. (b)
Statistical graph of NOX2 IHC staining. (c) The representative images of 8-OHdg IHC staining, n = 3. (d) Statistical graph of 8-OHdg
IHC staining. ∗∗P < 0:01, ∗∗∗P < 0:001 vs. CLP group; ns: nonsignificant.
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myocardium; Ly6G are often used as marker of neutrophil in
these conditions. Additionally, F4/80, specific macrophage
marker, are known to play an important role in apoptosis,
clearing damaged tissue and wound healing, particularly in
the heart. Therefore, to ascertain the effect of KCD on neu-
trophil infiltration into myocardium, we examined the
Ly6G and F4/80 expression by IHC staining in myocardium
of CLP-injured mice. We also found that KCD significantly
attenuated the inflammatory response, as indicated by
decreased expressions of Ly6G and F4/80.

Myocardial fibrosis, an important hallmark of maladap-
tive hypertrophy, plays a critical role in SIMI. Myocardial
fibrosis is characterized by the excessive accumulation of
collagens and other extracellular matrix (ECM), resulting
in myocardial stiffness, cardiac remodeling, and eventual
heart failure [17]. Zhang et al. found that CLP injury signif-
icantly induced cardiac perivascular and interstitial fibrosis
in septic mice [18]. Moreover, Tomita et al. demonstrated
that ONO-4817 (MMP inhibitor) can obviously inhibit the
rapid progression of myocardial fibrosis in septic mice
[19]. In this study, KCD treatment could alleviate myocar-
dial fibrosis by decreasing the deposition of collagen fiber
in CLP-injured mice.

5. Conclusion

In conclusion, this study demonstrates for the first time the
beneficial effects of KCD on SIMI, which is manifested in
amelioration of inflammatory response, oxidative stress,
and myocardial fibrosis (Figure 7). Therefore, these finding
may favor KCD a potential cardioprotective drug candidate
to alleviate SIMI in clinical.
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