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Abstract: The metabolic syndrome is a multifactorial disease developed due to accumulation and
chronification of several risk factors associated with disrupted metabolism. The early detection of the
biomarkers by NMR spectroscopy could be helpful to prevent multifactorial diseases. The exposure
of each risk factor can be detected by traditional molecular markers but the current biomarkers have
not been enough precise to detect the primary stages of disease. Thus, there is a need to obtain
novel molecular markers of pre-disease stages. A promising source of new molecular markers are
metabolomics standing out the research of biomarkers in NMR approaches. An increasing number
of nutritionists integrate metabolomics into their study design, making nutrimetabolomics one of
the most promising avenues for improving personalized nutrition. This review highlight the major
five risk factors associated with metabolic syndrome and related diseases including carbohydrate
dysfunction, dyslipidemia, oxidative stress, inflammation, and gut microbiota dysbiosis. Together,
it is proposed a profile of metabolites of each risk factor obtained from NMR approaches to target
them using personalized nutrition, which will improve the quality of life for these patients.

Keywords: metabolic syndrome; metabolism deregulation; molecular biomarker; prevention;
metabolomics; nutritional habits; carbohydrate dysfunction; dyslipidemia; oxidative stress;
inflammation; gut microbiota

1. Introduction

Metabolic syndrome (MetS) is considered a multifactorial disease, which means that a cluster of risk
factors associated with disrupted metabolism may influence in their development [1]. Multifactorial
diseases are caused by different single factors but also by a combination of altered metabolic situations
(genetic, environmental, physiological, metabolic, cellular, and molecular elements) that working
together and extended over time eventually lead to a pathologic state [2,3]. However, these processes
are not fully understood yet and MetS has emerged as a worldwide health concern in the recent
decades, which prevalence is growing in parallel with the incidence of obesity, type 2 diabetes (T2D) or
insulin resistance (IR). Thus, MetS is mainly attributed to changes in lifestyle that may impact genetic
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and phenotypic susceptibility [4–6]. Subsequently, the opportunity to prevent this disease is presented
as a medical challenge for the whole facultative and research community.

Nowadays, there is a lack of efficient tools to prevent the development of MetS, obesity and
their metabolic disarrangements, which essentially includes carbohydrate and lipid metabolism,
inflammation, oxidative stress, and gut microbiota [7]. Nevertheless, there are several lifestyle aspects
that can be modified to prevent the development of these risk factors associated to MetS such as
diet, nutritional habits, and physical activity [8]. However, nutrition is probably the most important
adaptable factor that regulates the expression of genes involved in several metabolic pathways [9].
Thus, driven changes in diet and nutritional habits, known as personalized nutrition, have been
increasing as a promising tool and are taking more relevance in society to control and prevent metabolic
diseases [10].

The classical concept of personalized nutrition is assisted by genetic assessment through an
analysis of single nucleotide polymorphisms (SNPs), which may provide useful information about
the genetically programmed response of a subject to a given food or nutrient (nutrigenomics) [11].
The phenotypic traits are dynamic markers and hence, more appropriate for defining the effects of
lifestyle variables on the organism (diet, nutritional habits, physical activity, daylight rhythmicity,
etc.). Advances in omics technologies have led to the possibility of characterizing the metabolism of
every subject from a holistic point of view, thus opening a wide array of possibilities for phenotypic
characterization and providing a more accurate health assessment contributing to improve quality of
life [8].

Recently, the concept of nutrigenomics has evolved to incorporate many integrative methods
concerning high-throughput omics technologies such as genomics, transcriptomics, proteomics,
metabolomics, metagenomics, and epigenomics [12] because the personalized nutrition based in
nutrigenomics is limited. Ideally, the optimal personalized nutrition should be based in this modern
concept of nutrigenomics, but is reasonless in a practical way due to the methodology high cost and
the technical difficulties [13].

An alternative of the classical and modern concept of nutrigenomics is the study of the metabolomic
profile [14]. An increasing number of nutritionists integrate metabolomics into their study design,
nutrimetabolomics, achieving to be one of the most promising avenues for improving personalized
nutrition [15,16]. Personalized nutrition can target small deviations of the metabolism associated with
the risk factors, before the onset of the disease. When the disease is finally developed, the problem
escapes the field of personalized nutrition and medical drugs administration are required. Therefore,
there is a real need for an early detection of the slight changes on different metabolic parameters that
combined triggers the disease development. At present, the lack of robust health status biomarkers
for the principal clusters of MetS and obesity is a bottleneck that slows down the personalized
nutrition in metabolomics [17]. This fact has been taken up by the scientific community. For example,
the BIOCLAIMS project (FP7-244995) which has established the principles to obtain robust biomarkers
for health status, or the PREVENTOMICS project (DT-SFS-14-2018-818318) which aims to use health
biomarkers in applications for consumers.

In order to introduce the advantages of metabolomics in the research of biomarkers, the common
techniques used in metabolomics should be known. The two most common techniques used are nuclear
magnetic resonance (NMR) spectroscopy and mass spectrometry (MS) hyphened to chromatographic
techniques such as gas chromatography (GC), capillary electrophoresis (CE), liquid chromatography
(LC), and ultra-high performance liquid chromatography (UHPLC). Each analytical platform has its
own advantages and disadvantages, thus the choice of the platform principally depends on the objective
of the study, the accessibility and expertise of the platform [18]. The NMR platform is proposed as
an emerging tool for large-scale metabolomics studies in the personalized nutrition field. The NMR
characteristics which make it a unique platform include its high level of experimental reproducibility,
its simplicity in sample pre-processing and preparation, its capacity to handle diverse biofluids,
its quantitative capabilities (with a high coverage and low detection limits [19]), and its utility in
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identifying unknown metabolites along with its non-destructive nature [20]. The inherent limitation of
NMR is the low sensitivity compared to MS but there are emerging new NMR technologies that suggest
a huge improvement in the NMR spectroscopy [21]. In order to highlight one of the NMR-approaches,
quantitative proton 1H-NMR is the most useful NMR-based platform for metabolomics and has
been successfully applied to early diagnostic and prognostic purposes [22,23]. The most popular
biological fluids used in metabolomics are plasma, serum, urine and feces, while other fluids and
tissues are not yet well explored. Plasma and serum are the most common biofluids used in human
metabolomic studies, because they are relatively easy to collect with minimal invasive procedures and
their metabolome reflects individual changes in metabolism. On the other hand, the advantages of
urine and feces samples are that they are biological samples easy-to-access, which can be obtained
using non-invasive procedures [15]. Between urine and feces, urine is preferable as biofluid because
the NMR techniques are optimized for early disease detection [24].

Taking into account these necessities, the present review addresses the demand to have a list of the
potential molecular markers obtained by NMR metabolomics to be targeted in personalized nutrition
in plasma/serum and urine (Table 1). We propose five clusters of molecular markers associated with
five of the most relevant risk factors associated with MetS and related diseases. Then we will discuss
the involvement of new biomarkers in the early stages of MetS distributed in the following list of
molecular clusters: carbohydrate metabolism, dyslipidemia, inflammation, oxidative stress, and gut
microbiota dysbiosis.
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Table 1. Metabolomic biomarkers risk factors of metabolic syndrome (MetS) and related diseases by NMR approaches.

Biomarker Level Biofluid Risk factor Metabolic pathway Pre-clinical
evidences Clinical evidences

Glucose Increased Serum, urine Carbohydrate
disruption

Glycolysis,
gluconeogenesis,

pyruvate metabolism
[25,26] [19,27,28]

Lactate
Increased Serum, urine Carbohydrate

disruption Gluconeogenesis,
Pyruvate metabolism

[29,30] [27,31,32]

Increased Urine Gut microbiota
metabolism [33]

Uric acid Increased Serum, urine, and
renal extracts

Carbohydrate
disruption Purine metabolism [34,35] [36]

Propionylcarnitine Increased Plasma Carbohydrate
disruption Lipid metabolism - [37–40]

Leucine (BCAA) Increased Serum/plasma, urine Carbohydrate
disruption

Amino acid
metabolism [25,26] [32,41–43]

Isoleucine (BCAA) Increased Serum/plasma, urine Carbohydrate
disruption

Amino acid
metabolism [25,26] [32,41–44]

Valine (BCAA) Increased Serum/plasma, urine Carbohydrate
disruption

Amino acid
metabolism [25,26] [32,41–43,45,46]

Phenylalanine (AAA) Increased Serum/plasma, urine Carbohydrate
disruption

Amino acid
metabolism [25,26] [32,41–43,47]

Tyrosine (AAA) Increased Serum/plasma, urine Carbohydrate
disruption

Amino acid
metabolism [25,26] [32,41–44,48]

Glutamate Increased Serum Carbohydrate
disruption

Amino acid
metabolism [49] [39,50,51]

Glutamine Decreased Serum, urine Carbohydrate
disruption

Amino acid
metabolism [30] [39,50]

Citrate Increased/decreased Serum Carbohydrate
disruption

Tricarboxylic acid
(TCA) cycle [29,52] [53]

TMAO Increased Plasma/Urine Gut microbiota
metabolism Choline metabolism [54] [55,56]

Acetate Increased Plasma Gut microbiota
metabolism Pyruvate metabolism [57] [58]
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Table 1. Cont.

Biomarker Level Biofluid Risk factor Metabolic pathway Pre-clinical
evidences Clinical evidences

TMA Increased/Decreased Plasma/Urine Gut microbiota
metabolism Choline metabolism [59–61] -

DMA Increased/Decreased Plasma/Urine Gut microbiota
metabolism Choline metabolism [59,62] [27]

Succinate Increased Plasma Gut microbiota
metabolism Succinate metabolism [63] [64]

NAG Increased Plasma/Serum Inflammation
pathway Protein Glycosilation - [65–67]

LPCs Increased Plasma/Serum Inflammation
pathway

Phospholipid
hydrolysis - [68]

SFA, MUFAs PUFAs:
DHA, EPA/
ALA, AA

Decreased/Increased Urine/Serum Inflammation
pathway Lipid metabolism [69] -

Serum Dyslipidemia [70] [43]

3-hydroxybutirate Increased Urine/plasma Dyslipidemia Ketogenesis [71] [72]

Choline Decreased Serum Dyslipidemia Choline metabolism [73,74] [27]

Allantoin Increased Urine Oxidative stress Purine metabolism [26,75–77] -

Pseudouridine Increased Urine Oxidative stress Nucleic acid
metabolism - [78–80]

Glycine Decreased Plasma/Serum Oxidative stress 1C metabolism - [81,82]

Serine Decreased Plasma/Serum Oxidative stress 1C metabolism - [81,82]

Branched chain aminoacids (BCAAs); aromatic aminoacids (AAAs); trimethylamine N-oxide (TMAO); trimethylamine (TMA); dimethylamine (DMA); lysophospholipids (LPCs);
N-acetylglycoproteins (NAG); saturated fatty acids (SFA); monounsaturated fatty acids (MUFAs); polyunsaturated fatty acids (PUFAs); eicosapentaenoic acid (EPA); docosahexaenoic acid
(DHA); arachidonic acid (ARA); arachidonic acid (AA).
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2. Carbohydrate Dysfunction

Carbohydrate metabolism dysfunction is highly related with IR and T2D, which represents
approximately 95% of diabetes cases worldwide [83]. The standard clinical determinations of
carbohydrate dysfunction include glucose and insulin determinations; HOMA-IR (homeostasis model
assessment of IR) calculated by fasting plasma glucose and insulin levels; glycated hemoglobin
(HbA1c) determination; and adiponectin and leptin levels, and the ratio of both, as hormones produced
predominantly by adipocytes involved in carbohydrate dysfunction [84].

Fasting plasma glucose levels upper 7 mmol/L and fasting plasma insulin below 110 pmol/L are
related to the carbohydrate metabolism pre-disease [85,86]. HOMA-IR, which is a widely accepted
method to calculate IR state, determines the IR using the fasting glucose and insulin levels as
described in different clinical guidelines [87,88], following the formula (HOMA-IR = Insulin (µU/mL)
× Glucose (mmol/L)/22.5) [89]. A higher value of HOMA-IR corresponds to a more severe IR [90].
Additionally, the HOMA-B index has been used as a robust measure of beta cell function (HOMA-B =

Insulin (µU/mL)/(Glucose (mmol/L) −3.5)) [89], as well as the QUICKI index (QUICKI =1/(Log Insulin
(µU/mL) + Log Glucose (mmol/L)), which is considered a measure of insulin sensitivity [91]. As a
conclusion, nowadays HOMA-IR is the most frequently used index to determine IR using fasting blood
levels of glucose and insulin [92].

Other typical determination in T2D diagnosis is HbA1c, which was initially identified as an
“unusual” hemoglobin, and has been correlated with glucose in several studies, suggesting the idea
that HbA1c could be used as an objective measure of glycemic control [93]. HbA1c values represent
the average glycemic control over the past 2–3 months and account for both, pre-prandial and
post-prandial blood glucose levels [94]. Moreover, regular HbA1c measurement is recommended
by different international guidelines for all patients with diabetes for the assessment of glycemic
control [95]. Although the HbA1c concentration is used for diagnosis, the biological variation and
non-standardized procedure limits its application [96].

In addition, some hormones secreted by the adipose tissue, such as the adipokines leptin and
adiponectin, interact in modulating T2D risk, being adiponectin more strongly associated with T2D
risk [97]. Specifically, the circulating levels of adiponectin are inversely associated with pre-diabetes and
other metabolic traits [98–100]. In the case of leptin, higher circulating levels are directly contributing
to the development of IR. Moreover, the leptin/adiponectin (L/A) ratio is related with preventive
measures in MetS [101] and highly associated with IR in non-diabetic patients [102]. In the ARIRANG
study, low ratio of L/A is a predictor for the regression of MetS and L/A was proposed as a clinical
biomarker to measure the risk to develop the syndrome [103]. Finally, L/A ratio and HOMA-IR index
has been demonstrated that both can be used to identify obese patients with IR [104,105].

Regrettably, insulin, HbA1c, leptin and adiponectin levels detected by traditional methods are
only useful when the disease is well-stablished and not in the preliminary states of the pathology.
Thus, we propose different metabolites, that are detected by NMR approaches, as molecular markers
of carbohydrate metabolism dysfunction that can be detected in the pre-disease state. Specifically, we
propose glucose and lactate as principal bioenergetics molecules and, new emerging biomarkers, such
as plasmatic levels of uric acid; branched chain amino acids (BCAA); aromatic amino acids (AAA);
other amino acids as glutamate and glutamine; or propionylcarnitine.

2.1. Glucose

Glucose is a classic carbohydrate used as a biomarker for the diagnostic for carbohydrate
dysfunction metabolism [106]. In the absence of more specific biological marker to define T2D,
glucose has been used as a marker for diagnostic criteria for T2D and pre-diabetes according to the
2006/2013 World Health Organization (WHO) [84,107] and 2019 American Diabetes Association (ADA)
recommendations [108]. Carbohydrate metabolism is important in the development of T2D, where
insulin regulates the blood levels of glucose and its metabolism helping cells to take glucose or store
it as glycogen, depending on the needed. To sum up, high blood levels of glucose finally results
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in alteration of pancreatic β-cell function carrying on with IR [109]. Moreover, glucose, which is
the primary source of energy for living organisms, could be broken down via glycolysis, enter into
the TCA cycle and oxidative phosphorylation to generate nucleotide adenosine triphosphate (ATP).
Other important pathways in carbohydrate metabolism are glycogenesis, glycogenolysis (conversion
of glycogen polymers into glucose, stimulated by glucagon) and gluconeogenesis (de novo glucose
synthesis) [110].

There are several pre-clinical and clinical evidences about the potential of glucose as early
biomarker of disease using NMR method. However, it is difficult to identify other metabolites in
samples with an imbalance of glucose because the glucose signals (including other metabolites that
overlap with the glucose region) suppress the other metabolite signals in the NMR spectrum [111].
In animal studies, high levels of glucose are shown in the metabolic profile. For example, Abu Bakar
Sajak et al. [26] and Mulidiani et al. [25] detected and quantified glucose in urine in streptozotocin
(STZ)-induced diabetic rats. In recent clinical studies, glucose is significantly increased in adults
with risk to develop MetS or related diseases [95]. In forty-six young adults of normal weight and
overweight, the serum metabolite profile was analyzed by NMR and high levels of glucose were
detected in overweight adults compared to normal weight volunteers [27]. Moreover, the importance
of using glucose in the profiling of a pre-disease state was stablished in another clinical trial, where
healthy people and patients with different levels of T2D presented an increase on glucose concentration
depending on the disease state (T2D and its complications) [28]. In addition, Zhang et al [19] aimed
to identify the biomarker signature of pre-states in metabolic diseases by serum profiling with NMR.
Principal components analysis and orthogonal partial least squares-discriminant analysis were used to
distinguish between samples from patients and healthy controls. In this study, glucose was highly
expressed and included in the suggested metabolic profile for the early prediction [19]. However,
taking into account the wide and easy extended use of glucometers to measure glycaemia, measure
glucose levels with NMR analysis will be not justified unless additional parameters would be obtained
in the same NMR profile.

2.2. Lactate

Focus on carbohydrate metabolism dysfunction, lactate has been considered a disease biomarker
but also a marker for the pre-disease stage [112]. It plays a role in several biochemical processes and it is
also an end-product of bacterial fermentation, produced by lactic acid bacteria of the genera Lactobacillus
and Bifidobacterium [113] (discussed below). Lactate is formed in mammalian cells predominantly from
glucose and alanine through their conversion into pyruvate, which is reduced to lactate by lactate
dehydrogenase. Besides, the same enzyme removes lactate via its oxidation to pyruvate. Pyruvate
could be oxidized to carbon dioxide producing energy or transformed glucose. Lactate metabolism is
directly implicated in the gluconeogenesis, indirectly in the TCA cycle and in the respiratory chain,
which are metabolic pathways implicated in carbohydrate metabolism [114]. Changes in plasma
lactate during an oral glucose tolerance test (OGTT) are inversely correlated with fasting insulin,
indicating that IR can be reflected through this metabolite response to a glucose challenge [115,116].
Lactate homeostasis is related to glucose metabolism and, therefore, diseases associated with glucose
disruption, as MetS, obesity or diabetes, are associated with disturbed lactate metabolism [114,117].
Failures in the mitochondrial energy-generating system in the pancreatic β-cells may also lead to the
abnormal accumulation of lactate in urine, blood, and cerebrospinal fluids [118].

The first metabolomic approach to quantify lactate urinary level, which determined lactate as a
risk marker for T2D, was done by Chou and their colleagues [31]. In animal studies, high levels of
lactate were shown in urine NMR metabolomic profile in rats feed with a high fat diet (HFD) and
in obese rats [29,30]. In these studies, lactate was selected as key metabolite in the carbohydrate’s
disruption. In overweight volunteers, lactate was increased compared with normal weight patients in
the serum metabolite profile [27]. In a longitudinal clinical study, OGTT was assessed in two Finnish
population-based studies consisting of 1873 individuals and re-examined after 6.5 years. Metabolites
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were quantified by NMR from fasting serum samples and the associations were studied by linear
regression models adjusted for established risk factors. Lactate was determined as potential marker
for long-term IR that could be related to glucose tolerance later in life [32]. Consequently, changes in
lactate levels are a promising tool to monitor early disarrangements in the carbohydrate metabolism.

2.3. Uric Acid

Uric acid, generated during ATP metabolism, is the end product of the exogenous pool of purines
and endogenous purine metabolism [119]. In the purine metabolism, adenosine monophosphate
(AMP) deaminase promotes fat storage and IR, whereas activation of AMP activated protein kinase
stimulates fat degradation and decreases gluconeogenesis. Uric acid is a key factor that appears to
promote the mechanism implicated in imbalanced carbohydrate metabolism [120,121]. Overproduction
of uric acid has been implicated in chronic diseases states including MetS, pre-diabetes, hypertension
and non-alcoholic fatty liver disease (NAFLD) [122–125]. In addition, uric acid has been described as
an antioxidant molecule [126] which will be discussed in the oxidative stress section. Elevated uric
acid may become one of the most important molecular markers for early-phase mechanisms in the
development of MetS and other metabolic diseases [127,128].

In pre-clinical studies, elevated serum levels of uric acid, determined by NMR approach, were
found in STZ rats [34] and in obese mice [35], compared to control animals, associating this metabolite
with diabetes and obesity. In a clinical work focused on an NMR-based metabolomic investigation of the
serum profiles of diabetic, higher concentration of uric acid was detected in T2M subjects [36]. All these
evidences place uric acid as a promising new biomarker for the early detection of metabolic alterations.

2.4. Propionylcarnitine

Acylcarnitines play an essential role in the regulation of carbohydrate and lipid metabolism
balance. They are esters of L-carnitine and fatty acids formed in the cytosol to transport fatty acids into
the mitochondrial matrix for β-oxidation as a major source of energy for cell activities. The involvement
of acylcarnitines in the intermediary metabolism is essential to mammalian bioenergetics process, and
it is needed for the carnitine-dependent production of energy from different fatty acids and for the
cell membrane structure maintenance [129]. Disruption in fatty acid oxidation results in elevated
acylcarnitine concentrations, suggesting that more fatty acids are entering into the mitochondria [130].
It has been described that concentrations of some acylcarnitines are associated with MetS, obesity,
and pre-diabetes [131–134]. The mechanisms by which acylcarnitines contribute to mitochondrial
dysfunction have yet to be fully elucidated [135].

The acylcarnitines, which have been related to a pre-disease state, are not clear markers but,
among the different types of acylcarnitines, the propionylcarnitine (C3) is the most promising short
chain acylcarnitine to become a pre-disease biomarker. In general, the levels of blood acylcarnitines
inadequately reflect tissue acylcarnitine metabolism [37], but C3 is one of them overcoming this
impediment. In some studies of short-chain carnitine esters, C3 has been positively associated with
T2D risk and IR [136]. On the other hand, the combination of C3 with other metabolites of interest,
such as BCAAs, glutamate/glutamine, and methionine, was particularly most robust to differentiate
metabolically lean from obese patients [38,39]. In other clinical study, twenty-four acylcarnitines
were measured in more than a thousand subjects which were grouped by normal glucose tolerance,
isolated impaired fasting glycaemia, impaired glucose tolerance or T2D [40]. Serum levels of C3
stood out significantly among the groups, proving its relevance as a robust biomarker of early stages
of carbohydrate metabolism disorders [40]. Finally, the accuracy of MS in acylcarnitine profile
determination is the main reason why most of the studies analyzing acylcarnitines are performed
by using this approach. In the latest years the NMR techniques have been improving to screen the
acylcarnitine profile [137], what will allow to obtain a more precise vision of the early involvement of
C3 in the development of metabolic diseases, and at the same time, to detect the contribution of other
acylcarnitines in these critical phases that have so far gone unnoticed.
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2.5. BCAAs and AAAs

BCAAs (isoleucine, leucine, and valine) and AAAs (including phenylalanine and tyrosine) are
essential amino acids; this means that they cannot be synthesized de novo by human cells, forcing to
be obtained from the diet. Once inside the body, the levels of are relatively stable in blood and tissues
(Table 2 shows normal levels of these amino acids). BCAAs and AAAs are mainly regulated by their
catabolic pathways (which are mainly localized in the mitochondria of all tissues), then higher plasma
levels of these amino acids are well correlated with several pathologies. Consequently, BCAAs and
AAAs are potential biomarkers which have been shown to be associated with a ~5-fold increased risk
of developing T2D [138,139].

Table 2. Standard levels of BCAAs and AAAs as essential amino acids in serum.

BCAAs
Valine mmol/L <0.2492 [140]

Leucine mmol/L <0.1236 [141]

Isoleucine mmol/L <0.0602 [141]

AAAs
Tyrosine mmol/L <0.0545 [142]

Phenylalanine mmol/L <0.0781 [142]

BCAAs cluster has been more exploited as a health marker than AAAs in the literature.
An overwhelming number of publications and multiple studies support that concentrations of
BCAAs in plasma and urine are associated with IR [143]. BCAAs play an important role in the
regulation of energy homeostasis, nutrition metabolism, gut microbiome health, immunity, and disease
in humans and animals [144]. As the most abundant of essential amino acids, BCAAs are not only the
substrates for synthesis of nitrogenous compounds, they also serve as signaling molecules regulating
glucose, lipid, and protein synthesis [144]. Metabolomic profile of obese vs. lean subjects reveals
a BCAA-related metabolite signature that is suggestive of increased catabolism of BCAAs and it is
positively correlated with IR. The increased BCAAs was reported to stimulate gluconeogenesis and
glucose intolerance via glutamate transamination to alanine [140]. In addition, BCCAs detection and
quantification are highly correlated using both NMR and MS methods, becoming BCAAs as a suitable
new biomarkers for disease prevention [145].

AAAs cluster has been less exploited but there is a real evidence of two amino acids, phenylalanine
and tyrosine, implicated in the pre-disease stages. Both amino acids are involved, as BCAAs, in protein
synthesis. Tyrosine is considered a semi-essential amino acid because it can be synthesized from
phenylalanine, and both are the initial precursors for the biosynthesis of fundamental neurotransmitters
or hormones in animals and humans [146]. BCAAs and AAAs have been related to MetS, obesity, and
T2D in animal models and in human studies, both longitudinal and cross-sectional studies, having
in common the usage of NMR metabolic profiles. For example, elevated levels of BCAAs and AAAs
have been reported between diabetes and control group in STZ rat model [25,26]. In a longitudinal
human studies, BCAAs were associated with higher glycaemia and IR and post-challenge glucose
levels using NMR approach [32]. A recent meta-analysis of four groups of patients with pre-diabetes
and diabetes showed that BCAAs were elevated by approximately 40% in the setting of poor glycemic
control [41]. Moreover, BCAAs and AAAs were significantly different between metabolically healthy
overweight/obese and MetS women, independent of other risk factors [43]. In other study of women
transitioning from gestational diabetes mellitus to T2D, the BCAAs-related metabolite cluster was
tightly associated with the incidence of T2D in the different groups [42].

Altogether, the studies using NMR approaches have reported an increase level of circulating
BCAAs and AAAs consequently of the dysfunction of carbohydrate metabolism. Some studies include
BCAAs and AAAs together representing a profile biomarker, and others only use a specific BCAA or
AAA. For example, isoleucine and tyrosine were different between women who develop gestational
diabetes and those who remained normal glucose tolerant [44]. Tyrosine was suggested as a particularly
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strong predictor of metabolic and obesity traits in South Asian individuals determined in a unique
healthy cohort with follow-up during nineteen years by NMR approach between nine amino acids [48].
In some studies, valine stands out with an increase predisposition to develop T2D in the future. This
fact is showed in the study of the relation between circulating metabolites and abdominal obesity in
twin’s brothers [45] or the study revealing the predisposition to develop T2D in Chinese population [46].
Moreover, in 263 healthy men with MetS and their control counterparts, Siomkajło et al. proposed a
diagnostic model consisted of phenylalanine as a marker obtained from omics technologies and other
classical determinations [47].

All in all, the selection of the best option would be the utilization of BCAAs and AAAs as two
clusters because the choice of one specific amino acid is controversial. There is a need of more robust
studies using NMR methods to elucidate the implication of each amino acid in health metabolism and
to elucidate a common outline.

2.6. Glutamate Family: Glutamine and Glutamate

Besides BCAAs and AAAs, other common amino acids are potential biomarkers, such as glutamine
and glutamate, of the dysregulation of carbohydrates metabolism. In recent studies, the profile of
amino acids, including BCAAs, AAAs and glutamine and glutamate, has been linked with risk factors
related to T2D [28,147]. In this section, plasma glutamine, glutamate and their ratio will be discussed
as potential biomarkers for T2D as it is showed in several studies [148]. Glutamine and glutamate are
key amino acids in the mammal intermediary metabolism and, they are also associated with aerobic
metabolism via the TCA cycle and with ammonia metabolism [149].

Glutamine plays a crucial role in various cellular processes, such as in energy balance, apoptosis,
and cell proliferation and, its deprivation can activate the fatty acid β-oxidation pathway [150,151].
For instance, there has been a controversy linking glutamine with the prediction of the T2D. An inverse
association of glutamine with the risk of T2D has been hugely observed in the literature but some
studies reported a positive association. This inconsistency was solved by Guasch-Ferré et al. after
a systematic review. They concluded that the strongest association of glutamine is the inverse with
the risk to develop T2D [50]. In a recent animal study, changed levels of glutamine were shown in
HFD-fed rats compared with control group in urine NMR metabolomic profile [30].

Glutamate is produced in the first step of BCAAs catabolism [152]. Different authors have
proposed that glutamate likely stimulates glucagon release from pancreatic α cells and increases
transamination of pyruvate to alanine, which strongly promotes gluconeogenesis in obesity [153]. Thus,
circulating glutamate is positively related to visceral obesity and posterior development of MetS [154].
In a pre-clinical study, IR was correlated with glutamate in mice treated with monosodium glutamate to
develop obesity [49]. Moreover, in obese morbid patients, those with pre-diabetes were found to have
higher serum glutamate levels compared to non-diabetic controls. It was speculated that glutamate
was elevated in morbidly obese patients due to an increased need for α-ketoglutarate in the TCA cycle
to compensate the IR. This same study also found that morbidly obese non-pre-diabetic group had
increased levels of glutamate compared to non-obese and non-pre-diabetic groups, suggesting that
obesity plays a role in glutamate metabolism [51]. As other amino acids, the detection and quantification
of glutamine and glutamate by NMR methodology is evident and accessible as it has been shown.
Therefore, they are promising metabolites for the prevention of carbohydrate metabolism dysfunction.

2.7. Citrate

Currently citrate has been studied as a metabolite that could be a good biomarker to detect
carbohydrate dysfunction [29,52]. Citrate is an intermediary of the TCA cycle, being synthetized from
fatty acids and glucose, and it is regulated by glucose levels and insulin [52]. It is mostly analyzed in
urine as a key metabolite contributing to the detection of metabolic disruptions. In a preclinical study,
rats were fed with HFD or control diet and their urine was analyzed by NMR. The results showed
higher levels of citrate in the HFD group. The authors also found differences between high gainers
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and low gainers. Thus, citrate variation is associated to diet and physical constitution, being higher
in these animals with obesity and a gainer constitution [29]. E-Y, Won et al. also showed an increase
on citrate levels in the urine of obese mice in comparison with control group, analyzed by NMR [52].
Corroborating this study, an increased levels of citrate were observed in other study of HFD-induced
obese animals due to hyperglycemia and IR [71]. These alterations in different studies of citrate levels
suggest a closed relation with the disturbances in glucose and insulin in obesity [52]. Inversely, it was
reported a depletion of the citrate levels in urine associated with a higher level of IR in humans [53].
Furthermore, in obese and IR animals a decrease on citrate urinary levels was also observed, and
the opposite result was seen in obese animals without IR [155]. More clinical studies using NMR
approach should be done to have more information about the possibility of citrate as a biomarker
of MetS. It is hypothesized that the increase on citrate concentration might be originated through
increased free fatty acid (FFA) oxidation due to higher levels of FFAs. This oxidation cause an elevation
of acetyl-CoA:CoA and NADH: NAD+ ratios in the mitochondria, where pyruvate hydrogenase
is inactivated, rising the levels of citrate, which inhibits phosphofructokinase activity, causing an
accumulation of glucose-6-phosphate. The glucose-6-phosphate may inhibit hexokinase II, decreasing
glucose uptake [156]. Thus, citrate became a key player in the carbohydrate and lipid metabolism as
well a potential new biomarker for the metabolic syndrome.

3. Dyslipidemia

One of the main consequences of the MetS is cardiovascular disease (CVD), which remains as the
leading cause of morbidity and mortality in the western countries and whose incidence is increasing
daily mainly due to diet and lifestyle [157]. Numerous risk scores have been developed to predict
CVD risk (Atherogenic Index of Plasma (AIF); Framingham and Reynolds scores; etc.) [158,159]. These
scores are based on clinical observations of individual traditional biomarkers of serum lipids, glucose,
and hormone profile [159]. Indeed, dyslipidemia is an abnormal amount of lipids in the blood that it is
generally characterized by an elevation of triglycerides (TG), non-high-density lipoprotein-cholesterol
(non-HDL-C), and low-density lipoprotein-cholesterol (LDL-C), and in parallel, a reduction in the
high-density lipoprotein-cholesterol (HDL-C) [160]. In addition, dyslipidemia is also promoted in
obesity, T2D and IR by a prolonged elevation of insulin levels. The association between obesity and
CVD risk factors may be mediated by the ability of adipose tissue to synthesize and secrete several
hormones with a systemic influence, including leptin and adiponectin. Leptin plays an important role
in the regulation of feeding behavior and their levels reflect the amount of energy reserves stored in
adipose tissue [158]. On the other hand, adiponectin levels are inversely associated with body fat mass,
inflammation, dyslipidemia, T2D, and MetS; and their levels may be increased by healthy dietary
patterns [161]. However, conventional algorithms to detect CVD risk factors are stablished in diseased
population [159] and not in the preliminary stages of disease.

Unfortunately, these traditional biomarkers are not enough to evaluate the disease progression
and status of emerging risks in apparently healthy patients. Hence, other biomarkers, alone or
in combination, should be incorporated into risk prediction models to determine whether their
addition increases the model’s predictive accuracy and reliable estimation of CVD risk related
to dyslipidemia. Thus, an early identification and treatment of risk factors are much needed to
accelerate disease prevention and morbidity improvement. Consequently, in the absence of disease
and, therefore, without pharmaceutical treatment, the robustness of this prediction model will allow
to reduce the potential cardiovascular risk by acting on specific dyslipidemia cluster using precise
nutritional recommendations.

3.1. Fatty Acids: Saturated, Monounsaturated, and Polyunsaturated

Lipid and carbohydrates metabolism are closely interconnected. In fact, altered fatty acid profile
affects IR and T2D; and vice versa [162]. Structurally, fatty acids can be split by the presence of double
bounds in their backbone as saturated (SFA; absence of double bound) and unsaturated fatty acids [162].
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Unsaturated fatty acids can be further divided by the number of double bounds as mono- (MUFAs;
a single double bound) and poly-unsaturated fatty acids (PUFAs; more than one double bound) [163].
SFAs, MUFAs and PUFAs present different biological properties. The types of fatty acids present
in various food groups are thought to play a pivotal role in whether or not such food is considered
beneficial, neutral, or detrimental with respect to developing MetS and related diseases. It is well
established an implication of dietary fats as risk factors for T2D and MetS, especially for long chain
SFA (C14:0, C16:0 and C18:0) which could induce IR, whereas increased circulating levels of very
long-chain SFA (C20:0, C22:0 and C24:0) are associated with reduced T2D risk [164,165]. In the case
of palmitate, its presence activates receptor FFA from beta-cells initiating a cascade with cell stress
responses as ceramide formation, lipid droplets formation, endoplasmic reticulum stress, mitochondrial
dysfunction and autophagy triggering an impairment of insulin secretion and damage in beta-cells [166].
PUFAs include some subgroups identified by the position of the last double bond in their molecular
structure [164]. PUFA n-3 include mainly alpha linoleic acid (ALA), eicosapentaenoic acid (EPA)
and docosahexaenoic acid (DHA), while PUFA n-6 include linoleic acid (LA), and arachidonic acid
(AA) [162]. Thus, both MUFA and PUFA have been related to an improvement of insulin sensitivity.

Numerous beneficial healthy effects have been attributed to unsaturated fatty acids, including
protection from obesity, diabetes, cancer, and atherosclerosis [162,164]. The most abundant MUFA
in typical diets is oleic acid (C18:1n-9) which is effective in lowering the inflammatory response and
LDL levels; that together contribute in the reduction of CVD risk [162,163]. High levels of MUFAs
were described in the prevention of abdominal fat accumulation. Moreover, the substitution of
carbohydrates with MUFA cause a decrease on total blood cholesterol an TGs, reducing the levels of
HDL-C [162,163]. The mechanism involved in the anti-inflammatory effect of MUFAs is the inhibition
of NF-kB activity [167]. In an animal study, Guo et al. demonstrated with NMR that high fat fed
animals presented a significant increase on TG, LDL/VDL and SFAs levels and a decrease in the
PUFA/MUFA ratio [168]. However, in a NMR study of hundred three obese women divided by the
absence or presence of MetS, several species of PUFAs were associated with MetS [70]. In addition,
different studies have been done to associate PUFAs with inflammatory parameters. EPA and DHA
have been seen to exhibit anti-inflammatory properties and are also important to produce eicosanoids
from the n-6 fatty acid like arachidonic acid [43]. Thus, even the generally beneficial effects attributed
to PUFAs, deeper research is necessary to identify the relevance of every fatty acid species levels in the
context of dyslipidemia as in the development of metabolic and CVD.

3.2. 3-Hydroxybutyrate

Acetoacetate, 3-hydroxybutyrate (3-OHB) and acetone are ketone bodies, emerging as crucial
regulators of metabolic health and produced in the liver from fatty acids that serve as a circulating
energy in situations of glucose deprivation (i.e. fasting, carbohydrate restrictive diets, prolonged
intense exercise, and ketogenic diets) [169]. Ketone bodies have a characteristic smell, which can
easily be detected in the breath of persons in ketosis and ketoacidosis [170]. 3-hydroxybutyrate
(or β-hydroxybutyrate) serum levels can increase thousands of times in their concentrations after a
prolonged fasting and present a broad range of signaling and regulatory effects including inhibition
of many deacetylases [170]. Moreover, 3-hydroxybutyrate is described to induce resistance to
oxidative stress via deacetylases inhibition that may explain, at least partially, the therapeutic value of
low-carbohydrate and ketogenic diets [170]. Mitochondrialβ-oxidation of FFAs results in the production
of Acetyl-CoA, which might go into the TCA cycle for further oxidation. Acetyl-coA is condensed
to ketone bodies in the liver by ketogenic enzymes, for example 3-OHB [171]. Bugianesi et al. [172]
found in NAFLD patients increased 3-OHB circulatory levels associated with hyperinsulinemia. Taken
together, application of new diagnostic tools based in NMR will contribute to understand the uses of
3-hidroxybutirate as biomarker for MetS. Thus, hamsters fed with high-fat high-cholesterol diet showed
an increase in the urine levels of 3-hydroxybutirate [173]. These results were corroborated at serum
level, observing that high fat–fed mice showed an increase in 3-hydroxybutirate concentration [174].
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Similar results were observed at plasma, where T2D patients presented increased 3-hydroxybutirate
levels [71]. Therefore, these evidences point 3-hydroxybutirate as an important biomarker to taken in
consideration for an early metabolic disarrangements’ detection.

3.3. Choline

Choline is an essential nutrient for maintaining human health which is involved in the mobilization
of fat from liver [72]. In animals, the 95% of the total choline in tissues is used for the formation
of phosphatidylcholine (PC) via the Kennedy pathway. It was described circulatory PC levels were
increased in high-fat diet fed animals. PC is essential for the packaging, exporting and secreting of
TG in VLDL, and acts as an intermediary to maintain a balance between fat in plasma and in the
liver [175]. Choline deficiency results in various disorders, as fatty liver and liver dysfunction, which
leads to elevations in serum concentrations of the liver aminotransferases [27]. Moreover, choline is
a precursor of the neurotransmitter acetylcholine and it is essential in the membrane phospholipids
and lipoproteins structure [175]. Consequently, it performs important functions in signal transduction,
neurotransmitter synthesis or lipid transport. Moreover, plasma choline levels exhibited a positive
correlation with serum TG and glucose levels, showing its involvement in the pathogenesis of several
diseases, including MetS, fatty liver, obesity, or cardiovascular disease [175]. Indeed, monkeys fed
with high fat and high cholesterol diet showed lower serum level of choline and an inverse correlation
with TG levels, explaining the relation between the lack of choline and the accumulation of TG in
the liver [74]. A clinical study based in the differences between overweight patients and control
subjects about metabolites levels. In the case of choline, was decreased in overweight patients in
comparison with healthy subjects, showing a relationship between choline and a disruption in the
lipid metabolism [73]. Although these evidences, more studies with NMR are necessary to decipher
the specific contribution of choline as a new biomarker for the early MetS detection.

4. Inflammation

Obesity and MetS are described as risk factors for T2D and CVD, which are viewed as inflammatory
diseases. One of the main causes of chronic inflammation is the constant overload of glucose and FFAs,
that promote the production of pro-inflammatory signals or elevates reactive oxygen species (ROS)
levels. Chronic inflammation and immune cells are related to the pathogenesis of IR in obesity [27].
The best described markers of inflammation are cytokines released by immune cells, C-reactive protein
(CRP) and monocyte chemoattractant protein 1 (MCP-1), interleukin (IL)-6, IL-8, or tumor necrosis
factor α (TNFα) [176]. As it happens with other common biomarkers, these cytokines are analyzed
by ELISA methods, which are time-consuming, labored and less reproducible in comparison with
NMR analysis. Therefore, to extract levels of other reliably biomarkers of inflammation from the NMR
profiles it would be beneficial for the early detection of metabolic alterations. In this section we will
focus on the role of n-acetylglycoproteins and lysophospholipids in the inflammation cluster, but other
metabolites such as PUFAs (including EPA; DHA; or ARA) also develop important inflammation roles
as pointed in previous sections.

4.1. N-Acetylglycoproteins

Glycosylation is one of the most common post-translational modification of secreted proteins and
their misregulation is related with inflammation and multiple diseases (CVD, T2D, cancer, etc.) [177,178].
Therefore, human glycome is a novel tool to identify biomarkers and potential mechanistic mediators
of pathogenesis. Indeed, increased serum glycoproteins levels are positively correlated with CRP
levels [179]. The interest to study glycans, as an early biomarker of disease, is due to an altered
glycosylation pattern might reflect the development of diseases [66]. Lawler et al. identified a
glycoprotein-N-acetyl methyl group signature measured by NMR (GlycA) associated with CVD and
T2D [66]. The two major contributors of the GlycA signal are α1-acid glycoprotein and haptoglobin,
synthesized and secreted by neutrophils granules, as well by the liver [66]. The potential risk associated
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with elevated GlycA would relate to activation of systemic inflammatory pathways, because GlycA
identifies aggregates of glycan moieties on circulating glycoproteins, which the majority of them
are acute phase reactants and immunologic proteins [62,180]. In a large study with apparently
healthy individuals, CVD mortality was significantly associated with elevated levels of GlycA [66].
The development of IR and β-cell dysfunction is triggered by low grade chronic systemic inflammation.
Increased circulating levels of acute phase reactants are related to clinical expression of T2D, but is
still unknown whether GlycA will be a proper marker for early detection of disease development [66].
The first evidence for the potential role of GlycA as a biomarker predictor in development of T2D [181]
was described by 26,508 apparently healthy women, providing evidence of the potential role of glycans
in the development of the disease. Moreover, it was suggested that elevated high GlycA might be
correlated with a chronic inflammatory state [65]. Bervoets et al. [67] studied the plasma metabolic
profile of obese children with NMR, and found N-acetyl glycoprotein increased in obese children in
comparison with healthy children, and it could be traduced in an activation of the hexosamine pathway
related to lower levels of glutamine and glucose. These proofs pointed GlycA as a better biomarker
option for a systemic inflammatory response compared to traditional inflammatory cytokines, which
often exhibit high intra-individual variability. Therefore, GlycA integrates the protein levels and
glycosylation states of the most abundant acute phase proteins in serum [182], allowing a more stable
measure of inflammation with lower variability.

4.2. Lysophospholipids

Lysophospholipids are molecules derived from the hydrolysis of phospholipids, which transport
fatty acids, phosphatidylglycerol, and choline between different tissues [183]. They are signaling
molecules which modulate processes such as insulin production, insulin sensitivity and inflammation
through interactions with G protein-coupled receptors [184], and are related to fatty liver, steatohepatitis,
diabetes and obesity [184]. Different lysophospholipids species, mainly lysophosphatidilcholines
(LPCs), have been identified as being altered in the plasma of obese individuals [185]. Significant
amounts of circulatory levels of LPCs are synthetized by a specific enzyme activity lecithin,
and lipoprotein-associated phospholipase A2 (Lp-PLA2), an inflammatory marker which has
pro-inflammatory properties hydrolyzing oxidized phospholipids generating LPC under inflammatory
conditions [186]. LPCs activate signaling pathways promoting the release of second messengers,
related to G protein-coupled receptors [186]. In obesity, significantly lower concentrations of most of
the LPCs are detected [68], whereas LPCs concentrations were inversely correlated with the increased
CRP levels [184]. Therefore, LPC could be useful early biomarkers to detect inflammatory states
associated with MetS and related disorders.

5. Oxidative Stress

Oxidative stress appears as a risk factor when an imbalance of homeostasis happens between
oxidant and antioxidant agents. The oxidant agents, mainly ROS and reactive nitrogen species (RNS),
are constantly produced in the aerobic organism by normal metabolic processes (cellular respiration,
antibacterial defense, etc.) and external exposures (smoking, toxins, ionizing radiation, etc.). In order
to regulate the reactive species, organism has endogenous antioxidant systems, or it obtains exogenous
antioxidants from diet, that neutralizes these species and keeps the homeostasis of the body [68].
Production of free radicals and the resulting oxidative stress are part of the energy metabolism,
emphasizing mitochondrial dysfunction in the development of disease. Finally, the oxidative stress
accumulation leads to the development of pathological condition as MetS, obesity and diabetes [187].
The inference of oxidative stress in T2D is done by the alteration in enzymatic systems, lipid peroxidation,
dysfunction in glutathione metabolism and decreased vitamin C level [188]. The recommended
biomarkers for monitoring oxidative status over time are 8-hydroxy-2′-deoxyguanosine (8-OHdG),
F2-isoprostane 8-iso-prostaglandin F2α (8-iso-PGF2α), 3-nitrotyrosine, malondialdehyde (MDA), and
oxidized low-density lipoprotein (oxLDL) [189]. These determinations are performed by ELISA
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kits. One of the most used is 8-iso-PGF2α, which are products of free radical-mediated oxidation
of arachidonic acid. It has been detected to be altered in T2D, hypercholesterolemia, hypertension
and MetS. The main biofluid in where it is determined is urine [190]. Other widely used is 8-OHdG,
which represents the oxidative DNA damages [191]. However, the most popular determinations in
plasma are 3-nitrotyrosine and MDA. 3-nitrotyrosine, the main product of tyrosine oxidation, has been
described as a stable marker of ROS/RNS stress in inflammatory related diseases [192]. MDA, a small
reactive aldehyde end product of the lipid peroxidation pathway, is a frequently used biomarker
that can also be determined in urine, or tissue as thiobarbituric acid-reactive (TBAR) material, but
the method is unstable and non-specific [193]. The last determination considered as classical is the
oxLDL, which is the quantification of the oxidized LDL-C, but it is not stable in samples stored longer
than a month [194]. All these determinations until the date are performed with expensive ELISA kits
and sometimes the fine-tune determination depends on the storage time. Thus, it is essential to find
different metabolites determined by NMR methods as new potential biomarkers in the risk factor of
oxidative stress as allantoin, pseudouridine, and finally GSH (reduced glutathione)/GSSG (oxidized
glutathione) ratio, glycine and serine as metabolites of the one-carbon metabolism.

5.1. Uric Acid and Allantoin

Uric acid is accepted as the major antioxidant in plasma that protects cardiac, vascular, and neural
cells from oxidative injury [195]. Uric acid, despite being a major antioxidant in the human plasma,
it correlates and predicts positively and negatively the development of obesity and related diseases,
conditions associated with oxidative stress and carbohydrate metabolism disruption as it is described
in its section. Sautin and Johnson [196] tried to explain the paradox proposing that uric acid may
function either as an antioxidant (primarily in plasma) or pro-oxidant (primarily within the cell).
Therefore, considering the duality of the uric acid as a biomarker, we propose the end product of the
uric acid oxidation from purine metabolism which is the allantoin as an alternative biomarker to uric
acid [126]. Allantoin has been considered an oxidative stress biomarker as it also can be produced
through non-enzymatic processes, especially when the levels of ROS are elevated [197]. While uric
acid is considered antioxidant, allantoin is considered a pro-oxidant agent [198]. Urinary allantoin has
been validated in a clinical model of oxidative stress, standing out its stability over different storage
conditions as an oxidant biomarker [199].

There are several animal studies that determined allantoin as a biomarker in pre-disease using
NMR metabolomic approach. In STD-rats, allantoin levels in urine stand out, among other metabolites,
in T2D and obesity risk factor [196]. In a project characterizing biomarkers associated with T2D in
eighteen biological matrices in db/db mouse model, allantoin was elevated in urine and plasma [26].
In other study characterizing the urine metabolome between lean and overweight dogs during a
feed-challenge, overweight dogs had higher postprandial allantoin concentrations compared with lean
dogs [76]. However, there is a need for more studies in humans and NMR approaches, because the
evidence of the association in several animal studies should be confirmed with clinical studies. To date,
only one study determined allantoin as a biomarker in humans, which aimed to predict gestational
diabetes development using MS approach. This study showed higher levels of allantoin in the group
of women with higher risk to develop diabetes [77].

5.2. Pseudouridine

Urinary excreted nucleic acids catabolites are used as non-invasive markers for oxidative processes
related to resting metabolic rate and energy intake: 8-OHdG represents oxidative stress to DNA
(considered a classical biomarker) and pseudouridine, the metabolite considered as a potential metabolic
biomarker, determines oxidative stress to RNA [200]. Pseudouridine is an isomer of the nucleoside
uridine in which the uracil is attached via a carbon-carbon instead of a nitrogen–carbon glycosidic
bond. It is the most prevalent of the over one hundred different modified nucleosides found in RNA,
being a marker of RNA degradation and damage in oxidative stress [201].



Nutrients 2020, 12, 806 16 of 34

The trace of pseudouridine in NMR metabolic approaches had not been precise enough but
nowadays there are promising studies in pseudouridine. For example, in a NMR metabolomics study
trying to optimize quantitative urine metabolomics, urine and plasma samples from 1004 individuals
correlated high levels of glucose and circulating amino acids with pseudouridine [202]. In a randomized
controlled trial of VSL-based intervention (unknown product due to industrial interest) vs. control
in children obesity complication leading to NAFLD, the pseudouridine was identified as a potential
non-invasive metabolic biomarker by a urinary NMR metabolic profiling. Pseudouridine decreased in
the VSL vs. the placebo group, concluding that pseudouridine may be increased in metabolic diseases
as an oxidative risk factor [78].

5.3. One-Carbon Metabolism Intermediates: GSH/GSSG Ratio, Glycine, and Serine

One-carbon (1C) metabolism is associated with metabolic disease, overweight, and obesity;
higher levels of metabolites implicated in 1C metabolism are shown in healthy individuals [80].
The 1C metabolism consists on the transfer of one-carbon group and also, it is implicated in redox
defense. The 1C metabolism is a reliable source of potential biomarkers as the selected, which are
GSH/GSSG ratio, glycine and serine; thus, there are other with high probability to consider as betaine,
dimethylglycine, methionine or cysteine [203]. One handicap to detect biomarkers of oxidative stress
is the perception of oxidized metabolites, because the redox reactions could change the state of the
metabolite (oxidized/reduced) during the manipulation of the sample and the redox ratio is difficult to
determine. The GSH/GSSG ratio, which is an example in the 1C metabolism as an indicator of cellular
health, is composed principally of reduced GSH constituting up to 98% of cellular GSH under normal
conditions. The total quantification could be performed but the redox ratio calculation leads to more
technical complications [204].

In order to avoid the problems in the determinations of redox ratio, an alternative to GSH/GSSG
ratio is the selection of other metabolites of 1C metabolism. Glycine and serine, which are key amino
acids in 1C metabolism, are proposed as a potential alternative to classical biomarkers [205]. For one
hand, chronic glycine deficiency may impact health status, because glycine was found to have a
strong negative association with IR when measured as HOMA-IR score [204], or by other methods
(hyperinsulinemic/euglycemic clamp) [140]. This amino acid of lowest molecular weight, incorporates
a hydrogen atom as a side-chain [206]. Glycine is a precursor for many pathways as glutathione
synthesis, which has been related with oxidative stress as the master antioxidant, but it participates in
other metabolic processes being an unstable measure to detect the risk factor of interest [204]. Some
glycine derivatives have also been found to be associated with IR and the risk of T2D, one of them
with the strongest relation is serine. Serine and glycine are very related. Loss of the mitochondrial
pathway, renders cells dependent on extracellular serine to make 1C units and on extracellular glycine
to make GSH [207,208].

There are some studies standing out some metabolites implicated in the 1C metabolism related
to oxidative stress and metabolism disorder by NMR approaches. Specifically, serum glycine and
serine were found in lower concentrations in participants with more MetS risk factors and greater
adiposity, using modifiable lifestyle factors to attenuate health effects of obesity [209]. Further, plasma
glycine and serine level were lower in obese diabetic African-American women compared to obese
non-diabetic African-American women [81].

6. Gut Microbiota Dysbiosis

100 trillion microbes exist in a symbiotic relationship with human cells, and the metabolic state
of the human is related, in many cases, with the composition of the gut microbiota [82]. Numerous
studies have shown that the gut microbiota composition may differ between lean and obese individuals
or between pre-diabetic, T2D and normoglycemic individuals [210]. Dysbiosis of the gut microbiota,
which is an alteration of the bacterial intestinal composition, reflexed a decreasing number of species
related to an increased intestinal barrier permeability, thus allowing the bacterial translocation and
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causing endotoxemia [211], which is an important risk factor for obesity development and related
metabolic diseases, as it is confirmed in different studies [212]. The constant flow in the composition
of the gut microbiota is due to changes in diet, environmental factors and lifestyle [213]. As an
intrinsic factor, the immune system health may cause changes in gut microbiota composition that may
promote the proliferation of specific bacterial species which could be harmful due to the immune
deficiency or hyperimmunity [214]. Genetics, age, or gender are factors that also affects in the human
homeostasis [214]. The decrease of microbial diversity is triggered by different factors, such as the
psychological stress, the type of diet or the higher sedentary lifestyle, causing dysbiosis [203]. Thus,
this altered gut microbiota metabolizes different molecules, spreading metabolites in the blood, urine
or feces which would be detected and used as biomarkers [215].

6.1. Lactate

Lactate, as it has been mentioned before, independent of participating in several biochemical
processes is also an end-product of bacterial fermentation [216], produced by lactic acid bacteria
of the genera Lactobacillus and Bifidobacterium [113]. Lactate is an intermediate metabolite, such as
succinate, from the carbohydrate fermentation of some bacterial species. Moreover, it contributes to
the maintenance of diversity within the colonic microbiota and the synthesis of the principal short
chain fatty acids (SCFAs) [113]. Lactate is not accumulated in colon of healthy subjects, although a
big proportion of intestinal bacteria can synthetize this metabolite, which is metabolized in butyrate
or propionate [217]. In NAFLD patients was studied the composition of gut microbiota and selected
bacterial products related with the fermentation of SCFAs in serum and feces by NMR analysis.
The results showed higher levels of lactate in NAFLD patients, compared to control individuals, which
was associated with reduced abundance of several bacterial species (Ruminococcus, Coprococcus, and
F. prausnitzii) [217]. The amount and type of products can vary depending on species [33]. If the
number of bacteria which metabolize lactate is decreased, excessive lactate production could end in its
accumulation in the colon, where the absorption of lactate is low, lowering colonic pH and inhibiting
the activity of microorganisms that metabolize lactate, for example propionate-producing bacteria
or butyrate-producing. Butyrate is an inhibitor of acetate synthesis and the main energy source for
colonocytes, could prevent the accumulation of lactate, which could be a potential toxic metabolite [33].

6.2. Acetate

Acetate, together with butyrate and propionate, is one of the three most common short chain
fatty acid (SCFA) [218]. It is derived from intestinal microbial fermentation of dietary fibers in the
colon [219] and acts as signaling ligand between host metabolism and the gut microbiome at different
levels [220]. Acetate contribution leads to energy harvest participating in the human energy balance,
with an important role in lipogenesis, cholesterol synthesis and accumulation in adipocytes [221].
Acetate affects substrate metabolism and host energy via an increase in energy expenditure and fat
oxidation [222]. Via cross-feeding mechanisms branched-chain and aromatic amino acids might be
produced and further metabolized, altering gut integrity and impairing insulin sensitivity. That is to
say gut-derived acetate production is determined by the balance in gut between saccharolytic and
proteolytic fermentation which is determined by the presence of acetogenic fibers [223]. Firmicutes
are positive related to acetate, thus when dysbiosis cause an increase of Firmicutes in obese rats,
plasma acetate levels increase, and it is linked to insulin action in morbidly obese individuals through
circulating acetate. Fat cells release leptin in higher concentration by the presence of acetate [223]. In a
human study with thirty-four morbidly obese women and men through NMR analysis, increased
plasma levels of acetate were found, with a positive correlation with gut Firmicutes, and negatively
correlated with HOMA-IR and fasting TG [223,224]. In a study with NAFLD patients, acetate was
found increased in circulatory level and fecal level, analyzed by NMR. This increase was correlated
with the reduction of the abundance of several bacterial species as Ruminococcus, Coprococcus, and
F. prausnitzii [58]. HFD-induced obesity and IR in rats is associated with increased plasma concentration
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of acetate metabolized by the gut microbiota measured with GS-MS [33]. Less than 0.005% of the SCFAs
were excreted into urine because they are excreted via the lungs after oxidation, that is why acetate is
mostly identified in blood and feces [225]. Zang et al. studied female rats with diabetes by NMR urine
analysis. It described acetate increased in diabetes group against control groups. The increase in the
levels of acetate was correlated with higher levels of ethanol, and that suggested that the origin of this
metabolites could be from microbial production, as in the case of K. pneumoniae [226].

6.3. Succinate

Succinate, a metabolite produced in the human body but also by the gut microbiota, is described
as the major intermediary in the citric acid cycle, where it stands between succinyl-CoA and fumarate
in the carbohydrate metabolism but the gut-microbiota produced succinate is classically described
as an intermediate of the propionate synthesis [57]. Succinate has been increased in hypertension,
ischemic heart disease, and T2D, but also in obesity, which is associated with elevated plasma
levels of succinate concomitant with impaired glucose metabolism [227] Alterations in circulating
succinate levels were associated with specific metagenomics signatures linked to energy production and
carbohydrate metabolism [64]. It has been related with an antilipolytic action in adipose tissue through
the succinate receptor 1 (SUCNR1), inhibiting the release of fatty acid from adipocytes. Thus, succinate
has been related to cardiovascular diseases and obesity. In humans is found a strong association
between microbial community, gene composition, and metabolism and plasma levels of succinate.
In a study of a cohort of ninety-one patients stratified according to obesity and T2D, plasma succinate
levels, analyzed by NMR and LC-MS, were significantly higher in obese than in lean individuals.
A positive association was found between plasma levels of succinate and BMI, but also glucose,
insulin, TG and HOMA-IR [64]. This increase in circulating succinate levels was associated with
specific changes in gut microbiota related to succinate metabolism. Prevotellaceae and Veillonellaceae,
succinate-producing bacteria, increased their relative abundance level in obese individuals. On the
other hand, Odoribacteraceae and Clostridaceae, succinate-consuming bacteria, decrease their relative
abundance level in obese individual. A significant increase of glycaemia was presented in these patients
who present high circulatory levels of succinate, related to changes in gut microbiota associated to
higher barrier permeability. Therefore, it explains the association of succinate as a microbiota-derived
metabolite with an important role in obesity and metabolic-associated cardiovascular disorders [64].
It is also described a study with diabetic mice analyzed by NMR and the result was an increase of
the succinate levels in urine [64]. Succinate has seen increased in fecal NMR analysis in NAFLD
patients correlated to decreasing abundance of Ruminococcus, Coprococcus and F. prausnitzii bacteria in
comparison with healthy individuals [63].

6.4. TMAO, TMA, and DMA

Trimethylamine (TMA) and trimethylamine N-oxide (TMAO) are metabolites which come from
the choline metabolic pathway and L-carnitine [33]. Choline deficiency, which might cause microbial
dysbiosis, is modulated by the conversion of dietary choline in TMA by gut bacteria, reducing the
bioavailability of choline to synthesize phosphatidylcholine [228]. This TMA is released in the liver
and is transformed in TMAO by the enzyme flavin-containing monooxygenase 3 (FMO3) [62]. These
metabolites are seen to be related to the development of metabolic diseases, modulating the glucose
metabolism in the liver and causing obesity [229], triggering inflammation in the adipose tissue
and influencing lipid absorption and cholesterol homeostasis [230]. The fundamental role of the
microbiota is evidenced in TMA production is derived from germ-free mice, which do not excrete
TMA [231]. Using the urine of obese mice analyzed by NMR, TMA reflects metabolic changes related
to HFD that follow body fat deposit [232]. An et al. studied the metabolic changes in HFD rats by
NMR fecal analysis. HFD rats showed a level reduction of fecal TMA, which its origin is mostly
from gut microbiota, probably resulted from its transportation to the liver, where is transformed in
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TMAO [59]. TMA showed positive correlation with gut microbiota from the genera Allobaculum and
Clostridium [60,61].

TMAO present in urine and plasma is considered a biomarker for NAFLD, IR, and CVD [61].
Large perturbations in TMAO levels may result from dietary differences, and intestinal microbiota are
suggested as playing a prominent role in the variation of TMAO levels. Some studies reinforced the
importance of diet and microbiota in cardio-metabolic health, with the TMAO level emerging as a
possible target for therapeutic interventions. Given that CVD risk in humans is linked to circulating
levels of TMAO [233], and dietary supplementation with TMAO promotes atherosclerotic CVD in
mice [234], a key opportunity for therapeutic research leads to blocking the ability of plasma TMAO to
obtain a biological response. More than five hundred Finnish men with MetS was studied, the serum
obtained was analyzed by NMR, and the results described a positive correlation between plasma
TMAO concentrations and gut microbiota Prevotella and Peptococcaceae, however a negative correlation
with Faecalibacterium prausnitzii was detected. These correlations are linked to dysbiosis in human
disorders, such as obesity and diabetes [54]. A study analyzed by HPLC in diabetic patients, high
levels of TMAO were found as a strong marker of all cardiovascular events, like in diabetic patients
who tend to have elevated TMAO plasma levels. Thus, diabetes disease accentuates the relationship of
elevated levels of TMAO and increased cardiovascular risk [56].

Dimethylamine (DMA) is also a metabolite generated from the TMA absorbed in the liver. High
plasma and/or urine levels of DMA was described to be related to HFD induced IR, fatty liver, and T2D
in mice [235]. In a mice study compared urinary metabolites of gut microbiota between HFD mice and
control mice, this product of dietary choline processing by gut microbiota had a statistically significant
result by NMR, showing a significant reverse correlation with total body fat. Thus, DMA could be
considered a possible prospective biomarkers indicative of accumulation of body fat in obesity, being
converted by the host liver to TMAO [62].

7. Relation between the Proposed Metabolites and Related Metabolic Pathways

To further characterize the metabolic pathways affected by the proposed metabolites,
the metabolites were first annotated with Kyoto Encyclopedia of Genes and Genomes (KEGG) [59]. Then,
the MetaboAnalyst (v4.0) software was used for metabolic pathway analysis and interpretation [236].
Eight pathways were statistically affected (FDR < 0.05) by the proposed profile of metabolites
(see Table 3), thus five pathways stand out with high impact: the aminoacyl-tRNA biosynthesis;
the glyoxylate and dicarboxylate metabolism; the alanine, aspartate and glutamate metabolism;
the phenylalanine, tyrosine, and tryptophan biosynthesis; and the D-Glutamine and D-glutamate
metabolism. These five pathways with high impact mainly affect amino acid biosynthesis and
metabolism, except the glyoxylate/dicarboxylate metabolism and the aminoacyl-tRNA biosynthesis.
Besides being involved in the different discussed clusters in the review, the metabolites proposed as
early biomarkers for MetS are closely related to amino acid pathways and protein synthesis, suggesting
that amino acid metabolism and associated pathways may be fundamental to the biologic processes
that may underline prevention of MetS and associated diseases [237].
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Table 3. Metabolic pathways significantly affected by the proposed metabolites.

Pathway Name Match Status Metabolites Involved FDR Impact

Aminoacyl-tRNA
biosynthesis 9/48

Phenylalanine; Glutamine;
Glycine; Serine; Valine;
Isoleucine; Leucine;
Tyrosine; Glutamate;

1.4304 × 10−6 0.16667

Glyoxylate and
dicarboxylate metabolism 6/32

Citrate; Serine; Glycine,
Glutamate; Acetate;
Glutamine

2.6791 × 10−4 0.1799

Valine, leucine and
isoleucine biosynthesis 3/8 Leucine; Isoleucine; Valine 0.0055 0.0

Alanine, aspartate and
glutamate metabolism 4/28 Glutamate; Glutamine;

Citrate; Succinate 0.0175 0.3109

Phenylalanine, tyrosine and
tryptophan biosynthesis 2/4 Phenylalanine; Tyrosine; 0.0208 1.0

Butanoate metabolism 3/15 3-Hydroxybutirate;
Glutamate; Succinate 0.0208 0.0

Glutamine and glutamate
metabolism 2/6 Glutamate; Glutamine 0.0378 0.5

Glutathione metabolism 3/28 Glutathione disulfide;
Glycine; Glutamate; 0.0869 0.13537

Phenylalanine metabolism 2/10 Phenylalanine, Tyrosine 0.0873 0.35714

Adapted from the MetaboAnalyst results. Pathway name, match status (number of metabolites implicated in each
pathway vs. the total implicated), metabolites involved, the False Discovery Rate (FDR) and Impact are shown in
the table.

8. Future Perspectives

In this review, the detection of early molecular biomarkers has been highlighted as a promising
strategy to prevent the development of MetS. Indeed, the finding of alterations in these metabolic
parameters, which are closely related with robust clinical biomarkers such as glucose, triglycerides and
cholesterol through several signaling pathways, could avoid the deregulation of metabolic pathways
directly related with the development of MetS. However, the analysis of the described biomarkers
would be relevant not only for the prevention of this multifactorial disease, but also for a large number
of diseases, as there is a complex crosstalk between most of the metabolic parameters described in this
review and several diseases, such as cancer, diabetes and neuro-related diseases.

As an example, the gut microbiome product TMAO has been considered a shared risk factor
between numerous diseases, such as IR, cancer, Alzheimer’s disease (AD) and schizophrenia, among
others [238,239]. Clinical studies have described that higher circulating levels of TMAO are correlated
with a higher inflammatory response (↑ C-reactive protein, ↑ TNF-α, ↑ IL-6) [240]. Moreover, it is
related to the synthesis of N-Nitroso compounds, which are involved in epigenetic alterations and
DNA-damage that can lead to the induction of cancer [241]. As another example, BCAA have been
described to be altered in human diabetes, a risk factor for Alzheimer’s disease [242]. Preclinical
studies have shown that the accumulation of these amino acids in brain promotes the phosphorylation
of Tau proteins, which are involved in the development of Alzheimer [243]. Thus, the identification of
alterations in these biomarkers and their precursors would be of high relevance.

Although the detection of molecular biomarkers by NMR techniques is very promising, there are
several factors that must be taken into consideration. As a clear example, the selection of the analyzed
biofluids is crucial. Blood and urine have been the preferred source of metabolites used by NMR
analysis, but there are other useful and potential biofluids (Figure 1). One of them is feces, which might
be a suitable biofluid for NMR analysis. In this case, the recollection is non-invasive and neither need
a specialized person to acquire the biofluid via needle extraction. The challenge is to extract useful
information from a complex sample that contains end products of human metabolism, different species
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of bacteria, end products from bacterial processes and epithelial cells from the colorectal mucosa via
fecal NMR metabolomics [244]. Another fluid of interest, which has the same advantages as feces, is
saliva, as it is also easy to obtain and it could inform about several metabolic processes. As an example,
saliva biomarkers in AD early diagnostic were detected in a pilot study with NMR metabolomics.
The development of accurate and sensitive salivary biomarkers would be ideal for screening those
individuals at greatest risk of developing disease, translating the AD example to other diseases as
MetS, obesity and T2D [245]. Thus, there is a need to promote the use of these promising biofluids to
improve the detection of new biomarkers.
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Figure 1. Pipeline explaining the steps that should be followed for an early detection of pre-diseases
states and prevention of the development of cardiometabolic diseases through the 1H NMR (proton
nuclear magnetic resonance) analysis of minimal invasive samples, thus getting metabolomics profile
of the potential patients. Therefore, using this metabolomics information, we will be able to find a
personalized interventional nutrition through the integration of studied algorithms to finally reduce or
stop the development of the different cardiometabolic diseases.

Another factor that has a sharp influence on the detection and interpretation of new biomarkers
is sample processing, which requires specific conditions depending on the analyzed biomarkers. As
an example, several oxidative stress biomarkers, such as glutathione, are unstable and unreliable to
detect by NMR due to its oxidation during sample processing. Moreover, other biomarkers such as
acetate, can be easily overestimated in different biofluids because of the contamination of samples
during its manipulation. Therefore, specific extraction and quantification procedures must be taken
into consideration depending on the analyzed biomarkers and their chemical properties.

Several molecular biomarkers involved in metabolic disorders have been excluded from this
review as there is not enough evidence to be considered as biomarkers of early stages of disease.
Despite the fact that further research is needed in order to enlarge the list of robust biomarkers exposed
in this review, identification and aggrupation of early biomarkers in different risk factor clusters can be
of great help to (a) make it easier to identify altered metabolic pathways when more than one early
biomarker placed in the same cluster is changed; and (b) design personalized diets with ingredients
that are described to target the identified metabolic alterations.

9. Conclusions

To sum up, from the identification and quantification of early biomarkers, different metabolic
diseases could be treated in early states of the development of the diseases, before they could not be
reversed. NMR metabolomics assessment is a reproducible and economic analysis of these metabolites
which could be useful to detect these early disease development stages. This review summarizes
some potential biomarkers that have been described in the literature related to different clusters which
have been associated with metabolic diseases (carbohydrates metabolism, dyslipidemia, oxidative
stress, inflammation, and gut microbiota), and have been used to achieve health information about the
patients who may have symptoms related to metabolic disorders. If these biomarkers are assessed
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together instead of individually, the information obtained would be more complete and it would be a
good strategy to detect cardiometabolic diseases in their early stages. However, the lack of qualitative
analysis through NMR assessments take us to improve the methods used to process the samples and
the way to analyze the recently known metabolites. Besides, it is necessary to find more metabolites
related to these early stages of development of diseases, being characterized and intensively studied.
When these further studies advance, we will be able to establish a fast and accurate method to prevent
cardiometabolic and metabolic syndrome diseases in pre-stages of their development.
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