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Genetic code expansion allows unnatural (non-canonical) amino acid incorporation into pro-
teins of interest by repurposing the cellular translation machinery. The development of this
technique has enabled site-specific incorporation of many structurally and chemically di-
verse amino acids, facilitating a plethora of applications, including protein imaging, engineer-
ing, mechanistic and structural investigations, and functional regulation. Particularly, genetic
code expansion provides great tools to study mammalian proteins, of which dysregulations
often have important implications in health. In recent years, a series of methods has been
developed to modulate protein function through genetically incorporated unnatural amino
acids. In this review, we will first discuss the basic concept of genetic code expansion and
give an up-to-date list of amino acids that can be incorporated into proteins in mammalian
cells. We then focus on the use of unnatural amino acids to activate, inhibit, or reversibly
modulate protein function by translational, optical or chemical control. The features of each
approach will also be highlighted.

Introduction
Knowledge of protein function is of pivotal importance to life science research. It can guide conventional
drug development programmes and lead to novel strategies to address currently non-targetable systems
[1–3]. In order to understand the precise role and interacting network of a protein, it is essential to analyse
it within its native environment. For a mammalian protein, its function often also depends on its host
cell (e.g. cell type and cell cycle stage), specific subcellular location and post-translational modifications.
In addition, a protein of interest often exists in the presence of other closely related homologues (e.g.
proteins within the same family), making it difficult to decipher the precise function of a specific protein
in cells. Targeting the protein by small-molecule inhibition is often not possible in these cases, as protein
homologues will also be affected. To tackle this problem, over the last two decades there has been a drive to
develop and refine the technique of genetic code expansion which allows researchers to exploit the cellular
translation machinery for site-specific incorporation of unnatural (non-canonical) amino acids into target
proteins [4–14]. Consequently, this enables the use of building blocks beyond the 20 canonical amino acids
and incorporation of unnatural amino acids with unprecedented functionality into target proteins in live
cells. The repurposing of the translational machinery by this approach has paved the way for revealing
the functions of proteins under physiological conditions [15–19]. For example, the technique can be used
to site-specifically introduce an unnatural amino acid into the homologue of interest, whereby unique
functionality (on the unnatural amino acid) can be used for selective activation, inhibition, or reversible
regulation of the target homologue [7].

At the molecular level, the mechanism of protein translation is highly conserved in all organisms,
where the cellular machinery ‘translates’ every nucleotide triplet as a codon consecutively on the mRNA
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Figure 1. Mechanism of genetic code expansion for site-specific incorporation of an unnatural amino acid by amber

suppression

Figure 2. Allowed and not allowed reactivities between the orthogonal and endogenous aaRS/tRNA pairs

(A) Matching amino acid and aaRS/tRNA pairs; (B) mismatched amino acids; (C) mismatched aaRS/tRNA pairs.

into the corresponding amino acid. In nature, the endogenous aminoacyl-tRNA synthetase (aaRS)/tRNA pairs within
the cell decode 61 of the total 64 codons to 20 canonical amino acids. The remaining three codons (UAG, UGA
and UAA) are used for translation termination, and hence they are also known as ‘stop’ codons. In order to achieve
site-specific incorporation of an unnatural amino acid, an orthogonal aaRS/tRNA pair is needed, which must decode a
codon that does not correspond to any canonical amino acid, a so-called blank codon (Figure 1). Stop codons are most
commonly used as a blank codon in genetic code expansion, and decoding of a stop codon is known as ‘suppression’
because it suppresses the translation termination. The amber stop codon (UAG) is often used as the blank codon due
to its minimal occurrence in most organisms.

Within the concept of genetic code expansion, ‘orthogonality’ refers to the non-reactivity of the orthogonal
aaRS/tRNA pair with the endogenous pair and canonical amino acids in the host cell. The orthogonal synthetase
must only acylate the orthogonal tRNA with the designated unnatural amino acid; neither canonical amino acids
nor endogenous tRNAs are substrates of the orthogonal synthetase; similarly, neither the unnatural amino acid nor
orthogonal tRNA is a substrate of the endogenous synthetases (Figure 2).

Besides the amber codon, other stop codons [20–26] and different four-nucleotide codons [27,28] have been used
as a blank codon. The use of four-nucleotide codons expands the theoretical codon numbers from 43 (64) to 44

(256) so that multiple different unnatural amino acids can be incorporated at the same time. However, decoding a
four-nucleotide codon by the ribosome is less efficient than decoding the normal three-nucleotide codons. Although
this issue has been addressed in Escherichia coli through ribosome engineering [29–31], the lower efficiency in
decoding four-nucleotide codons remains an issue in mammalian systems [27,28].

To date, many unnatural amino acids (1–110, Table 1) can be site-specifically incorporated into proteins pro-
duced by mammalian cells using genetic code expansion [5,32]. While the amino acids are structurally di-
verse, the majority of them can be incorporated through only a few orthogonal synthetases and their mutants.
The Pyrrolysyl-tRNA synthetase (PylRS)/tRNAPyl pairs from archaea species Methanosarcina barkeri (Mb) and
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Figure 3. Use of amber suppression to switch on protein production

(A) Absence of the unnatural amino acid leads to recognition of the UAG codon for translation termination. (B) Addition of the

unnatural amino acid leads to amber suppression and successful production of the full-length and functional protein.

Methanosarcina mazei (Mm) have proven to be extraordinarily useful pairs [4]. The tRNAPyl naturally recognises
the UAG codon and thus engineering of this tRNA is not needed. In addition, this pair is orthogonal in both E. coli
and mammalian cells; hence, it facilitates the engineering of PylRS in E. coli and subsequently using the engineered
PylRS mutant for incorporation of the designated unnatural amino acid in mammalian systems. As shown in Table
1, a wide range of amino acids has been incorporated into proteins in mammalian cells through only a few point
mutations on the PylRS gene.

Many engineered E. coli aaRS/tRNA pairs have also been used as orthogonal pairs in mammalian cells. The most
successful ones are the E. coli tyrosine, leucine and tryptophan pairs [33]. However, as all these synthetases naturally
recognise a canonical amino acid, it is necessary to abolish their natural activity towards the canonical amino acid
and to recognise only the designated unnatural amino acid. As it is technically difficult to perform directed evolution
in mammalian cells due to low efficiency in transfection and screening, synthetase engineering is normally carried
out in E. coli [34,35] or yeast [15,36,37] so that large mutant libraries can be easily screened. It is also necessary to
modify the E. coli tRNA so that it decodes a blank codon instead of a codon corresponding to a canonical amino
acid.

Based on the simplicity of the established methodology [38–40] and the promiscuity of many orthogonal syn-
thetases towards different unnatural amino acids (vide infra) [41], the number of genetically incorporable unnat-
ural amino acids has steadily increased. In addition, some orthogonal aaRS/tRNA pairs are mutually orthogonal
[21,24–26,42] and can be used at the same time to incorporate multiple different unnatural amino acids into a pro-
tein of interest.

As recent reviews cover fundamental aspects of genetic code expansion [4,6,9,13], the engineering of new orthog-
onal synthetases [8], and general [5,10,11,14] or specific [7,12] applications of genetic code expansion in eukaryotic
systems, we will focus on recent advances and applications of genetic code expansion for controlling protein function
in mammalian cells through translational, optical or chemical means.

Translational control by amber suppression
Genetic code expansion by unnatural amino acid incorporation in response to an amber stop codon provides the
simplest way to ‘switch on’ protein production. In this case, an amber stop codon is placed into the gene of inter-
est (Figure 3) for incorporation of the unnatural amino acid into a permissive site of the target protein [43]. In the
absence of the designated unnatural amino acid, protein translation stops prematurely at the amber stop codon, gen-
erating truncated and non-functional protein product and thus giving an effect as a nonsense mutation (Figure 3A).
In the presence of the unnatural amino acid, the orthogonal tRNA is acylated and decodes the amber codon, leading
to amber suppression and generation of full-length, functional protein product (Figure 3B). Thus, simple addition of
the unnatural amino acid into the growth medium ‘switches on’ the protein production and function [44]. In con-
trast with commonly used systems for inducible mammalian protein expression (e.g. the tetracycline transcriptional
transactivation) [45], the lag time is shorter in the translational control by amber suppression (i.e. time for transla-
tion and folding) than the gene activation approaches (i.e. time for transcription, mRNA processing, translation and
folding). Amber suppression also allows a more stringent control, as the background activity (if any) can be further
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Table 1 Overview of unnatural amino acids that have been successfully incorporated into proteins in mammalian cells and
used for a variety of applications to date

Amino acid aaRS Mutations tRNA Application

Cysteine and selenocysteine derivatives

EcLeuRS [24]
M40I T252A Y499I Y527A

H529G
EctRNALeu

CUA
Method development

EcLeuRS [24]
M40I T252A Y499I Y527A

H529G
EctRNALeu

CUA
Method development

EcLeuRS [24]
M40I T252A Y499I Y527A

H529G
EctRNALeu

CUA
Method development

EcLeuRS [24]
M40I T252A Y499I Y527A

H529G
EctRNALeu

CUA
Method development

EcLeuRS [24]
M40I T252A Y499I Y527A

H529G
EctRNALeu

CUA
Method development

EcLeuRS [24]
M40I T252A Y499I Y527A

H529G
EctRNALeu

CUA
Method development

EcLeuRS [71]
M40G L41Q T252A Y499L

Y527G H537F
EctRNALeu

CUA
Photoactivation

EcLeuRS [72]
M40G L41Q Y499L Y527G

H537F
EctRNALeu

CUA Photoactivation

Continued over
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Table 1 Overview of unnatural amino acids that have been successfully incorporated into proteins in mammalian cells and
used for a variety of applications to date (Continued)

Amino acid aaRS Mutations tRNA Application

MbPylRS [73,74] N311Q C313A V366M MbtRNAPyl
CUA Photoactivation

MbPylRS [75] M241F A267S Y271C L274M MbtRNAPyl
CUA Photoactivation

MbPylRS [75] M241F A267S Y271C L274M MbtRNAPyl
CUA Photoactivation

MbPylRS [76] C313W W382T MbPyltRNA Method development

MbPylRS [40] L274A C313S Y349F MbtRNAPyl
CUA Photocrosslinking

MbPylRS [40] L274A C313S Y349F MbtRNAPyl
CUA Photocrosslinking

Phenylalanine derivatives

EcTyrRS [77] Y37V D182S F183M D265R
EctRNATyr

CUA
Method developmentBstRNATyr

CUA

Continued over
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Table 1 Overview of unnatural amino acids that have been successfully incorporated into proteins in mammalian cells and
used for a variety of applications to date (Continued)

Amino acid aaRS Mutations tRNA Application

EcTyrRS [35,37,43,77]

Y37V D182S F183M D265R [77]
Y37I D182S F183M [37,43]
Y37V D165G D182S F183M

L186A D265R [35]

EctRNATyr
CUA [35,77] Method development [35,37,77]

Protein engineering [43]BstRNATyr
CUA [37,43,77]

EcTyrRS [77] Y37V D182S F183M D265R

EctRNATyr
CUA

Method developmentBstRNATyr
CUA

EcTyrRS [77] Y37V D182S F183M D265R
EctRNATyr

CUA Method development
BstRNATyr

CUA

EcTyrRSCUA

[16,17,35,37,38,43,49,
55,68,77–96]

Y37L D182S F183A L186A
D265R [78,81,84,85]

Y37V D182S F183M D265R
[77,90]

Y37L D182S F183M L186A
[16,17,37,38,43,49,55,68,79,

80,82,83,86–89,91–96]
Y37V D165G D182S F183M

L186A D265R [35]

EctRNATyr
CUA [35,77,78,81,86,90] Bioorthogonal labelling

[38,79,83,87–89,96]
Method development

[17,25,35,37,77,78,90]
Photocrosslinking

[38,68,81,84,85,91–95]
Protein engineering [43,49,55,83]

Spectroscopic probe [16,80,82,86]

BstRNATyr
CUA

[16,17,37,38,43,49,55,68,77,79,
80,82–85,87–96]

EcTyrRSUCA [25]
Y37V D182S F183M

EctRNATyr
UCA

BstRNATyr
UCA

EcTyrRS [35,97]

Y37I D182S F183M D265R [97]
Y37S D182S F183A L186E

D265R [35]
Y37G D182S F183I L186E

D265R [35]
Y37S D182S F183I L186E

D265R [35]

EctRNATyr
CUA [35,97]

Method development [35]
Spectroscopic probe [97]

BstRNATyr
CUA [97]

MmPylRS [50] L301M Y306L L309A C348F MmtRNAPyl
CUA Method development

MmPylRS [98] N346A C348A MmtRNAPyl
CUA Method development

MmPylRS [98] N346A C348A MmtRNAPyl
CUA Method development

Continued over
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Table 1 Overview of unnatural amino acids that have been successfully incorporated into proteins in mammalian cells and
used for a variety of applications to date (Continued)

Amino acid aaRS Mutations tRNA Application

MmPylRS [98] N346A C348A MmtRNAPyl
CUA Method development

MmPylRS [98] N346A C348A MmtRNAPyl
CUA Method development

MmPylRS [98] N346A C348A MmtRNAPyl
CUA Method development

MmPylRS [98] N346A C348A MmtRNAPyl
CUA Method development

MmPylRS [98] N346A C348A MmtRNAPyl
CUA Method development

EcTyrRSCUA

[21,35,37,43,77,83,87,90,99,100]
Y37I N165G D182G F183M

L186A [83,99]
Y37I D182G F183M L186A

[37,43,87,100]
Y37V D182S F183M D265R

[21,77,90]
Y37V D165G D182S F183M

L186A D265R [35]

EctRNATyr
CUA [21,35,77,90] Bioorthogonal labelling [83,87,100]

Method development
[25,35,37,77,83,90,99]

Protein engineering [21,43]

BstRNATyr
CUA

[37,43,77,83,87,99,100]

EcTyrRSUCA [25]
Y37V D182S F183M

EctRNATyr
UCA

BstRNATyr
UCA

EcTyrRS [84,101]
Y37I D182G F183M L186A

D265R
BstRNATyr

CUA
Chemical crosslinking [84,101]

Method development [101]

EcTyrRS
[15,37,55,78,85,92,94,95,

99,102–105]

Y37G D182G L186A
D265R [78,85,103]

Y37G D182G L186A
[15,55,92,94,95,99,102,104,105]
Y37G D182G F183Y L186M [37]

EctRNATyr
CUA [15,78,103] Mechanistic studies [15]

Method development
[37,78,95,99,103,106]

Photocrosslinking
[85,92,94,102,104,105]

Photoinhibition [55]BstRNATyr
CUA

[37,55,85,92,94,95,99,102,104,105]

MmPylRS [106]
A302T N346T C348T W417C

[106]
MmtRNAPyl

CUA [106]

Continued over
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Table 1 Overview of unnatural amino acids that have been successfully incorporated into proteins in mammalian cells and
used for a variety of applications to date (Continued)

Amino acid aaRS Mutations tRNA Application

MmPylRS [106]
A302T N346G C348T V401I

W417Y
MmtRNAPyl

CUA Method development

EcLeuRS [107–109]
L38F M40G L41P Y499V Y500L

Y527A H537E L538S F541C
A560V

EctRNALeu
CUA

Method development [107,108]
Spectroscopic probe [109]

MmPylRS [110] N346Q C348S V401G W417T MmtRNAPyl
CUA Spectroscopic Probe

MbPylRS [111]
L270F L274M N311G C313G

Y349F
MbtRNAPyl

CUA Photoswitching

MbPylRS [111]
L270F L274M N311G C313G

Y349F
MbtRNAPyl

CUA Photoswitching

MbPylRS [111]
L270F L274M N311G C313G

Y349F
MbtRNAPyl

CUA Photoswitching

MmPylRS [56,112] A302T L309S N346V C348G MmtRNAPyl
CUA

Method development [112]
Photoswitching [56]

Histidine derivatives

MaPylRS [26]
L121M L125I Y126F M129A

V168F
MatRNAPyl

CUA
Method development

MbPylRS [113]
L270I Y271F L274G C313F

Y349F

MbtRNAPyl
CUA

Continued over

244 © 2019 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons
Attribution License 4.0 (CC BY).



Essays in Biochemistry (2019) 63 237–266
https://doi.org/10.1042/EBC20180042

Table 1 Overview of unnatural amino acids that have been successfully incorporated into proteins in mammalian cells and
used for a variety of applications to date (Continued)

Amino acid aaRS Mutations tRNA Application

MbPylRS [113]
L270I Y271F L274G C313F

Y349F
MbtRNAPyl

CUA Method development

Lysine derivatives

MbPylRS [114]
L266M L270I Y271F L274A

C313F
MbtRNAPyl

CUA Method development

MbPylRS [115–117]
D76G L266V L270I Y271F

L274A C313F [115]
D76G L266M L270I Y271F

L274A C313F [116,117]

MbtRNAPyl
CUA

Method development
[44,50,115,117,118]

Spectroscopic probe [116]

MmPylRS [44,50,118]
L305I Y306F L309A C348F [118]

L301M Y306L L309A C348F
[44,50]

MmtRNAPyl
CUA [50,118]

MmtRNAPyl
UUA [44]

MmPylRS [50] L301M Y306L L309A C348F MmtRNAPyl
CUA Method development

MbPylRS [119]
D76G L266M L270I Y271F

L274A C313F
MbtRNAPyl

CUA Method development

MbPylRS [77,120]
L274A C313F Y349F [120]

wt [77]
MbtRNAPyl

CUA Method development

Continued over
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Table 1 Overview of unnatural amino acids that have been successfully incorporated into proteins in mammalian cells and
used for a variety of applications to date (Continued)

Amino acid aaRS Mutations tRNA Application

MbPylRS [121] Y271M L274A C313A MbtRNAPyl
CUA Photocrosslinking

MmPylRS [122] Y306V L309A C348F Y384F MmtRNAPyl
CUA Photocrosslinking

MaPylRS [26] wt MatRNAPyl
CUA

Method development
[21,22,25,26,44,47,69,73,77,106,

115,117,118,123–130]

MbPylRS
[21,25,44,125,129,130]

wt

MbtRNAPyl
CUA

[25,44,125,129,130]
MbtRNAPyl

UUA [44]

MbtRNAPyl
UCA [25,44]

MmPylRS
[22,26,44,47,69,73,77,106,

115,117,118,123,124,126–128]
wt

MmtRNAPyl
CUA

[21,22,26,47,69,73,77,
106,115,

118,123,124,126,127]
MmtRNAPyl

CUA BU25CB[22,117,128]

MmtRNAPyl
UUA [21,44]

MmtRNAPyl
UCA [21]

MbPylRS
[21,24,25,48,77,131–137]

Wt [21,24,25,48,77,132–136]
L274A C313S Y349F [131]

Y349F [137]

MbtRNAPyl
CUA [25,77,131]

MbtRNAPyl
UCA [24,25,48,132–136]

Bioorthogonal labelling
[127,131,137]
Imaging [136]

Method development
[24,25,77,134,137]
Protein engineering

[21,48,132,133,135–137]

MmPylRS [127] wt
MmtRNAPyl

CUA [127,137]

MmtRNAPyl
UUA [21]

MbPylRS [57,69,77,138,139] wt MbtRNAPyl
CUA

Bioorthogonal labelling [131,139]
Chemical decaging [57]
Imaging [69,129,138]

Method development [69,77]MmPylRS [69,129,131] wt
MmtRNAPyl

CUA

MbPylRS [25,130] wt MbtRNAPyl
CUA [25]

Bioorthogonal labelling [130]
Method development [25]

MmPylRS [130] wt
MmtRNAPyl

CUA

Continued over
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Table 1 Overview of unnatural amino acids that have been successfully incorporated into proteins in mammalian cells and
used for a variety of applications to date (Continued)

Amino acid aaRS Mutations tRNA Application

MbPylRS [131,140] L274A C313S Y349F MbtRNAPyl
CUA Bioorthogonal labelling

MmPylRS [141] wt MmtRNAPyl
CUA Method development

MbPylRS [140] wt MbtRNAPyl
CUA Method development

MmPylRS [118,142,143]

R61K G131E L309A C348V
Y384F [118]

Y306A Y384F [142]
R61K G131E Y306A Y384F

[143]

MmtRNAPyl
CUA [118,142]

MmtRNAPyl
CUA BU25C [143]

Method development
[118,142,143]

MbPylRS [140] Y271I L274A C313A Y349F MbtRNAPyl
CUA Method development [140,141]

Photoactivation [61,144]MmPylRS [61,141,144] Y306M L309A C348A Y384F MmtRNAPyl
CUA

MbPylRS [145] Y271M L274T C313A Y349F MbtRNAPyl
CUA Method development

Continued over

© 2019 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).

247



Essays in Biochemistry (2019) 63 237–266
https://doi.org/10.1042/EBC20180042

Table 1 Overview of unnatural amino acids that have been successfully incorporated into proteins in mammalian cells and
used for a variety of applications to date (Continued)

Amino acid aaRS Mutations tRNA Application

MbPylRS [146] Y271I 274M C313A MbtRNAPyl
CUA Method development

MbPylRS [63] Y271A Y349F MbtRNAPyl
CUA Chemical decaging

MbPylRS [62] L274A C313S Y349F MbtRNAPyl
CUA

Bioorthogonal labelling
Chemical decaging

MbPylRS
[66,67,69,75,125,147–152]

M241F A267S Y271C L274M
[66,67,69,75,125,147–152]

MbtRNAPyl
CUA

[66,67,69,75,125,147–152]
MbtRNAPyl

CUAU25C [66]

Method development [69]
Photoactivation

[66,67,75,125,147–152]

MbPylRS [153] Y271A L274M MbtRNAPyl
CUA Photoactivation

MbPylRS [153] Y271A L274M MbtRNAPyl
CUA Photoactivation

MbPylRS [153] Y271A L274M MbtRNAPyl
CUA Method development

Continued over
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Table 1 Overview of unnatural amino acids that have been successfully incorporated into proteins in mammalian cells and
used for a variety of applications to date (Continued)

Amino acid aaRS Mutations tRNA Application

MbPylRS [154]
L266M L270I Y271L L274A

C313
MbtRNAPyl

CUA Method development

MbPylRS [24,25] wt
MbtRNAPyl

CUA [25]

MbtRNAPyl
UCA [24]

Imaging [123]
Method

development
[22,24,25,69,115,155,156]

MmPylRS
[22,69,115,123,155,156]

Wt [22,69,115,123,155,156]
Y306A Y384F [155]

MmtRNAPyl
CUA BU25CB[22,155]

MmtRNAPyl
CUA [69,115,123,156]

Mx1201PylRS [155] wt
Mx1201tRNAPyl

CUA

Mx1201tRNAPyl
CUAC41CA

MmPylRS [124] wt MmtRNAPyl
CUA Bioorthogonal labelling

MbPylRS [77,157,158]
Wt [77,158]

L274M 313A Y349F [157]
MbtRNAPyl

CUA

Method development [77,155,159]
Photocrosslinking [157,158]

MmPylRS [155,159] Y306A Y384F

MmtRNAPyl
CUA [159]

MmtRNAPyl
CUAU25C [155]

MmPylRS [159] Y306A Y384F MmtRNAPyl
CUA Method development

MbPylRS [132,140,160] L274A C313S Y349F MbtRNAPyl
CUA

Method development [140]
Photocrosslinking [132,160]

Protein engineering [132]

Continued over
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Table 1 Overview of unnatural amino acids that have been successfully incorporated into proteins in mammalian cells and
used for a variety of applications to date (Continued)

Amino acid aaRS Mutations tRNA Application

MmPylRS [159] Y306A Y384F MmtRNAPyl
CUA Method development

MmPylRS [142] Y306A Y384F MmtRNAPyl
CUA Photocrosslinking

MmPylRS [143] R61K G131E Y306A Y384F MmtRNAPyl
CUA BU25C

Photocrosslinking

MmPylRS
[18,39,59–61,123,155,161–166]

Y306A Y384F
[18,39,59–61,123,155,161–166]

MmtRNAPyl
CUA

[18,39,59–61,123,161–166]
MmtRNAPyl

CUA BU25CB[155] Imaging [123,161,162,164,166]
Chemical decaging [18,59–61]

Chemical crosslinking [163]
Method development [155,165]

Protein labelling [39]
Mx1201PylRS [155] Y126A

Mx1201tRNAPyl
CUA

MbPylRS [123,167,168] Y271A L274M C313A MbtRNAPyl
CUA

Bioorthogonal labelling [124,167]
Imaging [123,168]

Method development [169]
MmPylRS [124,169]

Y306A Y384F [169]
Y306A L309M C348A [124]

MmtRNAPyl
CUA

MmPylRS [165] Y306A Y384F MmtRNAPyl
CUA Method development

Continued over
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Table 1 Overview of unnatural amino acids that have been successfully incorporated into proteins in mammalian cells and
used for a variety of applications to date (Continued)

Amino acid aaRS Mutations tRNA Application

MbPylRS [167,168] Y271A L274M C313A MbtRNAPyl
CUA

Bioorthogonal labelling [167]
Method development [167,169]

MmPylRS [169] Y306A Y384F

MmtRNAPyl
CUA

MbPylRS [24] wt MbtRNAPyl
UCA

Bioorthogonal labelling
[39,127,131]

Method development [24,169]

MmPylRS [39,127,131,169]
Wt [127,131]

Y306A Y384F [39,169]

MmtRNAPyl
CUA

MmPylRS [169] Y306A Y384F MmtRNAPyl
CUA Method development

MmPylRS [39,161,166,169,170] Y306A Y384F MmtRNAPyl
CUA

Bioorthogonal labelling [39]
Imaging [161,166,170]

Method development [169]

MbPylRS
[19,64,140,168,171,172]

Y271M L274G C313A
[19,64,168,171,172]

M241F A267S Y271C L274M
[140]

MbtRNAPyl
CUA

[64,140,168,171,172]
MbtRNAPyl

CUAU25C [19]

Chemical inhibition [64]
Bioorthogonal labelling

[39,131,167]
Imaging

[123,128,161,166,168,171,172]
Method development

[155,159,165]
Protein engineering [140]
Spectroscopic probe [19]

MmPylRS
[39,123,128,131,155,159,161,

165–167]

Y306A 384F
[39,123,128,131,155,159,

161, 165–167]

MmtRNAPyl
CUA

[39,123,128,131,159,161,
165–167]

MmtRNAPyl
CUA BU25C [155]

Tryptophan derivatives

EcTrpRS [34]
S8A V144S V146A
S8A V144G V146C

EctRNATrp
CUA Method development

Continued over
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Table 1 Overview of unnatural amino acids that have been successfully incorporated into proteins in mammalian cells and
used for a variety of applications to date (Continued)

Amino acid aaRS Mutations tRNA Application

EcTrpRS [34] S8A V144S V146A EctRNATrp
CUA Method development

EcTrpRS [34] S8A V144G V146C EctRNATrp
CUA Method development

EcTrpRS [34] S8A V144G V146C EctRNATrp
CUA Method development

EcTrpRS [34] S8A V144G V146C EctRNATrp
CUA Method development

Tyrosine derivatives

EcTyrRS [46] Y37V Q195C BstRNATyr
CUA Method development

EcTyrRSCUA
[15,21,35,37,77,78,90]

Y37T D182T F183M D265R [78]
Y37V D182S F183M [37]

Y37V D182S F183M D265R
[21,77,90]

Y37T D182T F183M [15]
Y37V D165G D182S F183M

L186A D265R [35]

EctRNATyr
CUA [15,21,35,77,78,90]

Mechanistic studies [15]
Method development

[21,25,35,37,77,78,90]

BstRNATyr
CUA [21,37,77,90]

EcTyrRSUCA [25]
Y37V D182S F183M

EctRNATyr
UCA

BstRNATyr
UCA

EcTyrRS [77] Y37V D182S F183M D265R

EctRNATyr
CUA

Method developmentBstRNATyr
CUA

Continued over
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Table 1 Overview of unnatural amino acids that have been successfully incorporated into proteins in mammalian cells and
used for a variety of applications to date (Continued)

Amino acid aaRS Mutations tRNA Application

EcTyrRS [25,35,37,77] Y37V D182S F183M D265R [77]
Y37S D182T F183M L186V [37]

Y37V D182S F183M [25]
Y37V D165G D182S F183M

L186A D265R [35]

EctRNATyr
CUA [25,35,77]

Method developmentBstRNATyr
CUA [37,77]

MbPylRS [126,148,173]

L270F L274M N311G C313G
Y349F [173]

L270F L274M N311G C313G
[126,148]

MbtRNAPyl
CUA Photoactivation

MbPylRS [173]
L270F L274M N311G C313G

Y349F
MbtRNAPyl

CUA Photoactivation

MbPylRS [173]
L270F L274M N311G C313G

Y349F
MbtRNAPyl

CUA Photoactivation

MbPylRS [173]
L270F L274M N311G C313G

Y349F
MbtRNAPyl

CUA Photoactivation

MmPylRS [174] N346T C348I Y384L W417K MmtRNAPyl
CUA Bioorthogonal labelling

EcTyrRS [35]
Y37V D182S F183M D265R
Y37V D165G D182S F183M

L186A D265R
EctRNATyr

CUA Method development

Miscellaneous unnatural amino acids

EcLeuRS [24,25]

M40I T252A Y499I Y527A
H529G [24]

E20K M40V L41S T252R Y499S
Y527L H529G H537G [25]

EctRNALeu
CUA Method development

Continued over
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Table 1 Overview of unnatural amino acids that have been successfully incorporated into proteins in mammalian cells and
used for a variety of applications to date (Continued)

Amino acid aaRS Mutations tRNA Application

EcLeuRS [15,103,175]
M40A L41N T252A Y499I

Y527G H537T
EctRNALeu

CUA
Mechanistic studies [15,103]
Method development [175]

MmSepRS [176] wt MjtRNACys
CUA Method development

Method development includes demonstration of incorporation, optimisation of incorporation efficiency, application as a control substrate,
proof-of-principle of a technique for subsequent studies etc. Abbreviations: Ma, Methanomethylophilus alvus; wt, wild type.

minimised by including multiple amber codons into the gene of interest. The translational control by amber suppres-
sion approach is fully complementary to conventional genetic approaches (e.g. knockout, knockdown) that deplete a
protein in cells to ‘switch off’ its function. In addition, the unnatural amino acid approach is reversible, as removing
the unnatural amino acid in the growth medium will ‘switch off’ the translation of the protein of interest.

The translational switch-on process has been widely employed as a reporter system to test incorporation of new
unnatural amino acids by using luminescent proteins like green fluorescent protein [46] or luciferase [20]. Upon
successful incorporation, cells can emit light, whose intensity directly correlates to the unnatural amino acid incor-
poration efficiency. Apart from the reporter strategy, this approach has also been used to regulate function of other
proteins, such as Cas9 for controllable gene editing in mouse embryos [47].

Besides the general use of the ‘translational activation’ approach to study protein function, this principle has been
proven to be powerful in controlling virus replication [43,48,49]. By introducing TAG codons within the virus genes,
viruses can only be generated using cell lines containing an orthogonal synthetase/tRNACUA pair, and the resulting
viruses are replication-incompetent in normal cells due to the lack of amber suppressor tRNA (Figure 4A) [43,48].
Such replication-incompetent viruses offer an additional tier of control for live-attenuated vaccines and signifi-
cantly increase their safety. This concept has been further developed by including the genes encoding the orthog-
onal aaRS/tRNA pair into the viral genome (Figure 4B) [49]. In this case, viruses can be replicated in wild-type cells
and the native hosts, as long as the unnatural amino acid is supplemented. Here, spatial control can also be achieved
by local administration of the unnatural amino acid as demonstrated in examples of mice with an expanded genetic
code [50,51]. Thus, the approach can be used for controlling viral vectors in gene therapy, where spatiotemporal virus
replication and gene editing are highly desirable.

While the translational control approach is quite simple, the response is not instantaneous. There is always a lag
time from when the unnatural amino acid is administered into the culture medium until the full-length protein is
produced and folded. Similarly, depleting the unnatural amino acid in the growth medium will stop production of
new proteins, but the protein function will only be completely switched off when all previously produced proteins are
degraded in the cells. Thus, the kinetics of the switching off process largely depend on the half-life of the protein, so
the response rate is the same as with genetic knockdown.

Light-induced activation or inhibition
The slower kinetics of the translational control approach limit its applicability to study biological processes where
fast response is needed. This can be addressed by using light to unmask or modify unnatural amino acids and sub-
sequently regulate protein function. Depending on the nature of the light-responsive group, it is possible to either
activate, inhibit, or reversibly switch on/off protein function (Table 2). Unnatural amino acids containing a photocage
(i.e. a photolabile protecting group) [52] have been widely used for protein activation. When replacing a functionally
critical amino acid residue with the corresponding photocaged amino acid, the target protein becomes inactive; upon
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Table 2 Overview of photocaged unnatural amino acids that have been incorporated in mammalian cell systems for
activating protein function upon irradiation with light of specific wavelength λ

Amino acid Photocaging group (R) System Proteins λdecag (nm)

HEK293T

eGFP, potassium channel Kir2.1
[71]

385

eGFP [72]

Long wavelength UV

eGFP, mCherry, Npu DnaE intein,
Src kinase [72]

TEV protease [73,74], Npu DnaE
intein [74]

365

sfGFP, luciferase [75]

HEK 293T sfGFP, luciferase [75] 365

HEK293 [67,125]
HEK293T [66,75,147–150,152]

HEK293ET [151]
HeLa [150,152]

Nuclear localisation peptide for
subcellular localisation of SATB1
and FOXO3 transcription factors,

and TEV protease [149]

350

sfGFP, luciferase [75]

365

p53 transcription factor [125]

Isocitrate dehydrogenase [67]

Cas9 endonuclease [150]

Cre recombinase [148]

Capsid of adeno-associated
virus 2 [147]

T7RNA polymerase [152]

MEK1 kinase [151]

LCK kinase [66] 405

HEK293T Luciferase [144] 365

HEK293T or CHO K1 eGFP and luciferase [153]

365
405

365
405
7601

Continued over
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Table 2 Overview of photocaged unnatural amino acids that have been incorporated in mammalian cell systems for
activating protein function upon irradiation with light of specific wavelength λ (Continued)

Amino acid Photocaging group (R) System Proteins λdecag (nm)

HEK293 [126]
HEK293T [148,173]

Cre recombinase
[148]STAT1transcription factor

[126]Luciferase [173]

365

HEK293T luciferase, TEV protease [173]

1Decaging is only achieved at this wavelength via a two-photon activation using a specialised multiphoton laser setup. Abbreviation: Npu, Nostoc
punctiforme.

light irradiation, the photocage is removed, thereby restoring the protein’s function. To date, photocaged cysteines
(17–21), lysines (67, 72–74) and tyrosines (102–105) have been used to control enzyme function, intein splicing,
protein subcellular localisation, virus–host interactions, and cell signalling cascades [13]. The light-activation ap-
proach is particularly useful for kinetic studies as it provides extreme spatiotemporal resolution. Spatial control can
be achieved to even subcellular locations using focused light beams, which is virtually impossible when using the
translational control approach. Theoretically, it is also possible to incorporate photocaged serine in mammalian cells
as it has been demonstrated in yeast [53]. Therefore, the light-activation approach is applicable to regulate any pro-
tein that has a functionally critical cysteine, lysine, tyrosine, or serine residue in mammalian cells, including but
not limited to kinases, DNA- and RNA-binding proteins, proteases, phosphatases, oxidoreductases, isomerases, and
ubiquitin-modifying enzymes [54].

In contrast, the incorporation of a photocrosslinking amino acid can be used to inhibit protein function upon light
irradiation [55]. In this case, a photocrosslinking amino acid is placed in the interior of the target protein. Upon light
irradiation, a highly reactive functionality (e.g. radical, nitrene, carbene) is generated and reacted non-specifically
with a nearby amino acid residue, causing cross-linking of the protein and subsequent abolishment of the protein’s
activity. The feasibility of this approach has been demonstrated with the use of p-benzoylphenylalanine (41) in the
study of glutamate receptors, GluA1 and GluA2 [55]. When compared with the use of a photocaged amino acid,
inhibiting a protein by photocrosslinking does not rely on the existence of a functionally critical residue, and thus
theoretically, it can be used to investigate any protein in mammalian cells. Nevertheless, for each protein target it
is necessary to screen a suitable site for placing the photocrosslinking amino acid. Protein variants containing the
photocrosslinking amino acid must (i) behave in the same way as the wild-type protein (i.e. phenotypically silent)
before light irradiation; and (ii) be fully inhibited after light irradiation causing the photocrosslinking. Due to these
criteria, the screening process can be laborious and time-consuming.

In addition to light-induced activation and inhibition, reversible regulation of a protein function can be achieved
through incorporation of a photoswitchable amino acid (Table 3). For example, 48, containing an azobenzene func-
tionality which undergoes reversible cis-trans isomerisation upon irradiation with blue and UV light, has been used
to control the activity of a glutamate receptor [56]. However, the general applicability of this approach suffers from
similar constraints as inhibition by photocrosslinking. Extensive screening is often needed to identify a suitable site
for incorporation, such that the resulting protein variant is fully active or inactive upon irradiation with light of a
specific wavelength. At the current state of the art, there is no guarantee that such a site can be found in the target
protein.
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Table 3 Overview of photoswitchable unnatural amino acids that have been incorporated in mammalian cell systems used
to modulate protein function upon irradiation with the given wavelengths λ

Amino acid System Proteins λtrans-cis (nm) λcis-trans (nm)

HEK 293T

Luciferase [111]

355 450

530 405

NMDAR glutamate receptor [56] 365 460

Overall, the use of light-responsive amino acids offers superior temporal control of protein function as the response
is significantly faster (seconds) than the translational control by amber suppression (minutes to hours). Additionally,
spatial control can be achieved at subcellular level, which is not possible with the translational approach. Gener-
ally, UV light at approximately 360 nm (i.e. UVA) is required (Tables 2 and 3) to induce the change (i.e. decaging,
cross-linking, or isomerisation). However, UVA light has been shown to alter cellular signalling processes [57] or
influence proper cellular function, if high intensity irradiation is applied (i.e. 50 J.cm−2) [58]. Though not necessarily
problematic, this has to be considered when planning to apply light-responsive unnatural amino acids. Thus, there is a
trend to develop new functionalities that can be modulated by light of higher wavelengths [52]. In particular, red and
near-infrared light (650–750 nm) are appealing because they cause no harm to cells even under excessive exposure,
and they can penetrate tissues for in vivo applications. To date, coumarin-caged lysines (73 and 74) are the only ge-
netically incorporable unnatural amino acids that can be decaged within these wavelengths, although by two-photon
approach that requires a specialised multiphoton laser setup [52]. Nevertheless, with the continuous advances in
light-responsive chemical functionalities and orthogonal aaRS engineering, it is expected that more unnatural amino
acids with the desired photophysical properties can be incorporated through genetic code expansion.

Small-molecule induced activation or inhibition
In addition to light, small molecules can also be used to unmask or modify unnatural amino acids and subsequently
regulate protein function with prompt response. For example, several protecting groups can be removed bioorthogo-
nally inside live mammalian cells, and these chemistries have been used to switch on protein function by genetic code
expansion. Intracellular bioorthogonal reactions that have been used in this purpose include inverse electron demand
Diels–Alder reactions [18,59–61], 1,3-dipolar cycloadditions [62], Staudinger reactions [63], and palladium-catalysed
propargyl removal (Table 4) [57]. Currently, all of these have only been demonstrated in caged lysine molecules (61,
70, 71, 85) through a number of examples, including activation of luciferases, kinases, nucleases etc. Theoretically, all
these protecting groups can be applied to other nucleophilic amino acids (e.g. cysteine, serine, threonine, tyrosine)
subjected to successful engineering of the corresponding orthogonal synthetases.
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(A)

(B)

Figure 4. Translational activation approaches to control virus replication

(A) Use of genetic code expansion to control replication of an amber codon tagged virus within transgenic host cells containing

the orthogonal tRNA/synthetase pairs [43,48]. (B) Use of genetic code expansion to control replication of an amber codon tagged

virus within normal host cells with the orthogonal tRNA/synthetase pair gene encoded by the viral genome [49].

Table 4 Overview of bioorthogonally protected unnatural amino acids tested in mammalian cell systems and their
deprotection conditions

Amino acid System Proteins Reaction Reagent

HeLa, CHO, HEK293T,
IH3T3, Caco-2, A549,

HeLa

GFP, OspF
phosphothreonine lyase

Pd-catalysed
Tsuji–Trost-like reaction

Pd(II) complexes [57]

HEK293T
eGFP, SATB1 transcription
factor, Cre recombinase,

Cas9 endonuclease
Staudinger Various phosphines [63]

HEK293T
eGFR, luciferase, OspF

phosphothreonine lyase,
Src kinase

1,3-dipolar cycloaddition trans-cyclooctenes [62]

HEK293T

GFP [61], Luciferase
[59,61], MEK1 [18,60] and
MEK2 [18] and FAK [60]

and Src [60] kinases

Inverse electron demand
Diels–Alder reactions

Tetrazines [18,59–61]

On the other hand, bioorthogonal amino acids (e.g. 77 and 92, Table 5) have been used for rapid and selective
inhibition of a specific enzyme in live mammalian cells [64]. In this case, a bioorthogonal amino acid is placed into
the target enzyme without affecting the enzyme function. Upon contact with an inhibitor conjugate bearing the com-
plementary bioorthogonal group, the enzyme variant is tethered to the conjugate and thus the enzyme activity is
inhibited (Figure 5). The inhibition is exquisitely selective and can even discriminate between isoforms that differ by
a single amino acid residue. Using this approach, selective inhibition of an intracellular kinase for which no selective
small-molecule inhibitor exists was achieved. In addition, placing a photoswitchable moiety (i.e. azobenzene) into
the inhibitor conjugate enables reversible modulation of enzyme activity by light.

258 © 2019 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons
Attribution License 4.0 (CC BY).



Essays in Biochemistry (2019) 63 237–266
https://doi.org/10.1042/EBC20180042

Figure 5. Example of the small-molecule approach to protein inhibition

Use of unnatural amino acid incorporation for selective inhibition of protein function by bioorthogonal tethering [64].

Table 5 Overview of bioorthogonally reactive unnatural amino acids that have been incorporated in mammalian cell
systems used to deactivate protein function upon reaction with the specified reagents

Amino acid System Proteins Reaction Reagent

HEK293T

MEK1 and LCK kinases

inverse electron demand
Diels–Alder reactions

Inhibitor–tetrazine conjugates
[64]

MEK1 and MEK2
kinases

Table 6 Comparison of protein function control approaches currently enabled by genetic code expansion

Approach Temporal Control Spatial control Reversibility

Translational control Yes, slow Only by local administration Yes, but high lag time

Optical control Yes, fast Yes, very high (to subcellular levels) Yes, for photoswitchable amino acids

Chemical control Yes, medium Only by local administration Yet to be established

In comparison with light-induced activation or inhibition, small molecules can be used to activate or inhibit the
target protein in deep animal tissue or intact animals which are not easily accessible by light. However, as mentioned
above, only a few reactions have so far been shown to be bioorthogonal with high reaction rates to allow fast response
[65]. The extension of this methodology is therefore tied to the development of novel bioorthogonal reactions. In con-
trast to the use of light for activation or inhibition, the small-molecule approach, similar to the translational approach,
only allows spatial control by using cell-compartment selective compounds or reactions, or local injections.

Conclusion
Genetic code expansion has matured into a technique that can be routinely used in mammalian systems. Controlling
protein function is currently mostly achieved by translation, light, and small molecules. These methods have been
summarised and discussed, and their features have been compared (Table 6). Translational control is arguably the
easiest to perform but suffers from the longer response time (up to several hours). On the other hand, both light
and small-molecule induced methods have a faster response (seconds to minutes). The light approach is particularly
appealing where subcellular spatial resolution is needed. While all three approaches have shown promise, most of the
reviewed applications are so far proof-of-principle studies. The dissemination of this technique could be enhanced
by the community simplifying access to plasmids (e.g. through plasmid repository), standardising the reporting for-
mat of aaRS mutants with full sequencing information, and providing protocols with extensive details. Only general
implementation of protein control by genetic code expansion in the wider scientific community to unravel new bio-
logical insights will truly demonstrate the power of these techniques [55,56,66–68]. Since genetic code expansion has
also been recently demonstrated in mice [47,50,51,60,69,70], we foresee that optimisation will be tailored to target
cells, tissues, and mammalian models and many of the aforementioned approaches will be applied in vivo, providing
the complete native environment to study function of mammalian proteins. With further promotion and adaptation
of genetic code expansion, this is to be expected.
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Summary
• Genetic code expansion can now be routinely used for incorporation of more than 100 different

unnatural amino acids in mammalian cells using only four orthogonal aaRS/tRNA pairs and their
mutants as shown in Table 1.

• Protein function can be temporally regulated (activation or inhibition) by simple translational con-
trol, i.e. supplementation of the desired unnatural amino acid to allow full-length, functional protein
production.

• More rapid control can be achieved by incorporating stimuli responsive amino acids which allow
activation, inhibition, or reversible regulation of protein function by light or small molecules.

• Most of the approaches have been demonstrated in proof-of-principle studies, but are ready for
adaptation by the broader scientific community.
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20 Köhrer, C., Sullivan, E.L. and RajBhandary, U.L. (2004) Complete set of orthogonal 21st aminoacyl-tRNA synthetase-amber, ochre and opal suppressor
tRNA pairs: concomitant suppression of three different termination codons in an mRNA in mammalian cells. Nucleic Acids Res. 32, 6200–6211,
https://doi.org/10.1093/nar/gkh959

21 Xiao, H., Chatterjee, A., Choi, S.H., Bajjuri, K.M., Sinha, S.C. and Schultz, P.G. (2013) Genetic incorporation of multiple unnatural amino acids into
proteins in mammalian cells. Angew. Chem. Int. Ed. 52, 14080–14083, https://doi.org/10.1002/anie.201308137
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176 Beránek, V., Reinkemeier, C.D., Zhang, M.S., Liang, A.D., Kym, G. and Chin, J.W. (2018) Genetically encoded protein phosphorylation in mammalian
cells. Cell Chem. Biol. 25, 1067–1074, https://doi.org/10.1016/j.chembiol.2018.05.013

266 © 2019 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons
Attribution License 4.0 (CC BY).

https://doi.org/10.1021/acs.biochem.8b00397
https://doi.org/10.1038/srep46569
https://doi.org/10.1002/anie.201309847
https://doi.org/10.1002/anie.201608284
https://doi.org/10.1002/cbic.201402189
https://doi.org/10.1002/chem.201501647
https://doi.org/10.1002/cbic.201600284
https://doi.org/10.1016/j.chembiol.2017.04.007
https://doi.org/10.1021/ja302832g
https://doi.org/10.1021/ja512838z
https://doi.org/10.1002/anie.201108231
https://doi.org/10.1021/jacs.6b03034
https://doi.org/10.1002/cbic.201200407
https://doi.org/10.1091/mbc.e17-03-0161
https://doi.org/10.1002/cbic.201700147
https://doi.org/10.1021/jacs.8b01087
https://doi.org/10.1002/cbic.201000436
https://doi.org/10.1016/j.chembiol.2018.05.013

