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Simple Summary: Low environmental temperature acts as a barrier that imposes limits on the
geographic distribution of insects. However, due to Earth’s global warming, temperature might no
longer be an impediment for insects to colonize some new areas. The spread of pest insects will
depend on their adaptive response to cold periods and to thermal anomalies associated with climate
change. In this study we analyzed whether the red palm weevil (RPW), one of the worst palm pests
worldwide and native to warm areas, has physiological mechanisms that could configure an adaptive
response to cold. We find that RPW is capable of rapidly producing substances that reduce chill
injuries, primarily glucose as well as glycerol and several amino acids (mainly alanine). Therefore,
this work shows for the first time that RPW is able to develop adaptive biochemical responses to
deal with low temperatures, similar to those used by overwintering insects. Our results could be
useful to improve models predicting the possible spread of RPW to new geographical areas, and
also to try to prevent its adaptive response by disrupting the metabolic pathways regulating the
involved substances.

Abstract: The red palm weevil (RPW), Rhynchophorus ferrugineus, is one of the worst palm pests
worldwide. In this work, we studied the physiological basis underlying its adaptive strategy against
low temperatures. Specifically, we analyzed the main low-molecular-weight biochemical substances
acting as possible endogenous cryoprotectants, as well as their efficiency in reducing cold injury by
preserving K+/Na+ homeostasis. Wild pre-pupae were cold-treated (5.0 ± 0.5 ◦C) or non-treated
(23 ± 1 ◦C) for 7 days. We then determined the levels of: (a) glucose, trehalose and glycerol,
spectrophotometrically, (b) amino acids, by liquid chromatography and (c) potassium and sodium,
by inductively coupled plasma mass-spectrometry. Cold-treated larvae increased their potassium
level, suggesting some degree of chill injury. However, part of the cold-exposed animals was able
to develop an efficient overall cryoprotective response which primarily includes glucose, as well as
glycerol and several amino acids (mainly alanine). Our study shows for the first time that RPW is
capable of deploying effective physiological mechanisms for a rapid response to cold, which could
be relevant to improving predictive models of geographic distribution, especially in a context of
climate change. The knowledge of the specific molecules involved would allow future studies to try
to prevent its adaptive strategy, either by natural or chemical methods.

Keywords: red palm weevil (RPW); palm pest; tropical insect; coleoptera; cold hardening; adaptive
strategy; low molecular weight substances; cryoprotectant; glucose; glycerol
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1. Introduction

The red palm weevil (RPW), Rhynchophorus ferrugineus Olivier (Coleoptera: Dryoph-
thoridae), is considered to be one of the most destructive palm pests in warm areas world-
wide. It is native to Southeast Asia and Oceania. However, due to the movement of live
infested palms, RPW has widely spread to other regions of Asia, the Middle East, the
Mediterranean Basin and Caribbean [1], giving rise to huge environmental and economic
losses. Recent reports [2] indicate that palm trees worth up to 483 million euros have been
destroyed or infested in the Mediterranean region, primarily by RPW. In Spain, the cost
caused by RPW in 2005–2009 was about 44.5 million euros, particularly in the autonomous
community of Valencia (eastern Spain) with a cost during this period of about 27 million
euros [3]. In this latter region, the pest has also affected some areas of high cultural value
such as the “Palmeral de Elche”, a palm grove declared a World Heritage Site by UNESCO.

Detection of RPW is difficult because it spends most of its life cycle inside the palm
tree, where larvae make tunnels and feed on its inner contents. Only mature grubs go to
the periphery of the stem, where they prepare a cocoon made of palm fibers before entering
the pupal stage [3]. Huge efforts have been made to develop and implement different
control methods to manage this pest, including survey and removal of heavily infested
trees, chemical control (see [4] for a review) and different trapping systems [5,6], as well as
biological control using entomopathogenic nematodes [7] and fungi [8]. The efficiency of
some of these methods can be improved by means of population dynamics models that
help to decide the optimal moment for their application [9]. In the same way, identifying
the possible spread of RPW using geographic distribution models [10,11] can help to focus
effective inspection and quarantine protocols.

The geographic distribution of insects is strongly correlated with their ability to tolerate
abiotic variability in the environment [12] and, in particular, with their tolerance to low
temperatures [13]. Indeed, the low environmental temperature disrupts the homeostasis of
insects [14], which puts their survival at risk and acts as a barrier that imposes geographic
limits on their distribution. In recent decades, human activity and climate change have
had a considerable impact on the distribution of all species, including insects [15,16].
The redistribution of species both on a regional and global scale in response to global
warming [17] is now considered a global change driver on its own, with far-reaching
implications for ecosystems and human health [18]. As cold areas are turning into warmer
ones due to climate change [19], temperature might no longer be an impediment for insects
to colonize these new geographical locations. In particular, RPW has demonstrated invasion
capacity even in areas with unfavorable winter temperatures. In some of these areas, the
possible adverse effects of the external air temperature may be moderated within the
protective confines of the palm trunk by the heating associated with microbial activity
(reviewed in [4]). Making predictions that accurately capture how species will respond to
temperature variations linked to climate change requires knowledge of the cold adaptability
of insects and their low-temperature biology.

Insects have developed a diversity of responses to survive cold stress, such as morpho-
logical, behavioral, ecological, physiological and biochemical adaptations [20]. Each species
adopts a different combination of these survival responses and, therefore, requires a specific
study [21]. The mechanisms underlying the cold tolerance of insects have been extensively
studied for species native to cold areas (e.g., [22–25]), but remain poorly understood for
species inhabiting warm geographic areas. In overwintering insects, part of the adaptive
response is generally based on the accumulation over long periods of low molecular weight
substances [24–28]. Among these substances, sugars (e.g., trehalose and glucose), polyols
(e.g., glycerol) and free amino acids (e. g., proline) are well-known cryoprotectants that
contribute to stabilize cell membranes [24], prevent the loss of ion homeostasis [28] and
reduce the probability of ice formation by lowering the hemolymph freezing point [29,30].
However, to survive sudden low-temperature events, insects need much faster mechanisms
than those associated with overwintering. Studies reported for some species, both native to
cold and warm areas, indicate that rapid adaptation seems to be based on the production
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of the same type of cryoprotectants as in seasonal cold hardening [30], probably sometimes
in combination with the synthesis of heat-shock proteins [31] or other mechanisms [32].

Previous studies [33,34] have shown that RPW prepupal and pupal stages have a
remarkable cold tolerance, with a lethal temperature as low as 0 ◦C. In addition, in a recent
study [35] we showed by computed tomography and holographic microscopy that the RPW
larval–pupal transition continues almost undisturbed even during the quiescence induced
by cold stress. Indeed, wild pre-pupae subjected to low temperatures did not stop their
development, and only showed slight developmental delays at the level of hemolymph
content and the integumental roughness.

The aim of this work is to study the physiological basis underlying the adaptive strat-
egy of RPW to deal with cold. Our hypothesis is that RPW has physiological mechanisms
that configure an adaptive response against low environmental temperatures. These mecha-
nisms would be based on the mobilization and increase of different substances, in a similar
way to how overwintering insects do. To this end, we will analyze for the first time the
main biochemical substances acting as possible endogenous cryoprotectants. In particular,
we will measure the concentration in hemolymph of glucose, trehalose, glycerol and a wide
range of free amino acids. The levels of these metabolites in RPW larvae subjected to cold
stress will be then compared with those obtained in larvae that remained at room tempera-
ture. In addition, we will test the potential cryoprotective effect of these substances through
the levels in the hemolymph of potassium and sodium, one of the indicators commonly
used as a measure of chill injury [36–38]. Indeed, low temperature in insects impairs the
activity of ion pumps, causing sodium leak away from the hemolymph and a progressive
increase in the hemolymph potassium concentration. This hyperkalemia, combined with
the depolarizing effects of low temperatures, causes a cascade of injuries that could become
irreversible and eventually lead to death. Therefore, species with efficient cold-hardening
mechanisms generally show relatively stable sodium and potassium levels when subjected
to cold stress [28,39].

Understanding and predicting how RPW is capable of displaying a physiological
response to deal with low temperatures is important to deepen the knowledge of cold
adaptation in insects from warm areas. At the same time, it could be relevant to improve
models of insect distribution and hence to successfully manage the possible spread of this
pest towards new geographical areas, especially in a context of global warming. In addition,
knowledge of the specific molecules involved in the RPW cold-hardiness could also be
useful in trying to prevent this adaptive response by disrupting the metabolic pathways
regulating these substances.

2. Materials and Methods
2.1. Insect Sampling

Wild RPW larvae were collected in spring and autumn 2019–2021 from infested palm
trees, Phoenix canariensis and Phoenix dactylifera, located in the palm grove of Elche, Spain.
Larval removal was carried out by qualified staff from TRAGSA, the public company that
carries out the conservation of this palm grove. After collection, larvae were immediately
taken to the laboratory, where we selected those in a wandering or prepupal stage, which
is the larval stage most exposed in wild conditions to the thermal characteristics of the
environment [3]. We then divided the selected animals into two groups:

(a) Cold-treated group: formed by individuals placed for seven days in a climatic
chamber at low-temperature conditions (5.0 ± 0.5 ◦C). These individuals entered into a
state of quiescence, where they remained until they returned to warm temperatures.

(b) Non-treated group: formed by individuals that remained for seven days in a
room under controlled ambient temperature (23 ± 1 ◦C). This temperature corresponds
to the average found in autumn and spring for the periphery of the palm tree stems in
the southeast of Spain [3]. Individuals in this group generally had a behavior of feeding
cessation, very likely due to their wandering prepupal stage. In order to homogenize the
conditions of this group, all its individuals were subjected to starvation. Since cold-treated
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individuals also starved due to their quiescent state, the environmental temperature was
the main external factor that distinguishes the seven-day development of both groups.

In order to quantify all measured metabolites, we extracted hemolymph from both
groups of larvae. Non-treated animals were anesthetized for 1 min at −20 ◦C to immobilize
them, while cold treated pre-pupae did not require immobilization because they were in
quiescence. Larvae integument was pierced by a needle and hemolymph of each individual
was collected into 1.5 mL Eppendorf tubes, centrifuged and stored at –80 ◦C until use.

2.2. Measurement of Free Glucose, Trehalose and Glycerol in Hemolymph

Glucose and trehalose levels were determined spectrophotometrically using assay
kits from Merck/Sigma-Aldrich, Darmstadt, Germany (MAK263) and Megazyme, Bray,
Ireland (K-TREH), respectively. For each type of quantification, hemolymph samples were
taken from 15 non-treated and 16 cold-treated individuals, and then prepared following
the manufacturer’s instructions. Absorbance was measured (two replicates per individual)
at 570 nm and 340 nm for glucose and trehalose quantification, respectively.

The amount of free glycerol was quantified by enzymatic determination incubating
the samples with 0.8 mL free glycerol reagent (F6428 Merck/Sigma-Aldrich) at room
temperature for 15 min. We used hemolymph samples taken from 14 non-treated and
15 cold-treated individuals. After incubation, glycerol concentration was spectrophotomet-
rically quantified from the absorbance at 540 nm of each sample and that of a pure glycerol
standard (G7793, Merck/Sigma-Aldrich). Procedure and calculation of the glycerol content
was performed following the manufacturer’s instructions.

2.3. Measurement of Free Amino Acids, Potassium and Sodium in Hemolymph

To carry out the quantification of amino acids, potassium and sodium, 14 samples per
group (cold treated and non-treated) were used. Each sample consisted of a pool (1 mL) of
the hemolymph collected from 3–5 individuals.

Free amino acids were determined by liquid chromatography coupled by triple
quadrupole mass spectrometry (LC-TQ system, Evoq-Elite Bruker, Germany). From each
sample, 100 µL were taken, diluted in Milli-Q water up to 100 mL and filtered with 0.45 µm
nylon filters. A final volume of 5 µL was then injected into the LC-TQ system using a
Phenomenex Luna NH2 column (150 mm × 2.1 mm, 3 µm).

Potassium and sodium hemolymph levels were determined by inductively coupled
plasma mass spectrometry (ICP-MS). We took 100 µL from each sample, which were diluted
in Milli-Q water up to 50 mL. An aliquot (5 mL) was continuously aspirated by a peristaltic
pump and a final volume of 1 mL was then introduced into the ICP-MS system (Agilent
7700e, Santa Clara, CA, USA).

2.4. Statistical Analysis

Statistical analyses were performed with the XLStat software package (Addinsoft,
New York, NY, USA).

In most cases, we had a single factor (the concentration of a certain substance) and
two treatments (non-treated and cold-treated larvae). For each substance, we compared the
k = 2 means (one for each treatment) by applying the one-way ANOVA test (equivalent
for k = 2 to Student’s t-test). Since this test requires a normal distribution, we also applied
the Shapiro–Wilk normality test. Only for one amino acid, valine, this test rejected the
normality hypothesis. In this case, in addition to the ANOVA test, we also applied the
non-parametric Mann–Whitney test, which does not require the assumption of normality.
In such a case, the one-way ANOVA and Mann–Whitney tests led to the same conclusion.

Within our study of sodium and potassium levels, we also compared the means
of k = 3 treatments (non-treated and two subpopulations of cold-treated larvae). In this
case, after the ANOVA test, we applied the LSD post-hoc test to identify the statistically
different treatments.
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In order to detect statistical differences, a p < 0.05 level of significance was applied in
all the analyses.

3. Results
3.1. Glucose and Trehalose

Figure 1 shows the results concerning glucose levels in hemolymph. We see from
this figure that non-treated animals have a low glucose concentration (average value:
0.8 ± 0.3 mM), with individual values that are always below 2 mM. Cold treated larvae
present instead a ten-fold increase and a wide spread in their glucose level (average value:
8 ± 5 mM). In this latter group, there are individuals with a glucose concentration similar
to that found for non-treated animals and others with a very high content of glucose in
hemolymph. Statistical analysis clearly shows that the glucose levels of both groups are
significantly different (F = 30.5, df = 30, p < 0.001).
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Figure 1. Hemolymph glucose concentration (mM) in non-treated and cold-treated groups of red
palm weevil pre-pupae larvae: (A), individual values (n = 15 non-treated and n = 16 cold-treated
larvae); (B) average values. Error bars indicate standard deviation. Labeling with different letters
indicates that concentrations are significantly different (in this case, F = 30.5, df = 30, p < 0.001).

On the other hand, we find that trehalose is a much more abundant sugar in hemolymph
than glucose (Figure 2). The trehalose level is high and widely dispersed in both non-treated
and cold-treated individuals. The average value of trehalose concentration in both groups
(60 ± 10 mM and 50 ± 15 mM) does not present statistically significant differences (F = 4.0,
df = 30, p = 0.06).

3.2. Glycerol

Figure 3 shows the results concerning glycerol concentration in hemolymph. Similar
to that previously found for glucose, we see that cold-treated animals have a high level of
glycerol (141 ± 96 mM) as compared to that found for the non-treated group (71 ± 22 mM).
Such a two-fold increase is statistically significant (F = 4.6, df = 28, p = 0.04). In addition, as
in the case of glucose, we again find a wide spread in the cold-treated individual values of
glycerol concentration, with animals having levels similar to those found for non-treated
larvae (<125 mM) and others with a very high glycerol content.
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indicates that concentrations are not significantly different (in this case, F = 4.0, df = 30, p = 0.06).
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3.3. Free Amino Acids

Our results for hemolymph amino acid concentration in non-treated and cold-treated
red palm weevil pre-pupae are shown in Table 1. We find that the most abundant amino
acids are proline, glutamine and lysine. However, the concentrations of these dominant
amino acids in cold-treated and non-treated groups do not have significant differences. As
a result, larvae subjected to a cold treatment do not present a significant change in the total
concentration of amino acids.
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Table 1. Concentration of free amino acids in non-treated and cold-treated groups.

Amino Acid
Concentration (mg/mL) ANOVA Values

Non-Treated Cold-Treated F p

Aspartic acid + Asparagine ASP 1.3 ± 0.3 a 1.8 ± 0.3 b 8.0 0.01
Glutamic acid + Glutamine GLU 2.6 ± 0.5 a 2.3 ± 0.4 a 1.2 0.3

Alanine ALA 1.8 ± 0.6 a 2.7 ± 0.9 b 4.9 0.04
Arginine ARG 0.7 ± 0.2 a 0.8 ± 0.2 a 1.7 0.2
Cysteine CYS <0.2 < 0.2

Phenylalanine PHE 1.2 ± 0.3 a 1.5 ± 0.2 a 3.6 0.08
Glycine GLY 1.6 ± 0.6 a 1.6 ± 0.8 a 0.01 0.9

Histidine HIS 0.7 ± 0.2 a 1.2 ± 0.2 b 21.0 0.001
Isoleucine ISO 1.1 ± 0.2 a 1.5 ± 0.2 b 13.2 0.003
Leucine LEU 1.6 ± 0.3 a 2.1 ± 0.4 b 9.0 0.01
Lysine LYS 2.1 ± 0.5 a 2.6 ± 0.5 a 3.6 0.08

Methionine MET <0.2 <0.2
Proline PRO 7.1 ± 2.2 a 6.2 ± 1.4 a 0.9 0.4
Serine SER 0.8 ± 0.3 a 1.1 ± 0.2 b 5.6 0.04

Tyrosine TYR 0.6 ± 0.2 a 0.9 ± 0.2 a 4.5 0.05
Threonine THR 0.7 ± 0.2 a 1.0 ± 0.1 b 19.7 0.001

Tryptophan TRY <0.2 <0.2
Valine VAL 1.4 ± 0.2 a 2.0 ± 0.2 b 19.4 0.001

TOTAL TOT 25 ± 3 a 29 ± 4 a 4.3 0.06
All values are mean ± sem (n = 14 non-treated and n = 14 cold-treated samples, each sample containing the
hemolymph of 3–5 individuals from the same group). Values significantly different (p < 0.05) for the same amino
acid are labelled with different letters. In the case of valine, the normal distribution was rejected (p = 0.03 in the
Shapiro–Wilk test), so we also applied the non-parametric Mann–Whitney test, which led to the same conclusion
of significantly different means (U = 3, p = 0.007).

Nevertheless, some amino acids show a modest but statistically significant increase
in cold-treated samples. This is the case of alanine, serine and aspartic acid + asparagine,
as well as five essential amino acids (histidine, threonine, leucine, isoleucine and valine).
These amino acids show significative increments of 1.7-fold for histidine, 1.5-fold for alanine
and 1.4-fold for serine, aspartic acid + asparagine, leucine, isoleucine, threonine and valine.
None of the amino acids studied has a concentration with a significant decrease in cold-
treated samples. The observed trend is always that the amino acid concentration increases
with cold or remains unchanged.

3.4. Potassium and Sodium

As remarked in the introduction, chill injury is closely associated with the loss of ion
homeostasis and, in particular, with an increase in potassium ions and a decrease in sodium
ones in the hemolymph. Therefore, in order to have some insight on the magnitude of
chilling injury of cold-treated RPW larvae, we measured the hemolymph potassium and
sodium levels. We see from Figure 4 that the sodium level in non-treated RPW larvae
is low (17 ± 4 mM) and remains basically unchanged (16 ± 4 mM), with a slight non-
significant decrease (F = 0.3, df = 27, p = 0.06) in cold-treated larvae. In contrast, we
find that the potassium level in cold-treated animals is slightly but significantly (F = 11.3,
df = 27, p = 0.003) higher (49 ± 9 mM) than in larvae that remained at room temperature
(36 ± 4 mM).

Since glucose is the substance for which the highest increase (ten-fold) has been found
after cold exposure, we have also tested a possible correlation between the accumulation of
glucose, as a potential cryoprotectant, and the reduction of chill injury evaluated through
potassium and sodium concentrations. To that end, we divided the cold-treated group
into two subpopulations, according to their respective glucose accumulation against cold.
In one of these subpopulations (cold-treated, LG), the samples come from larvae where
low temperatures did not produce an increase in glucose content (<2 mM). In the other
subpopulation (cold-treated, HG), the samples come from larvae that presented a high level
of glucose (>2 mM) after being subjected to cold stress. We can expect that if glucose has
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acted as a cryoprotectant, potassium levels will be lower in the HG (high glucose) subgroup
than in the LG (low glucose) subgroup.
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Figure 4. Concentrations (mM) of: (A) Potassium and (B) Sodium in hemolymph from non-treated
and cold-treated groups. Error bars indicate standard deviations (n = 14 non-treated and n = 14
cold-treated samples, each sample containing the hemolymph of 3–5 individuals from the same
group). Statistically different (p < 0.05) concentrations are labelled with different letters (F = 11.3,
df = 27, p = 0.003 for potassium and F = 0.3, df = 27, p = 0.06 for sodium).

As shown in Figure 5, we found that the LG and HG subpopulations have significantly
different responses regarding ion balance (F = 28.7, df = 20, p < 0.001, LSD = 5.9 for
potassium and F = 6.7, df = 20, p = 0.007, LSD = 3.1 for sodium). Indeed, the LG cold-
treated subgroup has potassium levels significantly (means with differences >LSD) higher
(57 ± 6 mM) than those observed in HG cold-treated (41 ± 6 mM) and non-treated larvae
(36 ± 4 mM). At the same time, such a subpopulation presents a significantly (means
with differences >LSD) lower sodium concentration (13 ± 3 mM) than those found in HG
cold-treated (19 ± 2 mM) and non-treated larvae (17 ± 4 mM). However, the HG cold-
treated subpopulation shows sodium and potassium concentrations that are not statistically
different (means with differences <LSD) from those found in non-treated larvae.

Insects 2022, 13, x FOR PEER REVIEW 9 of 13 
 

 

 
Figure 5. Hemolymph potassium and sodium levels in non-treated animals (n = 14) and in low-
glucose (n = 7) and high glucose (n = 7) subgroups of cold-treated larvae. Error bars indicate standard 
deviations. Statistically different (p < 0.05) distributions are labelled with different letters (F = 28.7, 
df = 20, p < 0.001, LSD = 5.9 for potassium and F = 6.7, df = 20, p = 0.007, LSD = 3.1 for sodium). 

4. Discussion  
In this work we have studied for the first time the possible cryoprotective response 

of the red palm weevil (RPW) as part of its adaptive strategy against low temperatures. In 
particular, we have measured the concentration in hemolymph of the main low-molecu-
lar-weight substances known as possible endogenous cryoprotectants in insects, mainly 
glycerol, sugars and free amino acids (see [24,40,41] for some reviews). As in previous 
studies with other species (e.g., [42–44]), only molecules whose levels significantly in-
creased after cold stress have been considered as potentially cryoprotective substances.  

We find that glucose is by far the substance that increases the most in the hemolymph 
of cold-treated RPWs. Indeed, our results imply that cold-treated animals presented an 
average 10-fold increase in glucose concentration, compared to that found in non-treated 
individuals. This response had considerable variability, from individuals where the glu-
cose level remained almost unchanged by cold stress to others with a very high glucose 
content. In contrast, although our results show that trehalose is the most abundant sugar 
in the RPW hemolymph, its level did not significantly change after cold stress. Similar 
results for glucose and trehalose have been found in the literature for the cryoprotective 
response of other insect species [1,32,45]. Indeed, a cold-induced 6 to 10-fold increase in 
glucose concentration has been previously reported for other tropical species [46] and 
some overwintering Coleoptera [47]. An increased concentration in hemolymph of glu-
cose and other sugars contributes to stabilizing cell membranes [24] and preserving from 
cold-induced hyperkalemia [28]. 

The accumulation of polyols is another common finding for insect cold hardening 
[48]. They are involved in stabilizing protein structure and in reducing intracellular ice 
formation [24]. In this work, we have also found a significant 2-fold increase in the glyc-
erol level of cold-treated RPW larvae. The spread of such changes was even wider than 
that of glucose, from individuals with almost unchanged levels to others where the hemo-
lymph glycerol concentration increased to more than 300 mM. A similar (3-fold) increase 
in glycerol levels has previously been reported for some tropical beetle species [43]. Our 
results then suggest that glycerol is very likely another substance that could contribute to 
the cold adaptation response in RPW. 

Less conclusive are our results regarding the concentration of free amino acids. In 
this paper, we have identified proline, glutamine and lysine as the most abundant amino 
acids in the RPW hemolymph, and found that their levels do not significantly change after 
cold stress. Consequently, the total amino acid concentration does not change either. Nev-

Figure 5. Hemolymph potassium and sodium levels in non-treated animals (n = 14) and in low-
glucose (n = 7) and high glucose (n = 7) subgroups of cold-treated larvae. Error bars indicate standard
deviations. Statistically different (p < 0.05) distributions are labelled with different letters (F = 28.7,
df = 20, p < 0.001, LSD = 5.9 for potassium and F = 6.7, df = 20, p = 0.007, LSD = 3.1 for sodium).



Insects 2022, 13, 134 9 of 13

4. Discussion

In this work we have studied for the first time the possible cryoprotective response of
the red palm weevil (RPW) as part of its adaptive strategy against low temperatures. In
particular, we have measured the concentration in hemolymph of the main low-molecular-
weight substances known as possible endogenous cryoprotectants in insects, mainly glyc-
erol, sugars and free amino acids (see [24,40,41] for some reviews). As in previous studies
with other species (e.g., [42–44]), only molecules whose levels significantly increased after
cold stress have been considered as potentially cryoprotective substances.

We find that glucose is by far the substance that increases the most in the hemolymph
of cold-treated RPWs. Indeed, our results imply that cold-treated animals presented
an average 10-fold increase in glucose concentration, compared to that found in non-
treated individuals. This response had considerable variability, from individuals where the
glucose level remained almost unchanged by cold stress to others with a very high glucose
content. In contrast, although our results show that trehalose is the most abundant sugar
in the RPW hemolymph, its level did not significantly change after cold stress. Similar
results for glucose and trehalose have been found in the literature for the cryoprotective
response of other insect species [1,32,45]. Indeed, a cold-induced 6 to 10-fold increase
in glucose concentration has been previously reported for other tropical species [46] and
some overwintering Coleoptera [47]. An increased concentration in hemolymph of glucose
and other sugars contributes to stabilizing cell membranes [24] and preserving from cold-
induced hyperkalemia [28].

The accumulation of polyols is another common finding for insect cold hardening [48].
They are involved in stabilizing protein structure and in reducing intracellular ice forma-
tion [24]. In this work, we have also found a significant 2-fold increase in the glycerol
level of cold-treated RPW larvae. The spread of such changes was even wider than that of
glucose, from individuals with almost unchanged levels to others where the hemolymph
glycerol concentration increased to more than 300 mM. A similar (3-fold) increase in glyc-
erol levels has previously been reported for some tropical beetle species [43]. Our results
then suggest that glycerol is very likely another substance that could contribute to the cold
adaptation response in RPW.

Less conclusive are our results regarding the concentration of free amino acids. In
this paper, we have identified proline, glutamine and lysine as the most abundant amino
acids in the RPW hemolymph, and found that their levels do not significantly change
after cold stress. Consequently, the total amino acid concentration does not change either.
Nevertheless, we have found that some other amino acids have a modest but significant
increase in cold-treated larvae. Among these amino acids, the most abundant is alanine,
which shows a 1.5-fold increase at low temperatures. Different authors [43,49–51] have
reported high levels of alanine in insects subjected to cold stress, suggesting an important
role of this amino acid in the stabilization of membranes and proteins [42,52,53]. How-
ever, it is not clear that alanine accumulation should always be interpreted as part of a
cryoprotective response. Some authors [54] have instead pointed out that, in a number of
cases, the increase in the alanine content could be due to other factors, such as the decrease
in oxygen uptake resulting from a slower breathing rate at low temperatures. We also
found modest but significant increases in the hemolymph of cold-treated animals of other
non-essential amino acids, such a serine and aspartic acid + asparagine, as well as of five
essential amino acids (histidine, leucine, isoleucine, threonine and valine). An increase
in serine [54], aspartic acid [55] and essential amino acids [43] in overwintering larvae
or cold-treated insects has been previously reported in the literature. However, as in the
case of alanine, it is not clear whether the accumulation of these amino acids is part of a
cryoprotective response or the result of different metabolic pathways triggered by cold.

Having shown that levels of glucose and other substances increase after cold stress,
we have measured one of the indicators of their cryoprotective effect. More specifically, we
have tested whether the observed increase in these substances has been accompanied by a
stability in sodium and potassium levels. Indeed, a common way of evaluating chill injury
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in insects is through their hemolymph potassium and sodium concentration [36–38]. An
ineffective cryoprotective mechanism fails to preserve ionic homeostasis and therefore, cold
induces an excess of potassium ions. This hyperkalemia, together with other depolarizing
effects of low temperatures, causes a cascade of injuries that can finally lead to death. We
have found that, as it is generally observed in chill-tolerant insects [56–58], RPW larvae
have low basal sodium levels that remain stable after cold stress. However, we have also
found a slight but significant increase in the potassium level of cold-treated larvae. This
latter result suggests that on average the metabolic response of RPW has not been able to
avoid some degree of chilling injury, probably due to the unequal response between cold-
treated individuals, as observed through the wide scatter in the resulting cryoprotectant
accumulation. We have then divided the cold-treated group into two subpopulations
depending on their glucose concentration, the substance with the highest increase. We
have found that individuals with low glucose levels after cold stress have significantly
higher potassium and lower sodium concentrations than animals that remained at room
temperature. On the contrary, the subpopulation with high glucose accumulation has
potassium and sodium levels without significant differences with respect to those of non-
treated larvae. This result reinforces the hypothesis that glucose has acted, most likely
together with other substances (glycerol, alanine...), as a cryoprotectant that significantly
reduces cold injury.

5. Summary and Conclusions

The present study shows for the first time that RPW is able to develop a rapid non-
seasonal cold hardening response, which includes the synthesis of low-molecular-weight
biochemical substances. Among these substances, glucose has a crucial cryoprotective
role, as well as glycerol and probably also some amino acids (mainly alanine). These
results would provide the underlying physiological basis for previous studies showing
that prepupae and pupae are the most resistant RPW stages to low temperatures, with a
lethal threshold of 0 ◦C [33,34], and also for recent morphological studies [35] showing that
the larval–pupal transition continues almost undisturbed during the quiescence induced
by cold stress, with just a slight developmental delay. All these findings together, both the
previous ones and those obtained in the present study, strongly suggest that RPW, a species
native to warm regions, has a remarkable cold-tolerance.

Our results could be useful for future improvement of integrated pest management
programs. On the one hand, the identification in RPW of effective physiological mecha-
nisms for a rapid response to low temperature reinforces the need to improve predictive
models of geographic distribution as a tool for the analysis of preventive and monitoring
measures. These models include different climate scenarios, and there are attempts to
incorporate cold-hardening details to infer the possible spread of this pest to regions with
low winter temperatures [59]. Indeed, RPW is currently present in some regions with
winter temperatures close to 0 ◦C, where heating by microbial fermentation inside infested
palm trees facilitates the overwintering and non-stop development of this pest [60]. On
the other hand, knowledge of the specific molecules used by RPW to deal with cold would
allow future studies to try to prevent its adaptive response either by natural or chemical
methods. For instance, it is known that imidacloprid alters glucose transporters in some
animals [61] and causes a decrease in glucose levels in cockroaches [62]. The study of
glucose or glycerol transporter blockers in RPW could be also another approach to be
explored in future research.
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