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Leptin is a critical mediator of the immune response to changes in overall nutrition. Leptin
is produced by adipocytes in proportion to adipose tissue mass and is therefore increased
in obesity. Despite having a well-described role in regulating systemic metabolism and
appetite, leptin displays pleiotropic actions, and it is now clear that leptin has a key role in
influencing immune cell function. Indeed, many immune cells have been shown to respond
to leptin directly via the leptin receptor, resulting in a largely pro-inflammatory phenotype.
Understanding the role of adipose-tissue derived mediators in inflammation is critical to
determining the pathophysiology of multiple obesity-associated diseases, such as type 2
diabetes, autoimmune disease, and infection. This review, therefore, focuses on the latest
data regarding the role of leptin in modulating inflammation.
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INTRODUCTION

Obesity is associated with a chronic, low-grade systemic inflammation that has been shown to
promote the development of multiple disorders of health including type 2 diabetes, autoimmunity,
nonalcoholic fatty liver disease, asthma, and cardiovascular disease (1, 2). This obesity-associated
inflammation is characterized by increased circulating inflammatory cytokines such as tumor
necrosis factor (TNF)and interleukin 6 (IL-6) as well as an increase in pro-inflammatory immune
cells, particularly macrophages and lymphocytes (3–9).

The etiology of obesity-associated inflammation is complex. While many tissues demonstrate
obesity-associated inflammation, adipose tissue is considered to be the central or key site of
inflammation, responsible for driving systemic inflammation and disease (10, 11). Adipose tissue is
altered in obesity, leading to increased adipocyte volume and lipid content. These alterations are
associated with changes in adipose tissue-resident immune cells, characterized by an increase in
immune cell number, particularly pro-inflammatory macrophages and lymphocytes (12–20).
Inflammatory immune cells found within adipose tissue in obesity in turn promote adipocyte
production of inflammatory molecules (21). Adipose tissue production of the pro-inflammatory
hormone leptin, and the role of leptin in mediating obesity-associated inflammatory disease, is the
subject of this review.

Leptin can be produced by multiple cells in the body, including immune cells, but is primarily
produced by adipocytes in proportion to adipocyte mass, such that increasing adiposity leads to
org January 2021 | Volume 11 | Article 6224681
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increased systemic concentrations of leptin (22, 23). Although
leptin is produced in a diurnal manner (24), it is not a fast-acting
signal or cytokine, but rather communicates stable nutritional
status to the body as a whole. Leptin has a well-defined role as a
metabolic mediator and communicator of nutritional status at
the level of the hypothalamus where leptin receptors are highly
expressed. Increased leptin signaling at the hypothalamus
regulates appetite and leads to decreased nutrient intake and
increased energy expenditure. Studies of leptin deficiency and
fasting have demonstrated that leptin signaling is also required
for normal reproductive hormone production, as well as thyroid
hormone. Therefore, leptin plays a critical role in controlling
energy homeostasis, metabolism, and neuroendocrine function.
These functions of leptin have been thoroughly reviewed
(25–27).

Over the last two decades, it has become apparent that leptin
also has a critical role as an immune modulator. This was initially
observed in individuals with rare mutations in leptin or the leptin
receptor, who are obese from lack of leptin signaling at the
hypothalamus, but were also found to have an increased risk of
intracellular infections secondary to immune cell deficiencies
(28). Leptin has subsequently been shown to act on several
different immune cell types and can affect both immune cell
development and function. Through that mechanism, increased
systemic leptin levels in diet-induced obesity directly promote
obesity-associated inflammation.

Leptin receptor is expressed by most cells of the immune
system and many immune cells have been shown to be leptin
responsive to varying degrees. In general, leptin receptor
expression is important for hematopoietic cell development,
immune cell proliferation and survival, and pro-inflammatory
function (29, 30). In this review, we will characterize the effects of
leptin on innate and adaptive immune cells, with a particular
focus on CD4+ T cells, which are known to be highly leptin
responsive, as summarized in Table 1. We will explore the
mechanisms by which leptin is proposed to act on these cells,
both through traditional signaling pathways and through altering
cellular metabolism, much of which has been discovered in the
mouse model. Finally, we will review the effects of leptin in
human studies and identify the clinical relevance of this
adipokine in the setting of both health and disease. Although
leptin may have a role as a nutritional regulator of immunity in
the setting of both under- and overnutrition, we will focus here
on the effects of leptin on the immune system in the context
of obesity.
ADAPTIVE IMMUNE CELLS

The effect of leptin on immune cells has been best studied in the
context of adaptive immunity, particularly its effects on CD4+ T
cells. Leptin has been shown to have a role in modulating T cell
development, as well as T cell function and metabolism.
Moreover, distinct functional CD4+ T cell subsets respond to
leptin in different ways that reflect their function. CD8+ T cell
and B cell responses to leptin have also been studied, but to a
lesser extent.
Frontiers in Immunology | www.frontiersin.org 2
T Cells
Leptin plays an important role in T cell development. Leptin
deficiency has been shown to result in thymic atrophy and
decreased circulating T cell numbers (31, 33, 34). Interestingly,
leptin receptor has been found to be expressed on double
negative, double positive and CD4 single positive thymocyte
subsets, but not on CD8 single positive thymocytes (32).
Moreover, leptin treatment rescued CD4+ T cell development
in leptin mutant (ob/ob) mice, but did not rescue CD8+ T cell
development (32). Together this suggests that leptin is required
for early T cell development and for later development of CD4+

T cells, but not CD8+ T cells.
CD4+ T cells express high levels of the long isoform of the

leptin receptor (Ob-Rb), which is significant because it is the only
isoform that can signal through the Janus kinase (JAK)-signal
transducer and activator of transcription (STAT) pathway (55),
as shown in Figure 1. Leptin receptor signaling in T cells has
been shown to promote survival, proliferation, cytokine
production, and differentiation. In vivo, leptin treatment of
wildtype (WT) mice was shown to inhibit steroid-induced
apoptosis of lymphocytes (59). In response to leptin treatment,
naïve CD4+ T cells, but not memory T cells, showed an increase
in proliferation in a mixed lymphocyte reaction (35). In an older
study of human cells, monocyte-depleted peripheral blood
mononuclear cells (PBMCs) stimulated with phytohemagglutinin
(PHA) and Concanavalin A (ConA) and treated with leptin had
TABLE 1 | Distinct effects of leptin across immune cell types.

Immune cell Leptin Effect

CD4+ T cells Required for T cell development in the thymus (31–34)
Increases proliferation of naïve T cells (35, 36)
Promotes Th1 cytokine production (35)
Promotes Th17 differentiation and cytokine production (34)
Promotes increased glycolytic metabolism (31, 34)

B cells Reduces apoptosis (37)
Promotes cell cycle entry (37)
Increases inflammatory cytokine production (38)
Reduces class switching and IgG production (38)

Macrophages Promotes bacterial clearance and phagocytosis (39, 40)
Monocytes Increases TLR2 expression (41)

Promotes inflammatory cytokine production (42)
Mast Cells Promotes mast cell phenotype that drives inflammatory M1-like

macrophage cell phenotype (43)
Dendritic
cells

Reduces apoptosis by increasing expression of Bcl-2 and Bcl-xL
(44)
Promotes DC maturation and function (45)
Increases inflammatory cytokine production (44)

Neutrophils Inhibits apoptosis (46)
Acts as chemoattractant (22, 47)
Increases oxidative species production (48)

Basophils Inhibits apoptosis (49, 50)
Acts as chemoattractant, promotes trafficking toward other
chemo attractants such as eotaxin (49)
Increases IL-4 and IL-13 production (49)

Eosinophils Inhibits apoptosis (49, 50)
Acts as chemoattractant, promotes trafficking toward other
chemo attractants such as eotaxin (51)

NK cells Brief exposure promotes increased cytotoxicity (52)
18-h exposure increases IFN-g and perforin production (52, 53)
72-h exposure inhibits IFN-g and cytotoxicity (52)

ILCs Promotes type-2 cytokine production (54)
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increased proliferation compared to untreated cells (60). More
recent studies have demonstrated that CD4+ T cells from leptin
receptor mutant (db/db) mice have reduced proliferation when
compared to WT CD4+ T cells, suggesting that leptin signaling on
CD4+ T cells is required for proliferation (31).

JAK-STAT signaling is downstream of many lymphocyte
receptors that promote the production of various cytokines.
Thus, as one would predict, leptin treatment of bulk, non-
differentiated T cells influenced cytokine production by these
cells. Leptin treatment of CD4+ T cells increased pro-
inflammatory cytokine production, namely T helper 1 (Th1)
cytokines interferon gamma (IFN-g)and IL-2, while decreasing
production of the T helper 2 (Th2) cytokine IL-4 (35). Moreover,
activated CD4+ T cells generated from T cell specific leptin
receptor conditional knockout mice were found to produce less
IFN-g than WT CD4+ T cells (31). Together, these data suggest
that leptin promotes pro-inflammatory cytokine production in
CD4+ T cells.

Leptin has also been shown to play a role in the differentiation
of T cells into functional subsets. Hypoleptinemia induced by
fasting has been shown to suppress the number of effector T cells,
but not regulatory T cells (Treg cells) in mice. In fact, the same
study found that while Treg proportions were increased in
Frontiers in Immunology | www.frontiersin.org 3
fasting, absolute numbers of Treg cells were unchanged,
suggesting that leptin promotes the differentiation of effector T
cells, but not Treg cells, and that any change in Treg cell
proportions were indirect (34). In contrast, CD4+ T cells
isolated from fasted hypoleptinemic mice had decreased
differentiation into T helper 17 (Th17) cells in vitro compared
to CD4+ T cells isolated from ad lib fed mice. When the fasted
mice were given leptin injections twice daily, Th17 differentiation
was restored, suggesting that leptin is critical for differentiation
into Th17 cells (34). In support of this, Th17 differentiation in
vitro was decreased in CD4+ T cells isolated frommice with T cell
specific knockout of leptin receptor compared to WT controls
(34). Furthermore, T cell specific leptin receptor knockout mice
had decreased frequency of Th17 cells and increased frequency
of Treg cells in the lamina propria (61).

The mechanism by which leptin promotes Th17
differentiation has been investigated. Leptin signaling promotes
transcription of RAR-related orphan receptor gamma (RORgt),
which is the critical transcription factor for Th17 fate. When
RORgt-deficient CD4+ T cells were retrovirally transfected with a
plasmid containing the Rorc gene, which encodes for RORgt,
leptin treatment was shown to increase transcription of RORgt in
these cells (62). This mechanism could also explain the inhibition
A B

FIGURE 1 | Leptin receptor isoforms and intracellular signaling. (A) Leptin receptor is composed of an extracellular domain, a transmembrane domain, and a
cytoplasmic domain. All variants of the leptin receptor include the extracellular domain. The extracellular domain is composed of several protein motifs: the N terminal
domain (NTD), two cytokine receptor homology (CRH) domains that make up the leptin binding site, an immunoglobulin-like domain (IGD), and two fibronectin type 3
(FN III) domains. The cytoplasmic domain of leptin receptor varies between isoforms. LRb, the long form receptor, includes two box domains and several tyrosine
residues important for leptin receptor signaling. The other leptin receptor variants are labeled LRa, LRc, LRd, LRf and they all have the complete extracellular binding
domain, but their intracellular tails differ; however, they all contain the two box domains. There is also a soluble form of leptin receptor in both humans and mice
called LRe. In mice, LRe is directly secreted, while in humans, LRe is generated by ectodomain shedding (metalloproteases cut the receptor off the surface).
(B) Leptin receptor isoforms are generated by alternative splicing or processing at the cell membrane. The long form of leptin receptor, also known as LRb, is the
only known receptor variant that is capable of signaling through the JAK-STAT pathway. LRb has a long intracellular tail that includes several tyrosine residues that
are phosphorylated for signal transduction by JAK2. LRb signaling primarily occurs through the JAK2/STAT3 pathway, with STAT3 translocating to the nucleus to
modify gene expression. LRb also signals through the PI3K/Akt pathway and the MAPK pathway. These pathways in immune cells have been shown to lead to
metabolic and functional changes, which could account for the pleiotropic effects of leptin on different immune cell types (56–58).
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of Treg differentiation by leptin, because Th17 and Treg cells
have an antagonistic developmental program, where expression
of the Th17 transcriptional program inhibits Treg development
and vice versa, so that leptin promotion of Th17 fate by
increasing RORgt transcription also directly inhibits Treg
differentiation (63, 64). Given the pro-inflammatory effect of
leptin on T cells, leptin is being investigated for use in cancer
treatment to enhance the tumor-fighting action of T cells (65).

Interestingly, Treg cells express high amounts of leptin
receptor, and have been shown to be capable of secreting
leptin (66, 67). However, Treg cells are decreased in diet-
induced obesity, which is consistent with the role of leptin in
inhibiting Treg cell proportions, given that leptin levels are
elevated in this setting (68). Treg cell proportions are also
specifically decreased in the adipose tissue in diet-induced
obesity, where leptin levels are expected to be highest (69). On
the other hand, leptin mutant ob/ob mice were shown to have
increased peripheral Foxp3+ CD4+ Treg cells compared to WT
mice, further supporting the role of leptin, and not obesity alone,
in decreasing Treg cell proportions (67). Leptin has also been
shown to inhibit Treg cell proliferation in primary human cells,
and blockade of leptin binding to Treg cells using anti-leptin
antibodies led to increased Treg cell proliferation (67).

B Cells
Leptin has been shown in both ob/ob mice and in fasting
hypoleptinemic mice to be critical for normal B cell
development in the bone marrow (70). Fasted mice and ob/ob
mice both exhibited reduced proportions of pre-B, pro-B and
immature B cells in bone marrow, which could be rescued by
either intraperitoneal or intracerebroventricular injections of
leptin (70). These findings demonstrate a possible central
(neurological) mechanism as well as a peripheral mechanism
by which leptin may promote B cell development (70).

Additionally, leptin has been shown to promote B cell
homeostasis by inhibiting apoptosis and promoting cell cycle
entry. B cells from db/db mice showed increased apoptosis
compared to B cells from WT mice (37). Moreover, leptin
treatment of WT B cells in vitro reduced apoptosis when B
cells were treated with anti-IgM, CD40L, or LPS (37). Bcl-2
expression was upregulated upon leptin treatment, while anti-
apoptotic members of the Bcl-2 family such as Bax, Bim and Bad
were decreased, suggesting a possible mechanism for leptin’s
effect on B cell survival (37). Leptin also promoted cell cycle entry
by increasing the transcription of genes that regulate cell cycle,
particularly in the presence of co-stimulation (37).

Human B cells stimulated with leptin in vitro were shown to
exhibit a more pro-inflammatory phenotype characterized by
increased expression of inflammatory cytokines IL-6 and TNF, as
well as toll-like receptor 4 (TLR4), a pattern recognition receptor
that recognizes lipopolysaccharide (LPS) found on gram-
negative bacteria (71). These B cells also showed reduced class
switching and IgG production in response to leptin, suggesting
that while they may be more inflammatory, they do not
necessarily have increased function (71). These findings are
supported by another study that showed human peripheral
blood B cells have increased IL-6, TNF, and IL-10 production
Frontiers in Immunology | www.frontiersin.org 4
when treated with leptin in vitro (72). This study further
demonstrated that leptin signaling in B cells activated JAK2,
STAT3, ERK1/2, and p38 MAPK pathways (72). Inhibiting these
signaling molecules decreased IL-6, TNF, and IL-10 production
following leptin treatment, demonstrating that signaling through
JAK2, STAT3, ERK1/2 and p38 MAPK is required to increase
cytokine production in response to leptin (72). Similar findings
were described in B cells from obese patients, suggesting that the
phenotype of inflammatory B cells in obesity may be mediated, at
least in part, by leptin signaling (38, 73).
INNATE IMMUNE CELLS

Leptin has been shown to have a generally pro-inflammatory
effect on innate immune cells, but with distinct effects on each
innate immune cell type, as discussed below.

Macrophages and Monocytes
Macrophages are key regulators of adipose tissue inflammation in
obesity and, therefore, the effects of leptin on macrophages is
highly relevant in the setting of diet-induced obesity. Bonemarrow
derived macrophages from leptin receptor mutant db/db mice
showed decreased phagocytosis and decreased inflammatory
cytokine production in response to LPS treatment in vitro (39).
In leptin mutant ob/ob mice, bone marrow derived macrophages
were shown to have decreased phagocytic ability in vitro, and ob/
ob mice failed to clear infections such as Escherichia Coli and
Klebsiella pneumonia in vivo (39, 74). Obese Zucker (fa/fa) rats
with a leptin receptor mutation, had reduced ability to clear the
fungal infection Candida albicans in vivo, as measured by colony-
forming units in lung, liver, spleen, heart, and kidney (75).
Furthermore, mice with macrophage-specific deletion of the
leptin receptor had impaired clearance of Streptococcus
pneumoniae in the lungs and spleen (40). The same macrophage
specific leptin receptor knockout mice also had elevated
pulmonary IL-13 and TNF compared to WT mice 48 h after
infection with S. pneumoniae (40). Complementary in vitro studies
of alveolar macrophages from macrophage specific leptin receptor
knockout mice likewise showed decreased macrophage killing and
phagocytosis (40). Thus, leptin acts specifically on macrophages
via the leptin receptor to promote both phagocytosis and cytokine
production (40).

Monocytes are innate immune cells that can differentiate into
tissue-specific macrophages and myeloid-derived dendritic cells.
Primary human monocytes from PBMCs and THP-1 monocytes,
a human monocyte cell line, have been shown to increase toll-
like receptor 2 (TLR2) expression in response to leptin treatment
in vitro (41). TLR2 is a pattern recognition receptor that allows
innate immune cells to recognize pathogens. By promoting TLR2
expression on monocytes, leptin is able to promote the innate
immune response to pathogens such as E. coli. In human studies,
leptin treatment of monocytes isolated from PBMCs increased
the production of type 1 cytokines, including IL-1b, IL-6, and
TNF, and resistin (42). Like in T cells, leptin appears to promote
an inflammatory phenotype in monocytes.
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Mast Cells
Another innate immune cell that has been shown to respond to
leptin is the mast cell. Mast cells are best known for their roles in
allergic response and protecting against helminth infection. Leptin
mutant ob/ob mice showed decreased percentage of mast cells in
inguinal adipose tissue, but did not show mast cell deficiencies in
other tissues (76). Several studies have proposed a role for mast cells
in polarization of macrophages by secretion of cytokines (77). For
example, IL-33 treatment of mast cells causes production of IL-6
and IL-13, which are cytokines known to promote alternatively
activated macrophages that suppresses T cell inflammation (77).
One group has investigated the role of leptin in mast cell function
and the subsequent effect on macrophages in the context of obesity
(43). In this study, mast cells derived from WT bone marrow
(BMMCs) were co-cultured with bone marrow-derived
macrophages (BMDMs) from leptin receptor mutant db/db mice,
in the presence or absence of leptin. Leptin treatment of the mast
cells led to increased macrophage production of IFN-g (43). In the
same study, leptin inhibited the anti-inflammatory M2-like
macrophage phenotype by decreasing arginase-1 and IL-10
expression (43). Mast cells from leptin mutant ob/ob mice, on the
other hand, promoted maturation of WT macrophages to an M2-
like anti-inflammatory phenotype when they were co-cultured in
vitro, suggesting that leptin production by mast cells may be
important in promoting a pro-inflammatory macrophage
phenotype (43). Mast cells are also known to play a role in
adipose tissue remodeling in obesity, promoting the inflammatory
phenotype of adipose tissue by secreting inflammatory molecules
such as TNF and pro-angiogenesis molecules such as chymase (78).

Dendritic Cells
Dendritic cells (DCs) function at the interface of the innate and
adaptive immune system by uptaking, processing, and presenting
antigens to T cells. DCs were shown to express leptin receptor,
both at the protein and mRNA level, which signals through
STAT3 upon stimulation (44). Furthermore, leptin was found to
have an anti-apoptotic effect on DCs in vitro by increasing
expression of the anti-apoptotic proteins Bcl-2 and Bcl-xL (44).
Mature DCs are more capable of stimulating an appropriate and
strong T cell response; at homeostasis, leptin promoted DC
maturation and function (45). Leptin treatment of DCs
increased production of IL-1b, IL-6, IL-12, TNF, and MIP-1a
(44). DCs generated from the bone marrow of leptin mutant ob/
ob mice (BMDCs) showed reduced expression of MHC-II,
CD80, CD86, and CD40 (45). MHC-II and CD80/86, in
particular, are critical for activating CD4+ T cells, and CD4+ T
cells stimulated in co-culture by BMDCs from ob/ob or db/db
mice produced less IFN-g and proliferated less than CD4+ T cells
stimulated by BMDCs from WT mice (45). Furthermore,
BMDCs from ob/ob mice produced less IL-6, IL-12, and TNF
after two days of maturation (45).

Neutrophils, Basophils, and Eosinophils
Neutrophils are some of the best studied innate immune cells
with regard to leptin response. Interestingly, neutrophils only
express the short form leptin receptor, which lacks JAK-STAT
Frontiers in Immunology | www.frontiersin.org 5
signaling (79), as shown in Figure 1. Leptin has been shown to
inhibit neutrophil apoptosis, suggesting that leptin acts as a
survival factor for neutrophils (46). Leptin also acts like a
chemoattractant for neutrophils in the wildtype setting (47). In
vitro, WT neutrophils from bone marrow (isolated by density
gradient) were shown to exhibit chemotaxis toward leptin,
whereas neutrophils from mice with a leptin receptor variant
(Q223R) show reduced chemotaxis toward leptin (22, 47). In
various infection models, leptin receptor deficiency (db/dbmice)
was shown to reduce neutrophil trafficking to the site of infection
(80, 81). In a model of LPS-induced lung injury, neutrophil
trafficking to the lungs was impaired in db/db mice, as
demonstrated by reduced numbers of neutrophils in the
airways (BAL), while there was increased neutrophilia in the
blood (81). In a model of Clostridium difficile colitis, leptin
receptor STAT3 mutant mice (S1138) showed decreased
neutrophil numbers in the lamina propria following infection
(80). Furthermore, leptin administration by oropharyngeal
aspiration was shown to promote neutrophil trafficking to the
lungs after E. coli infection as determined by neutrophil numbers
in bronchoalveolar lavage fluid (47). Overall, it appears that
leptin primarily acts as a chemoattractant for neutrophils,
particularly during infection in the lung. Polymorphonuclear
neutrophils (PMNs) isolated from human blood were shown to
increase their production of oxidative species after leptin
treatment in vitro, which the authors propose would promote
bacterial clearance (48). This data points to leptin promoting
neutrophil function as well as chemotaxis.

Basophils and eosinophils have also been shown to express
leptin receptor (49, 50). Leptin has been shown to be a survival
factor for both eosinophils and basophils (49, 50). Similar to
neutrophils, leptin has also been shown to act as a
chemoattractant for both basophils and eosinophils. Basophils
and eosinophils isolated from human blood migrated in a dose
dependent manner toward leptin in vitro in a transwell system or
similar experimental setup (49, 51, 82). Additionally, leptin
promoted basophil and eosinophil trafficking toward other
chemoattractants, such as eotaxin (49, 82). Specifically, human
basophils exposed to leptin demonstrated increased migration in
vitro toward eotaxin (49). Human eosinophils were pre-treated
in vitro with leptin for 1 h prior to assessing the migration of
eosinophils toward eotaxin; more leptin treated eosinophils
migrated toward eotaxin than untreated eosinophils (51).
Given that leptin promotes type 1 cytokine production in other
immune cells, leptin treatment of basophils had a slightly
counter-intuitive result in that basophils increased type 2
cytokine production, including IL-4 and IL-13 (49).

NK Cells and ILCs
At the interface between adaptive and innate immunity sit
natural killer (NK) cells and innate lymphoid cells (ILCs).
These cells are able to respond to pathogens with rapid
cytokine production and, in the case of NK cells, killing of
infected cells. NK cells and ILCs are part of a complex family
of lymphocytes that have phenotypic characteristics that mirror
CD4+ and CD8+ T cell families, and are currently under intense
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study. In the leptin receptor mutant db/dbmouse, NK percentage
and number were found to be decreased in spleen, liver, lung,
and blood (83). This indicates that leptin receptor is required for
normal NK cell development. When NK cells from db/db mice
were activated by poly I:C, fewer NK cells expressed CD69, an
early NK cell activation marker. This indicates that leptin
receptor is required for rapid activation of NK cells (83). The
nuances of NK cell response to leptin treatment appear to be
extremely dependent on dose and length of exposure. Brief
treatment (20 min) of human NK cells with leptin increased
NK cell cytotoxicity as measured by a chromium release assay
(52), and 18-h leptin treatment increased human NK cell IFN-g
and perforin production, as well as inflammatory markers, such
as TRAIL (52, 53). Long exposure (72 h) to leptin, however,
inhibited NK cell production of IFN-g, as measured by ELISA,
and cytotoxicity, as measured by chromium release assay (52).

Leptin was shown to promote ILC2 and Th2 cytokine
production in allergic airway disease, demonstrating that
increased leptin levels associated with obesity could be driving
the increased risk for allergy/asthma that is observed in obesity
(54). While a Th2-type phenotype is not considered pro-
inflammatory, this is another example of how leptin can
license immune cells to perform their functions, even in tissues
outside of adipose.
MECHANISMS OF LEPTIN EFFECTS ON
IMMUNE CELLS

The downstream effects of leptin receptor signaling have been
best studied in CD4+ T cells, where leptin signaling promotes a
measurable and direct effect on cellular metabolism.

Leptin Receptor Signaling
The mechanism of leptin’s actions on immune cells is complex,
in part because leptin receptor has several isoforms generated
though alternative splicing, which each have differing signaling
capacities (84), as shown in Figure 1. For example, T cells
express the long form of the leptin receptor, particularly after
activation, while neutrophils only express the short form, and
NK cells express both the short and long form receptors (85).
These isoforms differ primarily in the intracellular domain
responsible for downstream signaling. While both the short
and long receptor isoforms are capable of transmitting some
signals inside the cell, it is believed that only the long form has
complete signaling capabilities.

The long form of the receptor contains fully functional JAK2
binding sites, and upon leptin binding, the leptin receptor has
been shown to homodimerize, bind to, and phosphorylate JAK2
(84). STAT proteins are then recruited to the receptor complex
and phosphorylated, which leads to STAT dimerization,
translocation to the nucleus, and binding to promoter sites.
The system is highly regulated, as this signaling also leads to
transcription of SOCS3, which is a negative regulator of the JAK/
STAT signaling cascade. Leptin receptor can also signal through
the PI3K/Akt and MAPK pathways through IRS-1/2 and SHP-2
recruitment, respectively (86).
Frontiers in Immunology | www.frontiersin.org 6
Leptin Effects on Cellular Metabolism
It is now clear that leptin signaling through leptin receptor
promotes a metabolic change in CD4+ T cells. Since immune
cell metabolism and function are intimately related, recent work
has investigated if leptin-induced changes in CD4+ T cell
function are mediated by changes in T cell metabolism (87).
This was first explored in a fasting model of hypoleptinemia.
CD4+ T cells isolated from fasted mice and activated in vitro
showed decreased glucose uptake and decreased glycolytic rate
compared to CD4+ T cells isolated from ad lib fed control mice,
suggesting that leptin signaling promotes glycolytic metabolism
in CD4+ T cells (31). As glycolytic metabolism is strongly
associated with inflammatory function, this fits with the
previously discussed role of leptin in promoting inflammatory
cytokine production in CD4+ T cells (31, 34). CD4+ T cells
isolated from leptin receptor mutant db/db mice also showed
reduced glucose uptake, in part secondary to decreased glucose
transporter Glut1 expression, and decreased glycolytic rate
compared to WT CD4+ T cells when activated in vitro.
Additionally, CD4+ T cells from db/db mice were less
metabolically active with decreased extracellular acidification
rate (ECAR), a measure of lactate production downstream of
glycolysis, as well as decreased oxygen consumption rate, a
measure of mitochondrial oxidation (31). These studies
indicate that leptin receptor signaling in T cells leads to
changes in cellular metabolism.

The functional subsets of CD4+ T cells have distinct metabolic
characteristics, and leptin influences the metabolism of these subsets
in different ways. CD4+ T cells were isolated from WT mice that
were either fed ad lib, fasted for 48 h to promote hypoleptinemia, or
fasted while receiving twice daily intraperitoneal leptin injections,
and differentiated in vitro into Th17 or Treg cells. Th17 cells
generated from fasted mice showed decreased ECAR and oxygen
consumption rate (OCR), but this was rescued when fasted mice
received leptin injections (34). In contrast, Treg cell metabolism was
not impacted by fasting (34). To investigate the direct role of leptin
signaling on T cell metabolism, CD4+ T cells were isolated from T
cell specific leptin receptor conditional knockout mice or WT
controls and differentiated into Th17 or Treg cells in vitro (34).
Th17 cells from leptin receptor knockout mice, but not Treg cells,
showed decreased expression of key metabolic genes Glut1 and
hexokinase 2 (HK2), which is a rate-limiting enzyme of glycolysis
(34). Th17 cells from leptin receptor knockout mice also had
decreased glucose uptake and lactate production compared to
Th17 cells from WT controls, suggesting that leptin signaling
promotes appropriate Th17 cells glycolytic signaling to fuel Th17
cell function (34). Combined, these data suggest that leptin has a T
cell intrinsic effect on metabolism that promotes glycolytic and
oxidative metabolism necessary for proper T cell function.
ROLE OF LEPTIN IN IMMUNE-MEDIATED
DISEASE

Leptin has been implicated in a number of immune-mediated
diseases, many of which are also associated with obesity. These
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range from type 2 diabetes to autoimmune disease to infection.
In this section, we will explore the role that leptin plays in
mediating the immune response in obesity-associated disease.

Metabolic Disease: Type 2 Diabetes
The incidence of type 2 diabetes mellitus (T2DM) is increasing in
parallel with the prevalence of obesity. Obesity-associated
inflammation has been shown to drive insulin resistance,
leading to T2DM (56). Methods that eliminate the
inflammatory T cell or macrophage response in obesity
prevent insulin resistance and progression to T2DM. For
example, several immunocompromised mouse models (NOD
and SCID mice) have been found to be resistant to the
development of obesity and insulin resistance when fed high
fat diet (88). Elimination of CD11c+ macrophages in a mouse
model of obesity resulted in increased insulin sensitivity (89),
and a less specific macrophage deletion strategy using
chlodronate liposomes leading to apoptosis of phagocytic cells
also resulted in increased insulin sensitivity and improved
systemic glucose tolerance (90). T cell-deficient TCR-knockout
mice that lack CD4+ and CD8+ T cells had decreased obesity-
induced macrophage infiltration and decreased insulin resistance
on high fat diet compared to wildtype controls (91), and obese
mice that lack IFN-g had improved insulin sensitivity compared
to obese wildtype controls (92). Similarly, knockout of the Th1-
associated transcription factor T-bet improved insulin sensitivity
in high-fat diet fed mice (93). Based on the pro-inflammatory
effect of leptin on immune cells as described above, it is possible
that obesity-associated hyperleptinemia is responsible, at least in
part, for promoting the obesity-associated inflammation that
leads to insulin resistance and diabetes in obesity.

Autoimmunity
In addition to metabolic syndrome and T2DM, obesity
predisposes patients to select autoimmune and inflammatory
diseases such as multiple sclerosis (MS), rheumatoid arthritis,
and systemic lupus erythematosus (1, 2). Leptin deficiency has
been shown in mice to protect against experimental autoimmune
encephalomyelitis (EAE) (94), colitis (95), T cell mediated
hepatitis (96), and glomerulonephritis (97). One key example
is the well-studied autoimmune model EAE, a mouse model of
MS. Leptin has been shown to play a critical role in EAE
progression, and leptin mutant ob/ob mice are protected from
development of EAE (94). Furthermore, EAE disease scores were
reduced when anti-leptin antibodies were administered either
before or after the induction of EAE in mice (98).

Since inflammatory Th17 cells play an important role in the
pathogenesis of EAE, and leptin is known to promote Th17 cell
differentiation, the role of leptin signaling on T cells in EAE was
investigated. T cell specific leptin receptor knockout mice were
protected from EAE compared to WT mice, with lower disease
scores (61). Furthermore, the cytokine profile of mice treated
with anti-leptin antibodies was changed to a non-inflammatory
Th2/Treg cytokine profile (IL-4, IL-10) instead of the pro-
inflammatory Th1/Th17 cytokine profile typically seen in EAE
(98). Blocking leptin also decreased proliferation of antigen
specific T cells in this autoimmune model (98). These studies
Frontiers in Immunology | www.frontiersin.org 7
indicate a specific role for leptin in promoting inflammatory T
cel l proliferation and function that promotes EAE
disease progression.

In a model of fasting-induced hypoleptinemia, C57BL/6 mice
fasted for 48 h had lower disease scores than ad lib fed mice
following EAE induction, but this effect was reversed by
exogenous leptin treatment administered during the fasting
period (34). This demonstrates that leptin alone is sufficient to
license the development of autoimmunity in undernourished
mice that were otherwise protected against disease. In the same
study, Th17 cells from fasted mice undergoing EAE induction
had decreased expression of the key glycolytic protein HK2 as
well as decreased expression of the glycolysis-promoting
regulator HIF-1a, and both HK2 and HIF-1a levels were
normalized when fasted mice were treated with leptin. In
human studies, serum leptin levels were found to be increased
prior to onset of clinical symptoms in relapsing-remitting MS,
indicating that leptin may both contribute to the pathogenesis of
MS and be a useful marker of disease (99, 100).

Infection
The link between leptin and susceptibility to infection has been
studied in animal models. Leptin mutant ob/obmice were shown
to be more susceptible to death by LPS stimulation, and leptin
treatment was shown to partially reverse this effect (101, 102).
Interestingly, LPS and other inflammatory signals have been
shown to induce leptin production from adipose tissue (103–
106). It is possible that this increase in leptin can then stimulate
the inflammatory response necessary to fight the infection that
LPS is modeling.

Many studies have examined the effect of leptin treatment on
various bacterial models of infection in mice. Leptin universally
decreased bacterial load and improved survival or immune
response to infection with Mycobacterium tuberculosis, Klebsiella
pneumonia, and Pneumococcal pneumonia (107). These data
indicate that leptin is important for promoting the proper
immune response to clear bacterial infections.

Leptin receptor mutant db/db mice also had reduced survival
and impaired viral clearance when infected with influenza virus,
as well as reduced IFN-g production in the lungs following
infection (108). Interestingly, when lung epithelium or alveolar
macrophages, specifically, were deficient in leptin receptor, the
mice cleared virus better than global leptin receptor knock out
mice (108). These data indicate that in influenza infection, the
response to leptin of other immune cells, such as T cells, B cells
or NK cells, is key to clearing virus.
LEPTIN STUDIES IN HUMANS

Congenital leptin deficiency in humans, while rare, can provide
important information regarding the role of leptin. Genetic
mutations in both the leptin gene and the gene for leptin
receptor have been described, and these genetic variants cause
similar phenotypes in terms of immune response. Mutations in
leptin or the leptin receptor gene cause early onset extreme
obesity, hyperphagia, hypogonadism, and metabolic disorders
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(109). Furthermore, these patients develop repeat infections, and
humans with leptin deficiency are at increased risk of death due to
intracellular infections (28). Leptin replacement therapy has been
shown in humans to increase CD4+ T cell numbers and reverse
defects in CD4+ T cell proliferation and cytokine production (110).
These data clearly underscore the importance of leptin in normal
immune function and protection from infection. Consistent with
this, fasting reduces leptin levels and leads to reduced lymphocyte
counts in the blood (111).

On the other hand, obesity is also associated with increased
morbidity and mortality in response to select infections such as
bacterial cellulitis (112), influenza (113–117), and coronavirus
(118–124), although the role for leptin in this setting has not
been determined. While the etiology of obesity is complex, it is
possible that increased leptin signaling promotes excessive
inflammation and potentially cytokine storm.
CONCLUSION

Leptin is a pleiotropic adipokine with diverse effects on cell types
throughout the body. Its role in neuroendocrine signaling,
homeostasis, and metabolism has been well studied. More
recently, leptin has been identified as an important immune
modulator with a wide range of functions, many of which are
Frontiers in Immunology | www.frontiersin.org 8
pro-inflammatory. The complexity of leptin receptor signaling,
as well as the several variants of the receptor with unique
signaling capabilities likely allows for the diversity of effects
that are mediated on distinct immune cells, sometimes located
within the same tissues. Overall, it is clear that leptin plays a
critical role in obesity-associated inflammation by promoting
pro-inflammatory immune phenotypes. While leptin has not
been successful in treating obesity as a weight loss drug, it is
possible that targeting leptin or leptin signaling could be
therapeutic for autoimmune disease or the low-grade, chronic
inflammation associated with obesity and metabolic syndrome.
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