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Abstract

Intelligence quotient (IQ) testing is standard for evaluating cognitive abilities in

genomic studies but requires professional expertise in administration and interpre-

tation, and IQ scores do not translate into insights on implicated brain systems that

can link genes to behavior. Individuals with 22q11.2 deletion syndrome (22q11.2DS)

often undergo IQ testing to address special needs, but access to testing in resource-

limited settings is challenging. The brief Penn Computerized Neurocognitive Battery

(CNB) provides measures of cognitive abilities related to brain systems and can screen

for cognitive dysfunction. To examine the relation between CNBmeasures and IQ, we

evaluated participants with the 22q11.2DS from Philadelphia and Tel Aviv (N = 117;

52 females; mean age 18.8) who performed both an IQ test and the CNB with a maxi-

mumof5years betweenadministrations anda subsample (n=24)whohadboth IQand

CNB assessments at two time points. We estimated domain-level CNB scores using

exploratory factor analysis (including bifactor for overall scores) and related those

scores (intraclass correlations (ICCs)) to the IQ scores. We found that the overall CNB

accuracy score showed similar correlations between time 1 and time 2 as IQ (0.775

for IQ and 0.721 for CNB accuracy), correlated well with the IQ scores (ICC = 0.565

and 0.593 for time 1 and time 2, respectively), and correlated similarly with adaptive

functioning (0.165 and 0.172 for IQ and CNB, respectively). We provide a crosswalk

(from linear equating) between standardized CNB and IQ scores. Results suggest that

one can substitute the CNB for IQ testing in future genetic studies that aim to probe

specific domains of brain-behavior relations beyond IQ.
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1 INTRODUCTION

Cognitive dysfunction is evident in individuals with neurogenetic dis-

orders, such as 22q11.2 deletion syndrome (22q11.2DS), (McDonald-

McGinn et al., 2015) and intelligence quotient (IQ) testing is standard

in the evaluation of cognitive abilities in affected individuals (Duijff

et al., 2012;Green et al., 2009;Morrison et al., 2020). Like other groups

with compromised cognitive functioning, peoplewith 22q11.2DSoften

receive IQ testing to determine optimal educational placement and

help inform intervention and prognosis (Antshel et al., 2017; Hooper

et al., 2013). IQ scores are lower in individuals with 22q11.2DS, with

an average IQ of 70, which is at the traditional border between “nor-

mal” abilities and disability.

Major cognitive domains that are impaired in 22q11.2DS include

executive functions and complex and social cognitions (Azuma et al.,

2015; Duijff et al., 2012; Gur et al., 2014). It is important to conduct

a neurocognitive evaluation in 22q11.2DS, as cognitive abilities are the

best predictor of successful school assignment (Mosheva et al., 2019)

andareneeded for recommending specific in-school assistance for chil-

drenwith22q11.2DS (Moshevaet al., 2019). In addition, lowerbaseline

IQ, aswell as declineover time in cognitive abilities (e.g., executive func-

tioning) and in verbal IQ, predict the later onset of psychotic disorders

(Antshel et al., 2010;Vorstmanet al., 2015). Yet IQ testing requires pro-

fessional expertise in administration and interpretation, and IQ scores

do not readily translate into insights on implicated brain systems that

can help link genes to behavior.

While the Wechsler (Wechsler, 1981) tests are considered “gold

standard” there are faster methods for obtaining IQ estimates, such as

the Peabody Picture Vocabulary Test (PPVT; Dunn, 1965) and Raven’s

ProgressiveMatrices (Raven&Court, 1938). However, these testsmay

be suboptimal, mainly because they each assess only a narrow con-

struct. Thus, Raven’s test examines the ability to derive rules from

abstract patterns and apply those rules to select an optimal related

pattern. Likewise, the PPVT assesses only the vocabulary tied to visual

stimuli. This narrowness of construct in these tests is what allows rela-

tively quick assessment but at the cost of ignoring broader domains of

ability.

We have developed a computerized neurocognitive battery (CNB),

based on functional neuroimaging tasks, which has been applied in

several populations providing normative data and measures of per-

formance accuracy and response time (Gur et al., 2010; 2012; Moore

et al., 2015; Roalf et al., 2014). The tests, which have been validated

with functional neuroimaging, are scored automatically and can be

administered using a web interface by minimally trained staff who can

proctor the testing on site or remotely. In 22q11.2DS, we reported

overall impaired performance across cognitive domains, most notable

for complex cognition and social cognition (Goldenberg et al., 2012;

Gur et al., 2014; Niarchou et al., 2018; Weinberger et al., 2016; Yi

et al., 2016). Previous studies associated scores of CNB domains with

the severity of subthreshold psychotic symptoms and characterized

cognitive deficits of psychotic individuals with 22q11.2DS (Wein-

berger et al., 2016; Yi et al., 2016). The battery provides performance

measures that are highly correlated with other estimates of IQ and

educational attainment (Gur et al., 2010; Swagerman et al., 2016) and

includes tests such as matrix reasoning that have been used as proxies

for IQ. Examining associations between traditional IQ measures and

those from a neuroscience-based computerized battery would allow

integration of older data with new genomic studies that increasingly

incorporate computerized assessments implemented on a large scale

and in resource-limited settings.

The purpose of the present study was to examine whether an

open-source, brief neurocognitive battery–specifically, the Penn CNB,

or a subset of tests from it–could be used as a bridge to IQ. The CNB

requiresminimal professional expertise for administration and scoring,

is more time-efficient than traditional IQ testing, and assesses a wide

range of abilities including executive functions, episodic memory,

complex cognition, and social cognition. Thus, it allows probing more

specific brain-behavior systems differentially implicated by genetic

mechanisms. Importantly, it also taps domains targeted by existing

brief IQ tests (e.g., matrix reasoning). Comparing CNB scores to IQ

could help gauge the potential utility of the CNB as a substitute

for IQ testing in large-scale genomic studies and resource-limited

settings. Our study tested the hypotheses that (1) exploratory factor

analysis will show that the CNB in this sample has the same factorial

structure as in previous studies with normative populations, and this

will hold true in both correlated traits and bifactor frameworks; (2)

consistency of scores with repeated measures will be comparable

between IQ and the CNB-derived measure; (3) a composite score

based on average accuracy will have strong correlations with IQ; and

(4) IQCNB composite scores have similar correlationswith an external

validator such as level of functioning. Another aim of the study was to

explore a data-driven approach aimed at answering two questions: (1)

How well can we predict IQ from CNB scores in a CV framework? (2)

How few variables can we use to achieve this prediction, that is, which

smallest set of CNBmeasures is best predictive of IQ? The exploratory

analyses were designed to help potential investigators who want to

use portions of the CNB yet would still like to know how well they can

expect their measures to be predictive of IQ. These analyses allow us

to provide a crosswalk (from linear equating) between standardized

CNB and IQ scores.
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2 MATERIALS AND METHODS

2.1 Participants

The sample included 117 (52 female) participants, mean age 18.8 years

(range 8.11–44.7). They were recruited at two collaborating sites:

50.4%were from Tel Aviv, Israel, and the remainder from Philadelphia,

USA. All participants had a confirmed chromosome 22q11.2 deletion

using fluorescence in situ hybridization tests, comparative genomic

hybridization, multiplex ligation-dependent probe amplification, or

Single Nucleotide Polymorphism (SNP) microarray (Jalali et al., 2008).

For the total sample, themean parental education was 14.9 years.

The Tel Aviv cohort was recruited from the Behavioral Neuro-

genetic Center at the Sheba Medical Center. This is a large referral

center that coordinates research and treatment of individuals with

22q11.2DS from all over Israel. The Philadelphia cohort was part of an

ongoing collaboration of the “22q and You Center” at the Children’s

Hospital of Philadelphia (CHOP) and the Brain Behavior Laboratory at

PennMedicine. The 22q and You Center is a large program supporting

multidisciplinary coordinated care and research activities specific to

individuals with 22q11.2DS. Enrollment criteria included: proficiency

in English orHebrew, ambulatory and in stable health, and physical and

cognitive capability of participating in an interview and performing

neurocognitive assessments. IQ exclusion cutoff for the Philadelphia

sample was ≥70 and for the Tel Aviv sample IQ≥60. Participants pro-

vided informed consent/assent after receiving a complete description

of the study, and the Institutional Review Boards at Penn and CHOP

and ShebaMedical Center approved the protocol.

2.2 Measures

2.2.1 IQ tests

Data include standardized cognitive assessments obtained from ongo-

ing studies or available IQ scores collected from medical records. All

IQ assessments used the age-appropriate version of theWechsler test:

Wechsler Intelligence Scale for Children (Wechsler, 1949), Wechsler

Abbreviated Scale of Intelligence (Wechsler, 1999), or the Wechsler

Adult version (Wechsler, 1981). Mean (SD) across the sample of Full

Scale IQ was 78.0 (11.8). Mean global assessment of functioning (GAF;

McGlashan et al., 2003) was 67.4.

2.2.2 Penn CNB

The CNB comprises 14 tests grouped into five domains of neurobe-

havioral function. These tests were selected because they represent

well-established brain systems, and tests in the battery were validated

with functional neuroimaging (Roalf et al., 2014). There are three

tests in each of four domains measuring executive control, episodic

memory, complex cognition, and social cognition as summarized in

Supplementary Figure S1 (reproduced fromMoore et al., 2015). A fifth

domain comprises two speed tests, motor and sensorimotor. However,

while speed is incorporated into some measures that compose the

traditional IQ test, they do not log response speed at millisecond pre-

cision. Furthermore, since the current analyses emphasized accuracy,

the two speed-only tests were omitted. Because the Penn Verbal

Reasoning Test required English comprehension and could not be

readily translated to Hebrew, it was omitted. All CNB scores were

age-standardized by regressing age, age (Green et al., 2009), and age

(Duijff et al., 2012) out of each test score, leaving all CNB scores in an

age-corrected, standardized (z) metric. The mean inter-test interval

between CNB and IQ testing was 1.6 years (maximum 5 years).

2.2.3 Repeated assessments

A subsample of individuals had two IQ assessments (N = 103), two

CNB assessments (N = 130), or both (N = 24). This subsample per-

mitted comparison of the stability of IQ and CNB-derived measures

and their associations. Comparing the sample with two measures to

the remaining sample on key characteristics (age, sex, parental edu-

cation, IQ-CNB interval, IQ, CNB accuracy, CNB efficiency, GAF) indi-

cated that the groups differed significantly only in age, with the group

having both repeated measures being younger (F = 4.67, degrees of

freedom= 1115, p= .033).

2.3 Statistical analysis

To assess the consistency of the current data with the theoretical

Penn CNB measurement model (Moore et al., 2015), we performed

exploratory factor analyses (EFA), and to avoid complicating the study

goals, we created a single summary score for use in subsequent anal-

yses. We anticipated that our EFA results would conform to those of

Moore et al. (2015) from a non-22q11.2DS sample and Niarchou et al.

(2018) from a 22q11.2DS sample. To simplify replication and CNB use

in this population in the future, we used a unit-weighted factor score

(mean z-score composite) rather than, for example, using the pattern

or structurematrix from analyses below to calculate scores.

The measurement model was subjectively assessed using an

exploratory bifactormodel (Reise et al., 2010; Schmid& Leiman, 1957);

which includes a general (overall, “g”) factor as well as orthogonal spe-

cific factors (e.g., memory). The benefit of a bifactor model is that it

avoids the distortion in factor loadings on the overall “g” factor caused

by the presence ofmultidimensionality (Reise et al., 2015), for example,

extracting only one factor or using the first unrotated component of

a principal components analysis will yield biased loadings (Reise et al.,

2011). Consider a test for psychosis that includes three items about

positive symptoms (e.g., hallucinations) and three items about negative

symptoms (e.g., anhedonia). To make an overall “psychosis” score com-

bining all six items, onemightwish to find optimalweights for each item

(e.g., perhaps an item about auditory hallucinations should contribute

more to the score than an item about olfactory hallucinations). One

way to find the optimal weights is to estimate a unidimensional (one-

factor) model and use the loadings on that one factor as the weights.
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However, as demonstrated by the above-cited studies, this will result

in incorrect (biased) loadings because a one-factor model ignores the

fact that there are really two correlated dimensions (positive and neg-

ative symptoms). The bifactormodel accounts for this multidimension-

ality (here, two factors) as nuisance, producing a single factor (a third,

general/overall factor) combining all items with optimal and unbiased

weights.

With the measurement model supported (see below), we examined

the bivariate relationships among IQ scores and the CNB summary

score using Intraclass correlations (ICC) because we cared about the

means being stable across time (captured by ICC but not correlation).

Whereas correlations indicate relative consistency across time, ICCs

indicate both relative and absolute consistency. For example, if five

subjects scored 90, 95, 100, 105, 110 at time point 1 and then (in the

same order) scored 110, 111, 112, 113, 114 at time point 2, the cor-

relation between time points–Pearson or Spearman–would be 1.00,

while the ICC between time points would be 0.38, reflecting the differ-

ence in average values between the time points. We used the method

described in Ibrahim et al. (2015) to correct for practice effects on the

CNB, and for comparability, we applied the same procedure to the IQ

scores (although such corrections for IQ are admittedly not routine).

Notably, the practice-effect corrected ICCs were consistently higher

than the uncorrected ICCs for bothCNBmeasures and IQ.We also cal-

culated the bivariate relationships between IQ and CNB tests adminis-

tered at two different times (maximum 5 years apart). This was done

in the subsample with repeated IQ assessments and repeated CNB

testing.

To determine whether a smaller subset of tests might predict IQ

just as well as the full battery, saving administration time for those

who are mainly interested in estimating IQ, we applied best-subset

regression to the individual CNB tests. Best-subset regression (some-

times called “exhaustive search” regression) is a variable-selection

technique whereby all possible combinations of variables are com-

pared, and the set with the maximum R-squared is selected. Unlike

other regression-based techniques like stepwise, which test only a

small range of models, best-subset tests every possible model (given

a specific number of variables set by the user). There is a clear risk of

overfitting, however, so cross-validation is necessary. We first split the

sample into random halves (50%/50%), ran best-subset regression for

two, three, four, and up to 12 variables, in one-half of the data, and as

standard practice, the bestmodel fromeach setwas selected. These 11

models (best two through best 12) were then CV in the second random

half of the sample by 10-fold cross-validation, producing 11 predicted

values for each person from amodel estimatedwithout that individual.

These predicted values were correlated with the true values (and

squared) to get the CV R-squared. For thoroughness, we also CV the

models using ridge regression, a type of regularized regression known

to perform better than general linear models for prediction problems.

Thus, each person receives 11 + 11 = 22 predicted values, yielding

22 CV Rs-squared. All of the above was repeated 1000 times, and

the results were recorded. Results were then examined graphically

to determine an optimal number of variables based on the CV values,

with a general preference for parsimony. We also calculated ICCs for

all repetitions to ensure consistency with bivariate R-squared and

allow translation from absolute CNB values to absolute IQ estimates.

Finally, as a tool for investigators, we calculated equivalence scores

using linear equating. Linear equating involves a combination of lin-

ear regression and weighting to achieve equivalent scores. The linear

regression is used to determine an equation in classical slope-intercept

form, and theweighting is used to preserve the variability of the depen-

dent variable so as to overcome regression to the mean. Based on the

linear equating, we created a “crosswalk” between age-normed CNB

scores and IQ. A crosswalk is a tool for translating scores on one instru-

ment to scores on another. If one had scores on one test of ability (e.g.,

the Graduate Record Examination) and wanted to translate them into

scores on a different test of ability (e.g., an IQ test), a crosswalk would

provide such information, usually in the form of a “lookup” table where

the score on one test is shown beside the equivalent score on another.

The lookup table is available in Tables S1.

3 RESULTS

We first examined the comparability of the two samples. Figure S2

compares samples across sites on key characteristics, where the y-

axis is in a z metric for all variables. The Tel Aviv (TLV) group is older

(F = 57.03; p < .001), has lower parental education (8.42; p = .004),

lower overall CNB accuracy (F = 29.72; p < .001), and overall CNB

efficiency (F = 13.12; p < .001), and higher GAF (F = 9.29; p = .003).

However, there was no significant difference between sites in sex dis-

tribution or the time interval between IQ and CNB tests, the latter

of which is the only variable one would expect to affect the strength

of the relationship between IQ and CNB. Indeed, when the analyses

were conducted separately by site, the results were very similar (Penn

ICC= 0.583; Tel Aviv ICC= 0.575).

3.1 Hypothesis testing

Figure 1 shows the exploratory bifactor measurement models. The

efficiency general factor had three strong indicators: nonverbal

reasoning (progressive matrices), emotion identification, and word

memory. The accuracy “g” was most strongly determined by nonverbal

reasoning, spatial processing (the line orientation test), and emotion

identification. For both accuracy and speed, the weakest indicator was

attention (continuous performance test).

Table 1 shows the results of the EFAs using oblique rotation.

For efficiency, the strongest indicators were abstraction and men-

tal flexibility, face memory, and attention. For both accuracy and

speed, the item-factor clustering is identical to that suggested by

the exploratory bifactor results: three separate factors for com-

plex/social cognition, memory, and executive function. The strongest

indicators of the three accuracy scores were emotion differentiation,

word memory, and attention, respectively. The high loading of atten-

tion on executive function in both models (accuracy and efficiency)

explains why the attention test had such a low loading on the general
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F IGURE 1 Exploratory bifactor (Schmid–Leiman) analyses of Computerized Neurocognitive Battery (CNB) accuracy and efficiency scores for
the purposes of calculating the general factor scores. Abbreviations as in Table 1

TABLE 1 Exploratory factor analysis results for Computerized Neurocognitive Battery accuracy and efficiency scores in the Philadelphia and
Tel Aviv combined samples

Accuracy Efficiency

Test F1 F2 F3 F1 F2 F3

EDI 0.81 0.74

SPA 0.75 0.81

NVR 0.75 0.64

ABF 0.74 −0.44 0.86

ADI 0.66 0.40 0.34

EID 0.45 0.31 0.40

VMEM 0.77 0.64

FMEM 0.72 0.86

SMEM 0.65 0.84

ATT 0.87 0.94

WM 0.62 0.79

Inter-factor correlations

F1 F2 F3 F1 F2 F3

F1 1.00 1.00

F2 0.55 1.00 0.57 1.00

F3 0.32 0.28 1.00 0.44 0.41 1.00

Note: Loadings< 0.30 removed for clarity.

Abbreviation: EDI= Emotion Differentiation Test; SPA= Line Orientation Test; NVR=Nonverbal (Matrix) Reasoning Test; ABF= Condition Exclusion Test;

ADI = Age-Differentiation Test; EID = Emotion Identification Test (ER40); VMEM = Verbal Memory Test; FMEM = Face Memory Test; SMEM = Spatial

Memory Test (Visual Object Learning Test, VOLT); ATT=Continuous Performance Test (CPT);WM=WorkingMemory (NBack).

factors–specifically, the bifactor model involves a “competition”

between the general and a specific factor (in this case executive) for

the variance explained in each test score (in this case attention) and

the specific executive factor “won out” over the general. Finally, as

expected, the moderate interfactor correlations suggest the existence

of a general factor (justifying the use of the bifactor above). These

results supported hypothesis 1 that the CNB in this sample has the

same factorial structure as in previous studies with normative pop-

ulations, and this will hold true in both correlated traits and bifactor

frameworks.
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F IGURE 2 Bivariate relationships between intelligence quotient (IQ) and CNB scores at two time points corresponding to longitudinal data in
subsequent analyses. Scatterplots show the relation between CNB accuracy scores (scaled to IQ) in time 1 and time 2 (top left panel), the same
relation for IQ (top right panel), the relation between CNB and IQ at time 1 (bottom left panel) and the same relation at time 2 (bottom right panel)

Based on these analyses and earlier work (Gur et al., 2010, Swa-

german et al., 2016) we selected the CNB composite accuracy score

for the main analyses testing hypotheses on comparing IQ and CNB

measures, and the results with other CNB parameters are summarized

in Figure S3. Figure 2 shows the bivariate relationships between CNB

and IQ scores at two timepoints. As can be seen, supporting hypothesis

2, there is a high and comparable concordance in both IQ scores (upper

left panel) and CNB accuracy scores (upper right panel) between the

two time points, with ICC of 0.775 and 0.721, respectively. Supporting

hypothesis 3, at both timepoints, the ICCbetweenoverall accuracy and

IQ was similar, 0.565 and 0.593 at time 1 (lower left panel) and time 2

(lower right panel), respectively. Finally, supporting hypothesis 4, the

CNB accuracy score and IQ had similar correlations with the external

validator, GAF (0.165 and0.172, respectively, p< .05, no significant dif-

ference between correlations using the Steiger test for dependent cor-

relations).

3.2 Exploratory analyses

Figure 3 shows prediction metrics (R-squared) for the 11 best sub-

set regression models, including raw, adjusted, and CV versions. As

expected, theR-squared and adjustedR-squared overestimate the pre-

dictive utility of themodels, the CV results increase and then decrease,
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F IGURE 3 Predictionmetrics for 11 best subset regressionmodels, ordered bymaximum variables allowed inmodel

and the ridge regression models show superior CV performance, at

least in the smaller models. The CV Rs-squared for basic regression

models (green line) reaches their near-peak at five variables, while

the ridge regressions (orange line) reach their peak after only four

variables. The ridge models are therefore not only better but more

parsimonious, suggesting the ridge model with four variables would

be the optimum choice, achieving a CV R-squared of ∼0.54 and a raw

R-squared of ∼0.58. The ICCs suggest the same, with mean values

for ridge (across repetitions) of 0.445, 0.449, 0.462, 0.467, and 0.465

for max-2, max-3, max-4, max-5, and max-6 variables, respectively.

As was true for R-squared, while the max-5 model technically has the

highest ICC, it is not high enough above the max-4 ICC to justify the

fifth variable.

The four variables selected were attention accuracy, working mem-

ory (WM) accuracy, matrix (nonverbal) reasoning accuracy, and matrix

reasoning speed. Conveniently, this would mean that only three tests

would need to be administered to obtain the four needed scores. Fig-

ure S4 shows an ordered rank of variables selected during the variable-

selection stage, where variable importance was determined ad hoc as

the number of times the variable was selected divided by the square

root of the maximum variables in the model (so being one of two vari-

ables counts more than being one of 12). Though not all used in the

present model, the following variables show promise as IQ proxies:

NVR accuracy, WM accuracy, ATT accuracy, NVR speed, SPA accuracy,

and EID accuracy. Combined, these results confirm that by administer-

ing the attention, WM, and nonverbal (matrix) reasoning tests, which

combined take an average of 20min to administer, onewould be able to

calculate a reliable proxymeasure for IQ. However, if any of these tests

are absent, they could be substituted by the spatial (line orientation) or

emotion identification tests (5.2 and 2.3min each, respectively).

4 DISCUSSION

With the increased interest in cognitive performance as a phenotype

in brain disorders, genomic research has examined available indica-

tors of intelligence and prospective studies are incorporating a collec-

tion of multimodal brain-behavior parameters that can point to mech-

anisms. Most measures of intelligence available for genomic analyses

capitalize on results of tests generally referred to as measuring an

IQ, typically reported in scores that are standardized to an average

of 100 and a standard deviation of 15. Such scores are abundant in

developmental disorders with intellectual disability, which include rare

genetic disorders such as 22q11.2DS. However, these scores are also

available in genomic studies of common variants as well as rare vari-

ants in population samples (Davies et al., 2016; Davies et al., 2020;

Huguet et al., 2018; Kendall et al., 2017; Spain et al., 2016; Zhao et al.,

2018). Notably, it is impractical to incorporate traditional IQ tests in

large-scale prospective genomic studies because their administration

requires extensive training and is lengthy. Furthermore, IQ scores are

limited in their ability to contribute to mechanistic models and are

being replaced by computerized neuroscience-based measures with
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established links to underlying brain circuitry. The current study offers

a bridge between the novel computerizedmeasures and the traditional

IQmeasures in a binational sample that has receivedmultiplemeasure-

ments of both types during the course of care.

Our results indicate that the Penn CNB administered to individ-

uals with 22q11.2DS shows a comparable factor structure to that

seen in the general population and allows parsing performance into

more specific domains including executive functions, episodic mem-

ory, complex cognition, and social cognition. The factorial structure

supports the existence of both a general factor and specific factors.

Note that the goal here was not to test the measurement models, that

is, the factor analyses were used as a means to an end, and further

research is needed to confirm the factor structures found here in other

22q11.2DS samples. However, the EFA results here closely matched

those of Moore et al. (2015) providing evidence for the generalizabil-

ity of the CNB in unique populations.

The results of comparing CNB accuracy to IQ indicated similar test-

retest correlations when separated by an average of 1.6 years. These

correlations are high, exceeding ICCs of 0.7, and thus can be consid-

ered stable measures of generalized cognitive performance. The CNB

accuracy and IQ also correlate well with each other at both first and

subsequent administrations. These ICCs are lower than the correla-

tions within measures, approaching 0.6, which indicates that they tap

highly related but not the same trait. This difference between corre-

lations could indicate a lack of overlap in the variance explained by

these measures or differences in the reliability of the two measures in

assessing the latent trait. That both CNB accuracy and IQ have simi-

lar test-retest reliability supports the first possibility rather than lower

reliability of one of the measures. Notably, both correlate equally with

a GAF and hence can be considered as similarly predictive of adjust-

ment. Thus, there seems to be a reasonable justification to use either

measure as indicative of cognitive functioning in relation to this validity

criterion.

Because the CNB consists of multiple measures that are differen-

tially related to the g-factor and hence likely differ in the correlations

with IQ,wewere able to explorewhich combination of theCNBparam-

eters best predicts IQ scores. These results were remarkably close to

expectations given what we know about neurocognitive batteries and

IQ.As shown inFigureS4, the top threeneurocognitivepredictors of IQ

were non-verbal (matrix) reasoning,WM, and attention. The first mea-

sure is quite expected, as matrix reasoning tests such as the Raven’s

have long been used as proxies for IQ, and the other two (WM and

attention) have a long history of being centrally implicated in IQ (Kane

& Engle, 2002; Unsworth et al., 2009). The fourth highest predictor—

matrix reasoning response time—is consistent with our previous work

(Moore et al., 2016) showing that fast performance on this task is

strongly indicative of poor effort. The right half of Figure S3, showing

CNB scores least associated with IQ, is also consistent with expecta-

tions, where eight out of the 12 are measures of pure speed, includ-

ing finger-tapping speed. These prediction results strongly support the

possibility of capturing IQ with fewer tests than used here, indicated

most clearly by the fact that the relevant CV R-squared from Figure 3

(max of solid orange function at ∼0.288) is impressively close to the

non-CV R-squared (0.5822 = 0.339) achieved with the accuracy com-

posite (main analysis; the bottom left panel of Figure 2).

By offering a bridge between traditional IQ tests and a sum-

mary measure from a neuroscience-based computerized battery, the

present study facilitates the linking of archival data with current and

future studies employing large-scale computerized assessments of

brain-behavior parameters. Genetically mediated associations with IQ

uncovered in biobanks could be pursued in samples where computer-

ized measures are obtained in order to drill deeper into specific cog-

nitive domains, which could be regulated by different genetic mecha-

nisms related to the brain and behavior.

This study has several limitations. This is a collaborative naturalis-

tic study, where the timing of testing relied on existing clinical proto-

cols and not a prospective study with regularly timed assessments. To

maximize the sample size in this rare genomic disorder required that

we expand the inter-test intervals out to 5 years. While this should

theoretically not be a problem given the stability of IQ, there might

be a reason to doubt the stability of IQ in persons with 22q11.2DS

(Antshel et al., 2010; Tang et al., 2017; Vorstman et al., 2015). How-

ever, our findings indicate the stability of both IQ and CNB over this

time period. Another limitation of the study is that we did not examine

the associationwith psychopathology,which is prevalent in 22q11.2DS

(Antshel et al., 2010, 2017; Goldenberg et al., 2012; Green et al., 2009;

Hooper et al., 2013;Mekori-Domachevsky et al., 2017;Morrison et al.,

2020; Niarchou et al., 2018; Schneider et al., 2014; Tang et al., 2017;

Vorstman et al., 2015; Weinberger et al., 2016). We and others have

examined this association in earlier work and considered it beyond the

scope of the present report. As the sample is enlarged, we will be in a

position to compare IQ and CNB in relation to psychopathology, med-

ical comorbidities, and medications. The study is also limited in the

absence of a verbal measure such as vocabulary or verbal reasoning.

Such measures require extensive adjustment with the involvement of

linguists and would be sensitive to regional variation and educational

exposure evenwithin language communities. Finally, we excluded from

analyses individuals below IQ levels considered intellectually disabled,

and hence our results may not apply to such individuals and further

research is required.

Notwithstanding these limitations, our study has demonstrated that

the Penn CNB might offer an alternative that is more efficient than

the traditional IQ tests. The Penn CNB is open-source, free to the pub-

lic, can be administered online or remotely, and has been deployed

in multiple resource-limited settings across the globe. Furthermore,

rather than single measures of general intelligence, the CNB offers

measures of accuracy and speed on multiple neurocognitive domains

that have been well-investigated in neuroscience in relation to brain

function as well as genomics. Of particular relevance in this con-

text is that data derived from this battery can be easily integrated

with larger electronic databases due to automated quality control and

scoring algorithms. Finally, the incorporation of modern psychometric

methodology, such as computerized adaptive testing based on item-

response theory, is enabling further efficiency in administration time

without loss of information in a way that can be phased into ongoing

studies.
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