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Abstract

Proteasomes, the primary mediators of ubiquitin-protein conjugate degradation, are regulated 

through complex and poorly understood mechanisms. Here we show that Usp14, a proteasome-

associated deubiquitinating enzyme, can inhibit the degradation of ubiquitin-protein conjugates, in 

vivo and in vitro. A catalytically inactive variant of Usp14 has reduced inhibitory activity, 

suggesting that inhibition is mediated by trimming of the ubiquitin chain on the substrate. A high-

throughput screen identified a selective small-molecule inhibitor of the deubiquitinating activity of 

human Usp14. Treatment of cultured cells with this compound enhanced degradation of several 

proteasome substrates that have been implicated in neurodegenerative disease. Usp14 inhibition 

accelerated the degradation of oxidized proteins and enhanced resistance to oxidative stress. 

Enhancement of proteasome activity through inhibition of Usp14 may offer a strategy to reduce 

the levels of aberrant proteins in cells under proteotoxic stress.
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The proteasome is essential for life in eukaryotes and regulates many aspects of cell 

physiology1,2. Most of its substrates are targeted to the proteasome via ubiquitination. The 

proteasome holoenzyme is composed of a 19-subunit regulatory particle (known as the RP, 

19S complex, or PA700) and a 28-subunit core particle (known as the CP, or 20S complex). 

Substrate first binds the RP, and is then actively translocated to the CP, where it is degraded. 

The mechanisms regulating proteasome activity remain poorly understood, but involve 

numerous proteins that reversibly associate with it. Some bind the RP and deliver ubiquitin-

conjugates to the proteasome, while others open the axial channel into the CP. A third class 

of associated proteins, composed of ubiquitin ligases and deubiquitinating enzymes (DUBs), 

modifies proteasome-bound ubiquitin chains. Ubiquitin chains vary in their linkage type and 

length, and longer variants interact more strongly with the proteasome3. The extension and 

disassembly of chains at the proteasome may alter substrate degradation rates by changing 

substrate affinity for the proteasome.

Mammalian proteasomes are associated with three DUBs: Rpn11, Uch37, and Usp14 (refs 
4–22). Uch37 and Usp14 associate reversibly with the proteasome, whereas Rpn11 is a 

stoichiometric subunit1. These enzymes reside on the RP and remove ubiquitin from the 

substrate prior to substrate degradation. The release of ubiquitin spares it from degradation, 

minimizing fluctuations in ubiquitin pools. The activity of Rpn11 on the substrate’s 

ubiquitin chain is thought to be delayed until the proteasome is committed to degrading the 

substrate4,5. Rpn11 then cuts at the base of a ubiquitin chain, freeing substrate5. Thus, 

removal of the ubiquitin chain by Rpn11 can promote substrate translocation into the CP to 

be hydrolyzed4,5. However, deubiquitination prior to commitment might inhibit substrate 

degradation, since ubiquitin targets the protein for degradation6.

In contrast to Rpn11, Usp14 and Uch37 can attack ubiquitin chains independently of 

commitment to substrate degradation. Uch37, and perhaps Usp14, disassemble the chain 

from its substrate-distal tip6,15,16, thus shortening chains rather than removing them en bloc. 

Little is known about such “chain-trimming” reactions6–8. One model is that chain trimming 

increases the ability of proteasomes to discriminate between long and short multiubiquitin 

chains6. Here we show that a small-molecule inhibitor of deubiquitination by Usp14 

stimulates protein degradation in vitro and in vivo. These findings reveal that in vivo 

proteasome function is limited by Usp14-dependent chain-trimming, implying that 

otherwise competent substrates of the proteasome can be rejected when chain trimming is 

faster than competing steps leading to substrate degradation.

Usp14 inhibits the proteasome in vitro

We have previously shown that Ubp6, the yeast ortholog of Usp14, is a potent inhibitor of 

the proteasome16. To test whether this is true of Usp14 from humans, we first developed a 

purification procedure that results in proteasomes lacking detectable Usp14 (modified from 

ref 23). Such proteasomes retain high levels of ubiquitin-AMC (Ub-AMC) hydrolyzing 

activity (data not shown), which is presumably Uch37-dependent (Supplementary Fig. 1). 

This activity can be inhibited irreversibly using ubiquitin-vinylsulfone (Ub-VS)24, which 

forms an adduct with the active site Cys in DUBs of the thiol protease class. When such 

“VS-proteasomes” were reconstituted with recombinant Usp14 (Supplementary Fig. 2), Ub-
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AMC hydrolyzing activity was increased 800-fold over that of isolated Usp14 (Fig. 1a). 

Thus, the deubiquitinating activity of Usp14 is activated by proteasomes (see also refs 
10,11,15,18,22). Using the Ub-AMC assay, the affinity of Usp14 for the proteasome was found 

to be 4 nM (Supplementary Fig. 3).

Proteasomes reconstituted with a saturating amount of Usp14 were challenged with a model 

proteasome substrate, ubiquitinated cyclin B (Ub-cyclin B). Like Ubp6, Usp14 inhibited the 

degradation of Ub-cyclin B (Fig. 1b). An active site mutant of Usp14, Usp14-C114A 

(hereafter Usp14-CA), showed little inhibitory effect, pointing to chain trimming as the 

basis for inhibition. Indeed, extensive trimming of ubiquitin from cyclin B, as indicated by 

the shift of Ub-cyclin B bands to a lower molecular mass, was evident in the presence of 

Usp14 but not Usp14-CA (Fig. 1b). Apparently, complete deubiquitination of cyclin B is not 

required to suppress degradation, because Usp14 rapidly removed only a portion of the 

ubiquitin from cyclin B, even upon longer incubation (Fig. 1b). The strong dependence of 

chain trimming on Usp14 was unexpected because active Uch37 was present in these 

proteasomes (Supplementary Fig. 1). When Ub-AMC is used as a substrate, Uch37 activity 

predominates over that of Usp14 (refs 7,8), but a true ubiquitin-protein conjugate, Ub-cyclin 

B, shows the inverse effect. The lack of significant inhibition of degradation seen with 

Usp14-CA was also surprising because Ubp6 exhibits a noncatalytic mechanism of 

proteasome inhibition16. As described below, a noncatalytic effect is seen with Usp14, 

though it is not well visualized in this assay.

Usp14 inhibits protein turnover in cells

To verify that Usp14 inhibits the proteasome in cells, we expressed Usp14 variants in 

usp14−/− murine embryonic fibroblasts (MEFs), together with proteasome substrates. As 

substrates we initially chose two proteins that are critical in neurodegenerative diseases, Tau 

and TDP-43 (refs 25,26). Tau is thought to undergo proteasomal degradation27,28. Tau and 

TDP-43 showed increased levels when co-expressed with wild-type Usp14 in usp14−/− 

MEFs, suggesting proteasome inhibition by Usp14 (Fig. 1c). No effect was seen at the 

mRNA level (Supplementary Fig. 4). As seen in vitro, Usp14-CA showed little or no 

activity in the assay. Thus, the ability of the proteasome to degrade Tau and TDP-43 in 

MEFs appears to be suppressed by trimming of ubiquitin from these substrates. The N-

terminal ubiquitin-like (UBL) domain of Usp14 (Fig. 1d) is its principal proteasome-binding 

site15, and accordingly its deletion abrogated the Usp14 effect (Fig. 1c). The effects on Tau 

levels reflected accelerated degradation: Tau disappeared more slowly from cells expressing 

Usp14 in a chase experiment (Supplementary Fig. 5). Usp14 did not affect the levels of two 

proteins that are thought to be stable, LacZ and actin (Fig. 1c). In MEFs and other cell types, 

wild-type Usp14 was usually expressed at lower levels than Usp14-CA (Fig. 1), suggesting 

that Usp14 may be subject to autoregulation.

Another protein linked to neurodegeneration and thought to be a substrate of the proteasome 

is ataxin-3 (Atx3)29. Poly-Q expanded forms of Atx3 give rise to spinocerebellar ataxia 3. 

Both wild-type (Q22) and expanded forms of Atx3 (Q80) were stabilized by expression of 

Usp14 in usp14−/− MEFs (Fig. 1e). Expression of wild-type Usp14 engendered stronger 

accumulation of Atx3 than expression of Usp14-CA. However, in contrast to Tau and 
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TDP-43, the stabilizing effect of catalytically inactive Usp14 was substantial for Atx3-Q22 

and Atx3-Q80. Stabilization of Atx3 by Usp14-CA presumably represents the same 

noncatalytic effect as described for Ubp6 in S. cerevisiae16. Thus the noncatalytic inhibitory 

effect is apparently conserved in evolution. A noncatalytic effect was also observed for a 

model substrate of the proteasome30,31, Arg-GFP (Fig. 1f). Wild-type Usp14 was ineffective 

in Arg-GFP stabilization in comparison to Usp14-CA (Fig. 1f), the noncatalytic effect being 

dominant. Met-GFP, a stable protein, was unaffected by Usp14. It will be interesting to 

determine what substrate features underlie the differing sensitivities of these substrates to 

catalytic and noncatalytic inhibition of degradation.

The effect of Usp14 on Tau degradation was confirmed in HEK293 cells. As in MEFs, 

Usp14 overexpression stabilized Tau (Fig. 1g). Results obtained with Usp14 mutants 

differed somewhat from those obtained using MEFs, as expected, given that HEK293 cells 

express endogenous Usp14; the expression of Usp14-CA in usp14−/− MEFs had no effect on 

Tau, whereas in HEK293 cells the Usp14-CA mutant produced accelerated Tau degradation 

(Fig. 1g). This result presumably reflects displacement of endogenous Usp14 from the 

proteasome. As expected, deletion of the UBL domain attenuated the dominant negative 

effect (Fig. 1g). In contrast to Usp14-ΔUBL, the short form (SF) of Usp14, expressed from a 

developmentally regulated18 mRNA that lacks a 33-codon junctional exon (exon 4) between 

the UBL domain and the catalytic domain12,18 (Fig. 1d), did exhibit a dominant negative 

effect (Fig. 1g). This result suggested that Usp14-SF might bind proteasomes and counter 

the action of full-length Usp14. Thus, Usp14-SF may be an endogenous inhibitor of Usp14 

activity. Consistent with this possibility, Usp14-SF binds proteasomes, but is not activated 

enzymatically by proteasome binding, as shown by its inability to react with Ub-VS (Fig. 

1h). Usp14-SF also appears to lack noncatalytic proteasome-inhibitory capacity, because its 

expression in usp14−/− MEFs did not stabilize Arg-GFP (Supplementary Fig. 6).

A selective small-molecule inhibitor of Usp14

The results above suggested that chain trimming at the proteasome antagonizes degradation 

of multiple substrates. Therefore, a small-molecule inhibitor of Usp14 might enhance 

proteasome activity. We screened 63,052 compounds for the ability to inhibit Usp14, using 

VS-proteasomes reconstituted with Usp14 and assayed with Ub-AMC, and identified 215 as 

true Usp14 inhibitors (details in Supplementary Methods, Supplementary Table, and 

Supplementary Fig. 7). When the hits were counterscreened against a panel of DUBs, only 

three showed selectivity for Usp14. We proceeded with more detailed studies of the 

strongest hit, 1-[1-(4-fluorophenyl)-2,5-dimethylpyrrol-3-yl]-2-pyrrolidin-1-ylethanone, 

referred to below as IU1 (Fig. 2a). Its structure is suggestive of an active-site-directed thiol 

protease inhibitor. The IC50 of IU1 for Usp14 is 4–5 μM (Fig. 2b; Supplementary Fig. 8). 

IU1 failed to significantly inhibit eight DUBs of human origin (Figs. 2b, 2c; Supplementary 

Figs. 9, 10), as well as Ub-AMC hydrolysis by proteasomes lacking Usp14, which is 

attributable to Uch37 (Supplementary Fig. 8). We also identified a compound that is closely 

related to IU1 but does not inhibit Usp14 (IU1C; Fig. 2a; Supplementary Fig. 11), and used 

this as a specificity control in subsequent assays. In the absence of proteasomes, Usp14 was 

insensitive to IU1 (Supplementary Fig. 8), suggesting that IU1 binds specifically to the 

activated form of Usp14. IU1 could potentially inhibit Usp14 by preventing its docking on 
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the proteasome, but direct tests of this scenario proved negative (Supplementary Fig. 12). 

Usp14 inhibition was rapidly established upon addition of IU1 and rapidly reversed upon its 

removal (Fig. 2d and Supplementary Fig. 13).

We employed Ub-cyclin B to test whether IU1 could inhibit the trimming of ubiquitin 

chains by the proteasome. To separate chain trimming from substrate degradation, these 

assays were done in the presence of proteasome inhibitors4. When proteasomes lacking 

Usp14 were tested, IU1 had no effect on ubiquitin chain release (Fig. 3a), which is likely 

Rpn11-dependent4. Chain trimming was strongly enhanced by Usp14, as apparent from the 

increased electrophoretic mobility of Ub-cyclin B species. Addition of IU1 to the assay 

reversed this effect (Fig. 3a; see also Supplementary Fig. 14).

We next tested whether IU1 could enhance degradation. Proteasomal degradation of Ub-

cyclin B was indeed dramatically stimulated by IU1 (Fig. 3b). Proteasomes lacking Usp14 

were insensitive to IU1 (Fig. 3b), and cyclin B degradation was unaffected by IU1 when 

proteasomes were reconstituted with Usp14-CA (Supplementary Fig. 15). Thus, suppression 

of chain trimming by IU1 may account for its enhancement of degradation. IU1 also 

promoted degradation of Sic1, a CDK inhibitor from S. cerevisiae (Fig. 3c). These assays 

employed a modified form of Sic1 in which the PY element signals ubiquitination32. The 

Ub-cyclin B used in these assays carries mixed ubiquitin chains linked via K48, K63, and 

K11 residues33. In contrast, ubiquitin chains formed on Ub-Sic1PY are homogenously linked 

via K6332. Chains of different topologies may therefore be susceptible to Usp14-dependent 

regulation.

A Usp14 inhibitor accelerates proteolysis in cells

To determine whether IU1 is cell permeable, it was added to cultures and cell-associated 

IU1 was quantified by LC-MS or UV absorption. When added at 50 μM, IU1 reached an 

apparent intracellular concentration of ~13 μM within 1 hour, which remained constant over 

the course of the experiment (Supplementary Figs. 17–19). Effects of IU1 on the viability of 

MEFs only became apparent at 250μM (Supplementary Figs. 20, 21). Moreover, IU1 did not 

noticeably induce apoptosis (Supplementary Fig. 22). When cell proliferation was measured 

in real time, slight inhibition became apparent at 120 μM (Supplementary Fig. 21). In the 

case of both cell viability and proliferation assays, usp14−/− MEFs were no less sensitive 

than wild-type, indicating that IU1 toxicity at high concentrations was independent of Usp14 

inhibition.

To determine whether IU1 could enhance proteasome function in cells, we expressed Tau in 

MEFs treated with sub-cytotoxic doses of IU1. IU1 induced dose-dependent reduction in 

Tau levels, with a strong effect seen at 50 μM (Fig. 4a; Supplementary Fig. 23). Thus, IU1 

treatment affected Tau similarly to Usp14-CA (Fig. 1c), consistent with active site 

inhibition. No effect was seen on Tau mRNA (Supplementary Fig. 24). When usp14−/− 

MEFs were treated with IU1, no effect on Tau was observed, indicating that IU1 enhances 

Tau degradation through inhibiting Usp14 (Fig. 4b). Based on these and previous 

experiments (Fig. 2c), nonspecific inhibition of other DUBs by IU1 does not affect 

proteasome function at this dose. The effect of IU1 on Tau degradation was independent of 
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autophagy (Supplementary Fig. 25). Several other proteins implicated in proteotoxic 

mechanisms–TDP-43, ataxin-3, and glial fibrillary acidic protein (GFAP)–were similarly 

depleted from MEFs by IU1 (Figs. 4d, 4e; Supplementary Fig. 26). The effectiveness of IU1 

in neurons, where proteotoxic mechanisms are commonly observed, has not been examined.

IU1 enhanced the extent of ubiquitin modification of TDP-43 in cells, perhaps accounting 

for its accelerated degradation (Fig. 4f). In contrast, little change was seen in bulk cellular 

ubiquitin conjugates (Fig. 4g; Supplementary Fig. 27). Free ubiquitin was reduced following 

IU1 addition, and, as the dose of IU1 increased, the level of free ubiquitin in wild-type 

MEFs approached that of untreated usp14−/− MEFs (Fig. 4g). Previous work showed that 

Usp14 and Ubp6 assist in maintaining of cellular ubiquitin pools by suppressing 

proteasomal degradation of ubiquitin11,13,14,17,34,35. The conjugated rather than free form of 

ubiquitin is most subject to degradation36. By separating ubiquitin from its conjugative 

target, Usp14 antagonizes this pathway of ubiquitin degradation.

Enhanced protein degradation in cells treated with IU1 could result from increased synthesis 

of proteasomes; however, no significant changes in proteasome composition were seen after 

IU1 treatment (Supplementary Fig. 28). Usp14 is known to affect gating of the 

proteasome21, but this does not appear to be critical in the mode of action of IU1 

(unpublished data). The detailed similarities observed between the effects of mutational 

inactivation of Usp14’s catalytic site and IU1 treatment, as well as the observation that 

Usp14 is required for IU1 to affect protein degradation, provide strong evidence for the 

importance of chain trimming by Usp14. In addition, IU1 had little or no effect on the in 

vivo degradation of a ubiquitin-independent substrate37 of the proteasome, cODC-EGFP 

(Fig. 4c). Similar results were obtained in vitro with antizyme-promoted ODC degradation 

(data not shown). The effects of IU1 are likely restricted to ubiquitin-dependent proteasome 

substrates, based on its mode of action, but further characterization is required to establish 

this. Finally, Arg-GFP levels were constant upon treatment with IU1, when assayed in cells 

expressing Usp14-CA, suggesting that IU1 does not influence Usp14’s noncatalytic 

inhibitory effect (Supplementary Fig. 26).

Oxidized proteins form a class of misfolded proteasome substrates that increase with age 

and are apparently toxic when they accumulate38,39. We induced protein oxidation by 

treating cells with menadione, and visualized oxidized species via their carbonyl groups. 

IU1 treatment strongly reduced the accumulation of oxidized proteins (Fig. 5a). When 

proteasome inhibitor was added, the effect of IU1 was attenuated, suggesting that IU1 does 

not prevent the oxidation reaction itself. IU1 treatment reduced menadione toxicity 

substantially in HEK293 cells (Fig. 5b), strongly supporting the hypothesis that proteins are 

critical targets of oxidative damage. IU1 also reduced the toxicity of an unrelated oxidizing 

agent, hydrogen peroxide (data not shown). IU1C, the IU1 variant that is inactive against 

Usp14, failed to reduce menadione cytotoxicity (Supplementary Fig. 29). In summary, these 

experiments suggest that IU1 can promote cell survival during proteotoxic stress.
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Ubiquitin chain trimming antagonizes proteasome function

We report here that a small molecule selected for its capacity to inhibit the proteasome-

associated deubiquitinating enzyme Usp14 strongly enhances substrate degradation by the 

proteasome in cells. This is the first evidence that chain trimming by Usp14 or its yeast 

ortholog Ubp6 inhibits proteasome activity through deubiquitination. The trimming of 

substrate-bound ubiquitin chains on the proteasome appears to govern the degradation rates 

of many ubiquitin-protein conjugates. Under normal growth conditions, the proteasome may 

be subject to tonic inhibition through this mechanism.

The scope of proteasome inhibition by chain trimming is not limited to substrates bearing 

only one or a few ubiquitin groups6, as shown by studies of cyclin B and Sic1PY 

degradation. Also, suppression of degradation by chain trimming does not appear to be 

restricted to proteins that are not proper substrates of the proteasome. Chain trimming may 

be a more general, though not universal, mechanism for regulating protein turnover rates, 

suppressing the degradation of some substrates but not others. Further work will be required 

to determine what fraction of proteasome substrates can be regulated through this pathway, 

and what distinguishing features they share.

We also report that Usp14 can inhibit proteasome function noncatalytically, as previously 

observed for its yeast ortholog Ubp6 (ref 16). The capacity of Usp14 to inhibit proteasomes 

via two distinct pathways has important implications. Briefly, the noncatalytic effect, in 

slowing substrate degradation at the proteasome, may allow individual substrates to be 

docked at the proteasome for a longer time, thus enhancing the effectiveness of chain 

trimming by allowing ubiquitin chains to be trimmed more extensively. However, the two 

modes of proteasome inhibition are not obligatorily coupled, because proteasome substrates 

exhibited differing relative sensitivities to catalytic and noncatalytic inhibition by Usp14 

(Fig. 1c–f). It will be important to identify the mechanistic basis of these differences.

Both Usp14 and Uch37 exhibit chain-trimming activity, but the effectiveness of IU1 in 

reducing chain trimming and stimulating proteasome activity suggests that the redundancy 

between these two proteasome-bound enzymes may be less than expected. Uch37 does not 

readily substitute for Usp14. Proteasomes are associated with multiple ubiquitin receptors, 

and the relative susceptibility of substrates to chain trimming by Usp14 and Uch37 may 

depend on which receptors are engaged with a given substrate and the positioning of these 

receptors with respect to Usp14 and Uch37. For example, Uch37 binds proteasomes via a 

ubiquitin receptor, Rpn13 (refs 24,40–42). Whether chain trimming by Uch37 can suppress 

proteasome activity as powerfully as Usp14 will require further study.

Although eukaryotic cells require proteasome function, proteasome inhibitors have proven 

highly effective in the treatment of multiple myeloma43, and may have additional 

applications44. In other contexts, however, enhancement of proteasome activity might be 

beneficial45,46. For example, enhanced proteasome function could have applications in 

disorders that result from partial loss of function mutations in ubiquitin pathway 

components47. More generally, many diseases, including major neurodegenerative diseases, 

are thought to be caused by the accumulation of misfolded proteins48–50. Misfolding, which 
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renders these proteins toxic, can also mark them as substrates of the ubiquitin-proteasome 

and autophagy pathways50. Enhanced proteasome function, as induced by inhibitors of chain 

trimming, could therefore potentially be used to eliminate such toxic proteins more 

effectively.

METHODS SUMMARY

For expression in mammalian cells we employed full-length Usp14 (Usp14-wt) and its 

splice variant lacking exon 4 (Usp14-SF) subcloned into pcDNA3.1 (Invitrogen) as 

previously described19. The Usp14-C114A and Usp14-ΔUBL constructs were generated in 

the same vector by PCR-mediated mutagenesis. Human proteasomes were affinity-purified 

on a large scale from a stable HEK293 cell line harboring HTBH-tagged hRpn11 (a kind gift 

from L. Huang). 10 μl of Usp14 was dispensed into 384-well low volume plates in duplicate 

using a Wellmate dispenser. 33.3 nl of compound from the library was transferred into the 

wells using a Seiko pin transfer robotic system, followed by preincubation for ~30 min. To 

initiate the reaction, 10 μl of VS-proteasome plus Ub-AMC mixture was added to each well. 

The sources of compound libraries for screening were as follows: Maybridge, Asinex, 

ActiMol TimTec, ChemBridge, ChemDiv, Enamine, and MMV1. Primary hits were defined 

by ‘robust’ Z-score analysis (Supplementary Fig. 7). To obtain dose-response curves, curve 

fitting was performed by the four parameter logistic model or the three parameter fixed 

bottom model using SigmaPlot 9.0 according to guidelines from NIH Chemical Genomics 

Center. The gene trap allele, usp14rrk114 (ref 19), is referred to here as usp14−/−. For 

additional details see Supplementary Information.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Usp14 is an inhibitor of the proteasome
a, Ub-AMC hydrolysis assay of Usp14 activity in the presence or absence of Ub-VS treated 

human proteasome (VS-proteasome; 1 nM). RFU, relative fluorescence units. Ptsm, 26S 

proteasome.

b, In vitro degradation assay with polyubiquitinated cyclin B (Ubn-ClnB), human 

proteasome (4 nM), and wild-type Usp14 (Usp14-wt) or mutant Usp14-CA (60 nM). 

Samples in b, c, and e-h analyzed by SDS-PAGE/immunoblotting (IB).

c, Plasmids expressing Tau, TDP-43Flag, or LacZV5 were cotransfected into usp14−/− MEFs 

with variants of Usp14Flag as indicated. Samples collected 2 days post-transfection. Actin, 

load control.

d, Diagram of human Usp14, showing ubiquitin-like (UBL) and catalytic (CAT) domains. 

C114, active site cysteine. Splice variant Usp14-SF is produced from an mRNA lacking 

exon 4 (ref 12).

e, Flag-tagged Ataxin3-Q22 or -Q80 was coexpressed with Usp14 variants in usp14−/− 

MEFs and detected with anti-Flag antibodies.

f, Arg-GFP or control Met-GFP coexpressed with Usp14 variants in usp14−/− MEFs.

g, As c except in HEK293 cells.

h, Usp14-SF associates with but is not activated by proteasomes. Each variant of Usp14Flag 

was expressed in HEK293T cells containing tagged hRpn11, and proteasomes were affinity 

purified. Where indicated, Ub-VS was incubated with lysate prior to proteasome 

purification. Extract samples represent 5% of total. Asterisks, nonspecific signals. 

Proteasome subunit Rpn13, load control. Control samples, empty vector. Equal cell numbers 

were used for each lane.
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Figure 2. IU1 inhibits human Usp14 specifically and reversibly
a, Chemical structures of IU1 and IU1C. Analytical data shown in Supplementary Fig. 16.

b, IC50 determination for IU1 inhibition of Ub-AMC hydrolysis by proteasome-bound 

Usp14 (4.7 ± 0.7 μM), IsoT (100 ± 0.4μM), and Uch37 (0.7 ± 0.3 mM).

c, Ub-AMC (1 μM) hydrolysis assays showing specificity of IU1 for Usp14.

d, Reversibility of Usp14 inhibition. 60 nM Usp14 and 5 nM human proteasome were 

treated with vehicle (DMSO) or 100 μM IU1 for 2 hr. After spin gel-filtration, proteins were 

assayed for Ub-AMC hydrolysis. All values are presented as mean ± s.d. (n=3).
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Figure 3. IU1 inhibits chain trimming and stimulates substrate degradation in vitro
a, Chain trimming assays. Samples contained 4 nM proteasome, and Usp14 was added at 

15-fold molar excess over proteasome. IU1 was added at 50 μM and proteasome inhibitors 

(PI) at 5 μM (PS-341, epoxomicin). Asterisk, cyclin B species derived from residual 

thrombin from Usp14 preparation16. All panels, SDS-PAGE/immunoblot analysis.

b, In vitro Ubn-ClnB degradation assay (IU1 at 34 μM).

c, In vitro degradation assay with polyubiquitinated Sic1PY, human proteasome (5 nM), and 

Usp14-wt (75 nM) in the absence or presence of IU1 (75 μM).
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Figure 4. IU1 enhances proteasomal degradation in vivo
All panels show SDS-PAGE/immunoblot data.

a, 36 hours after cotransfecting wild-type MEFs with plasmids expressing Tau and LacZV5, 

cells were incubated with 0, 25, 50, 75, or 100 μM of IU1 for 6 hr. LacZ, transfection 

control. Actin, loading control.

b, As in a except that MEFs were usp14−/− and IU1 was at 0, 10, 50, or 100 μM.

c, Tau and Ub-independent proteasome substrate cODC-EGFP were coexpressed in wild-

type MEFs and incubated with 50 μM IU1 for 6hr. Proteasome inhibitors were MG132 (30 

μM) and PS-341 (10μM).

d, As b except with Atx3-Q80 and Atx3-Q22.

e, TDP-43Flag was cotransfected with a LacZ-expressing plasmid into either wild-type or 

usp14−/− MEFs, then treated with IU1 (75 μM) for the time indicated. Asterisk, nonspecific 

signal.

f, HA-tagged Ub and/or Flag-tagged TDP-43 were transiently overexpressed in wild-type 

MEFs with 50μM IU1 incubation for 6 hr. Proteasome inhibitors (20 μM MG132, 10 μM 

PS-341) were added 4 hr before lysis. Lysates were subjected to immunoprecipitation with 

anti-HA or anti-Flag. Arrows indicate likely ubiquitinated TDP-43 species. HC, heavy 

chain.

g, Wild-type MEF and usp14−/− MEF cells were treated with IU1 (0, 25, 50, 75, or 100 μM) 

for 6 hr, followed by analysis for ubiquitin, actin, CP subunit α7, and RP subunit Rpt5.
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Figure 5. IU1 alleviates cytotoxicity induced by oxidative stress
a, HEK293 cells were preincubated with IU1 (75 μM) or proteasome inhibitors (20 μM 

MG132, 10 μM PS-341) for 4 hr, then treated with menadione (300 μM) for 60 min. Lysates 

were treated with DNPH and immunoblotted with anti-DNP antibody to assay oxidized 

proteins.

b, Cell survival under oxidative stress measured using the MTT assay. HEK293 cells were 

pretreated with 50 μM IU1 for 2 hr. Menadione was added, followed by 4-hr incubation. IU1 

effects comparable to those of panels a and b were obtained in wild-type but not usp14−/− 

MEFs (data not shown). Values are represented as mean ± s.d. (n=3).
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