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Abstract 

The ideal technology for directly investigating the relationship between genotype and phenotype 
would analyze both RNA and DNA genome-wide and with single-cell resolution. However, existing 
tools lack the throughput required for comprehensive analysis of complex tumors and tissues. We 
introduce a highly scalable method for jointly profiling DNA and expression following nucleosome 
depletion (DEFND-seq). In DEFND-seq, nuclei are nucleosome-depleted, tagmented, and 
separated into individual droplets for mRNA and genomic DNA barcoding. Once nuclei have been 
depleted of nucleosomes, subsequent steps can be performed using the widely available 10x 
Genomics droplet microfluidic technology and commercial kits without experimental modification. 
We demonstrate the production of high-complexity mRNA and gDNA sequencing libraries from 
thousands of individual nuclei from both cell lines and archived surgical specimens for associating 
gene expression phenotypes with both copy number and single nucleotide variants. 
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Introduction 
In recent years, single-cell barcoding and deep sequencing technologies have conspired to 
revolutionize our understanding of health and disease by allowing highly-scalable analysis of DNA 
or RNA with unprecedented resolution1-3. Transcriptional states, regulatory networks, and cell 
state transitions can be identified with scRNA-seq, while mutations (e.g., copy number, structural, 
and single nucleotide variants) can be identified with scDNA-seq. Assessing both the RNA and 
DNA from thousands of single cells from a single specimen or sample would enable joint 
identification of rare cell types and subclones from tumors, linkage of cancer driver mutations with 
distinct expression profiles, and simultaneous analysis of somatic mosaicism and lineage identity 
in complex human tissues4. Such information could be used to understand disease progression, 
cancer drug resistance, and cell type-specific drug responses, possibly leading to new therapeutic 
strategies. However, simultaneously assessing the RNA and DNA of individual cells at high 
throughput remains challenging and crucial. For example, solid tumors might contain many 
transcriptional subpopulations and genetic subclones in a complex with numerous non-neoplastic 
cell types in the microenvironment5, 6. This challenge can be even more significant in studies of 
somatic mosaicism in ostensibly normal tissues.  

Pioneering single-cell co-assays for RNA and genomic DNA (gDNA), such as gDNA-mRNA-seq 
(DR-seq)7, genome and transcriptome sequencing (G&T seq)8, Simul-seq9, and simultaneous 
isolation of genomic DNA and total RNA (SIDR)10, have revealed many of the novel insights 
enabled by combined copy number variation (CNV) and gene expression analysis. These 
techniques directly linked chromosomal aneuploidies to gene expression and could correlate 
transcript abundance to copy number variation. They also relied on manually manipulating 
individual cells, which limited the scale of these techniques to, at most, hundreds-of-cells when 
performing experiments in multi-well plates. With genotyping of transcriptomes (GoT)11,  it 
became possible to detect mutations in the mRNA of targeted loci for thousands of cells with 
corresponding gene expression information. Other scalable multiomic technology has 
demonstrated targeted genomic DNA sequencing with targeted surface protein detection12. More 
recently, a scalable combinatorial indexing (sci-) co-assay for RNA and genomic DNA termed sci-
L3-RNA/DNA13 was introduced. This technique tagments the gDNA of nucleosome-depleted 
nuclei with barcodes while simultaneously reverse transcribing the RNA to cDNA with a barcoded 
primer. Additional barcodes are added to the cDNA and gDNA with split-pool ligations. Proof-of-
concept studies resulted in co-RNA/DNA libraries for a few thousand cells with very limited 
coverage, and the experiments were restricted to cell lines. 

Here we present DNA and Expression Following Nucleosome Depletion sequencing (DEFND-
seq), a scalable method for co-sequencing RNA and DNA from single nuclei that uses commercial 
droplet microfluidics to achieve a high-throughput. In DEFND-seq, we treat nuclei with lithium 
diiodosalicylate to disrupt the chromatin and expose genomic DNA (gDNA)14. The nuclei are then 
tagmented, which fragments and tags gDNA with common adapter sequences. Tagmented nuclei 
are loaded into a microfluidic droplet generator, which co-encapsulates nuclei, beads containing 
transcriptomic and genomic barcodes, and reverse transcription reagents into single droplets. 
Ultimately two libraries are created, one for nuclear mRNA and one for gDNA, with each library 
containing barcodes linked to its originating nucleus, thus allowing simultaneous analysis of the 
transcriptomes and genomes of individual nuclei. Following nuclear isolation and chromatin 
disruption, all steps can be performed using a commercial droplet microfluidics system from 10x 
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Genomics and 10x Genomics Chromium Single Cell Multiome ATAC+Gene Expression Kit 
without further experimental modification. 

Results 
Previous reports have demonstrated chromatin disruption in intact nuclei for scDNA-seq14. 10x 
Genomics has commercialized a widely-used droplet microfluidic system for single-nucleus 
ATAC-seq (snATAC-seq) and joint single-nucleus RNA/ATAC-seq that barcodes thousands of 
tagmented nuclei with intact chromatin to profile open chromatin. We reasoned that by combining 
chromatin disruption methods with this commercial system for snATAC-seq, we could instead 
obtain scDNA-seq data at scale. Furthermore, feeding chromatin-disrupted nuclei to a kit for joint 
snRNA/ATAC-seq that uses the same commercial platform would yield joint snRNA/DNA-seq 
data at scale (Figure 1a). Given the large install-base of 10x Genomics droplet microfluidic 
systems and availability of pre-assembled kits, this advance would make high-throughput, joint 
profiling of RNA and DNA from individual nuclei broadly available to the research community on 
a familiar and established platform.  

We first investigated methods to disrupt chromatin using: (1) cross-linking and sodium dodecyl 
sulfate-based nucleosome depletion (xSDS), which uses SDS to disrupt chromatin packing with 
a non-ionic detergent that requires cross-linking to maintain nuclear integrity, and (2) lithium 
diiodosalicylate assisted nucleosome depletion (LAND), which uses a milder detergent that has 
previously been used to extract histones14. We compared libraries generated from these 
nucleosome depletion techniques to a standard snATAC-seq library (Figure 1b). Genomic 
heterogeneity, copy number alterations, polyploidy, and high rates of cell division found in most 
immortalized cancer cell lines are problematic for characterizing noise and coverage bias. Thus, 
we chose BJ fibroblasts, a human male euploid fibroblast cell line with diploid somatic 
chromosomes and a single copy of each sex chromosome, for benchmarking due to their lack of 
aneuploidy and long doubling time. Nuclei treated with xSDS, LAND, or standard conditions for 
chromatin preservation were profiled using the 10x Genomics’ Chromium Single-cell ATAC 
reagents to generate barcoded, tagmented libraries according to the manufacturer’s protocol. 
Libraries from the snATAC-seq protocol have the characteristic multi-modal fragment length 
distribution with a high-frequency periodicity indicating the ~10 bp helical pitch of double-stranded 
DNA and low-frequency features (>100 bp) resulting from periodic binding of nucleosomes to 
DNA (Figure 1b)15. Conversely, the nucleosomal pattern is diminished in libraries from xSDS 
treated-nuclei and completely absent from libraries from LAND-treated nuclei. The LAND 
fragment length distribution monotonically decreases from approximately 100-500 bp fragments.  

We performed subsampling to determine how read depth impacts various DNA sequencing 
performance metrics. The number of fragments from LAND-treated nuclei scales almost linearly 
with sequencing depth out to 125,000 reads/nucleus, while the scATAC-seq and xSDS libraries 
start to saturate (Figure 1c). This indicates that the LAND libraries are more complex and offer 
significantly higher coverage of the genome than either xSDS or snATAC-seq libraries, likely 
because of more complete chromatin disruption. Furthermore, snATAC-seq libraries have 
transcription start site (TSS) enrichment scores indicating non-uniform coverage of genomic 
regions due to the presence of nucleosomes, while LAND and xSDS libraries have markedly lower 
scores (Figure 1d). 

To quantify the coverage uniformity of each method, we calculated the raw coefficient of variation 
(CV) of the number of fragments per 100 kb somatic chromosome bin for several read depths 
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(Figure 1e). Because we are using euploid cells, the CV will ultimately indicate the ability to 
accurately detect copy number variants (CNVs)16. The LAND profiles have the lowest noise (CV 
~1.1). Importantly, the CV is still decreasing at higher sequencing depths for the LAND nuclei, 
while the xSDS and scATAC-seq libraries are saturated.  

We also included a similar analysis of a standard benchmarking snATAC-seq dataset17 provided 
by 10x Genomics obtained from peripheral blood mononuclear cells (PBMCs), which are also 
euploid (Figure 1c—e). This library was of exceptional quality, exhibiting a very high TSS 
enrichment score (>25) consistent with highly intact chromatin. As expected, this results in low 
library complexity (saturating with few unique fragments detected per nucleus) and a high CV, 
indicating low coverage uniformity along the genome, presumably because the tagmented gDNA 
is stringently limited to open chromatin.  

Our ultimate goal is jointly profiling RNA and DNA from the same nuclei. Thus, we also 
investigated the cDNA yield and quality from the various treatments. We synthesized full-length, 
bulk cDNA libraries for the different nuclear treatments (Figure 1f). Both the ATAC-seq and LAND 
nuclei yield full-length cDNA molecules. Interestingly, the xSDS-treated nuclei have truncated 
cDNA molecules (average length: 786 bp), potentially due to fragmentation or cross-linking.  

DEFND-seq: Joint, Single-Nucleus RNA and DNA Sequencing 

Considering that the LAND nuclei exhibited higher library complexity, coverage uniformity, and 
cDNA quality than alternatives, we further investigated whether this technique could be 
compatible with combined RNA and DNA sequencing of the same nucleus. We treated nuclei with 
lithium diiodosalicylate and performed all subsequent steps, without modification, of the 10x 
Genomics Mulitome kit (see Methods) using BJ fibroblasts and termed this co-assay DNA and 
Expression Following Nucleosome Depletion Sequencing (DEFND-seq). We obtained DEFND-
seq libraries for 1,076 BJ fibroblasts for benchmarking purposes. When compared to the LAND-
treated nuclei (which generate a snDNA-seq library without gene expression), the DEFND-seq 
protocol resulted in no performance degradation with similar TSS enrichment score, CV, and 
unique fragments (Figure 2a–c). Figure 2d shows the CV distributions for both 100 kb and 1 Mb 
bin sizes for the full coverage dataset (1.4M reads/nucleus) after correcting for GC and Tn5 
insertion bias (see Methods). The DEFND-seq CV (100 kb bins: 0.6, 1 Mb bins: 0.38) is similar to 
previous reports of other single-cell DNA-seq technologies using 100 kb bins (LIANTI: ~0.2, PTA: 
~0.5, AMPL1: ~0.5, QIAGEN MDA: ~0.6, PicoPlex Gold: ~0.6, and GE MDA: 1.0), and 1 Mb bins 
(LIANTI: 0.1, PTA: ~0.4, AMPL1: ~0.3, QIAGEN MDA: ~0.4, PicoPlex Gold: ~0.6, and GE MDA: 
0.5) for BJ fibroblasts, though it must be noted the reported CVs for these methods are 
using >200× the number of reads/cell than what we report for DEFND-seq and none of these 
studies demonstrated co-sequencing of RNA and DNA16, 18. Thus, the scDNA-seq component of 
DEFND-seq offers comparable performance to previously published methods for scDNA-seq. 

To assess the cross-talk and single-nucleus purity of DEFND-seq libraries at high-throughput, we 
performed a mixed species experiment using human glioma U87 MG cells and murine fibroblast 
NIH-3T3 cells (Figure 2e–f), profiling 4,400 nuclei in a single 10x Genomics Chromium lane. 
Inferred human and murine nuclei are represented similarly in both the snRNA-seq (44.8% human, 
41.8% murine, and 13.3% mixed) and scDNA-seq data (43.6% human, 44.4% murine, and 11.9% 
mixed). The mitochondrial content of these cells was relatively low, <5% for all cell types 
(Supplementary Information, Figure S1). Inferred singlets were quite pure for both the RNA 
libraries (median purity: 94.1% for inferred human nuclei, 90.3% for inferred murine nuclei) and 
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DNA libraries (median purity: 96.0% for inferred human nuclei, 93.9% for inferred murine nuclei). 
The multiplet rate aligns with microscopic images of the nuclei taken before tagmentation 
(Supplementary Information, Figure S2). The multiplet rate will depend on cell type, cell 
concentration during nuclear isolation and loading density, and can be further reduced by 
implementing flow sorting, which was not performed for any experiments herein. Moreover, the 
gene expression and gDNA analyses were concordant; cells that have a high fraction of human 
reads in the gene expression data likewise have a high fraction of human reads in the genomic 
DNA data (Figure 2g).  

We wanted to compare DEFND-seq to other high-throughput single-cell (thousands of cells per 
sample without complex automation) DNA/RNA co-assays. The previously reported sci-L3 
technique, in principle, fits these criteria13. Instead of relying on droplet microfluidics to create 
nanoliter-sized reactions, in sci-L3 cells undergo xSDS treatment and then are processed through 
a series of split-pool barcoding reactions, which add unique cell-specific barcodes to the genomic 
DNA. It has two embodiments: a co-assay that concurrently adds RNA barcodes and DNA 
barcodes to individual nuclei termed sci-l3-RNA/DNA, and a whole genome version that does not 
have gene expression capabilities termed sci-L3-WGS. Yin et al. analyze BJ fibroblasts and report 
median transcripts per nucleus at two very low sequencing depths (415 reads/cell and 130 
reads/cell). Although our BJ GEX dataset has ~20,000 median unique transcripts at full depth, we 
substantially downsampled our data to their reported read depths and found DEFND-seq to detect 
more unique transcripts using 415 reads/cell (DEFND-seq: 316 median unique transcripts, sci-
L3-RNA/DNA: 194 median unique transcripts) and using 130 reads/cell (DEFND-seq: 101 median 
unique transcripts, sci-L3-RNA/DNA: 68 median unique transcripts) (Figure 2h). Thus, sci-L3-
RNA/DNA may have relatively low RNA capture efficiency. Ideally, we would compare our 
corresponding gDNA dataset to the corresponding sci-L3-RNA/DNA gDNA dataset; however, the 
sequencing depths are unreported for the gDNA libraries. Instead, we compare DEFND-seq 
gDNA to the sci-L3-WGS assay, which uses the same chemistry as sci-L3-RNA/DNA to create a 
gDNA library but does not generate a gene expression library (Figure 3i). This assay reports 
median unique fragments per nucleus for given sequencing depths, but, unfortunately, uses a 
polyploid cell line (HEK293T) different from our study. Nevertheless, we downsampled the 
DEFND-seq data to the reported depths in sci-L3-WGS and found DEFND-seq to have more 
median unique fragments than sci-L3-WGS at 1.15M reads (DEFND-seq: 731,814 median unique 
fragments, sci-L3-WGS: 660,700 median unique fragments) and 130k reads (DEFND-seq: 
114,314 median unique fragments, sci-L3-WGS: 97,300 median unique fragments). For reference, 
we note that the sci-L3-RNA/DNA assay reports median unique fragments per nucleus for BJ 
fibroblasts at two unknown, but likely low sequencing depths (sci-L3-RNA/DNA high: 40,681 
median unique fragments, sci-L3-RNA/DNA low: 12,118 median unique fragments). Thus, we 
conclude that DEFND-seq performs comparably to, if not significantly better than, competing 
scalable methods for joint single-nucleus RNA/DNA profiling but with the key advantages of a 
widely used commercial platform and far more extensive benchmarking (Supplementary 
Information, Figure S3-S4). 

DEFND-seq allows us to directly link mRNA phenotype to genotype. We used the BJ fibroblast 
gene expression dataset for unsupervised phenotypic clustering of individual nuclei (Figure 2j). 
Then, using the gDNA dataset, we analyzed the coverage uniformity (CV) of each gene 
expression cluster (Figure 2k). As expected, actively replicating cells identified from the gene 
expression data have lower coverage uniformity (higher CV) due to on-going DNA replication 
(Figure 2l), as observed in previous studies16.  
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Copy number variation (CNV) heat maps and fragment counts for all cells were generated and 
grouped by gene expression cluster (Figure 3a). We observe uniform coverage of somatic 
chromosomes in clusters 1-4 and an expected decrease in copy number for the sex chromosomes 
(male-derived cells). Individual nuclei for a given cluster can be consolidated in low-noise, RNA 
cluster-level, pseudo-bulk CNV analysis (Figure 3b). For each gene expression cluster 
corresponding to non-cycling cells, we also present the CNV plots of a single low-noise nucleus 
with 1 Mb bins, a single low-noise nucleus with 100 kb bins. A randomly selected nucleus with 
near-median CV is also plotted with 100 kb bins and 1 Mb bins for each cluster (Figure 3b). 
Interestingly, despite using a healthy euploid cell line, we observe a cluster with an amplification 
in part of Chr. 7q. This amplification is evident at the cluster level and in individual nuclei (Figure 
3b). We also observed focal amplification of HAS2. The cells that bear these amplifications are 
rare (~2%) but the genomic alterations have transcriptional consequences. Indeed, the RNA 
cluster that is enriched in nuclei harboring partial amplification of 7q are strongly enriched in the 
expression of genes in the amplified region based on GSEA (Supplementary Information, Figure 
S5). Thus, even in these benchmarking experiments, we demonstrate that DEFEND-seq, can 
identify rare phenotypic cellular subpopulations that are enriched in rare genetic subclones.  

DEFND-seq analysis of CNVs, SNVs, and gene expression in a cryopreserved glioblastoma 
surgical specimen 

Glioblastoma (GBM) is an aggressive primary brain tumor with a median survival of 15 months19. 
GBMs are noted for their high degree of phenotypic plasticity and heterogeneity, which 
complicates pharmacological intervention. Large-scale exome and genome sequencing studies 
have identified multiple20, 21 key driver mutations of GBM, including amplifications and mutations 
in growth factor receptors (PDGFRA, EGFR), TP53 mutations, and mutations in the PI3K 
signaling pathway, including PTEN. However, relatively few genetic alterations have been 
associated with established phenotypic subtypes of GBM. Examples include mutations in IDH1 
and amplification of PDGFRA with the proneural phenotype and NF1 mutations with the 
mesenchymal subtype22. scRNA-seq analysis of GBM has shown that transformed glioma cells 
can take on any of multiple phenotypic states with varying degrees of neural lineage resemblance 
and that these states recur across patients23. Furthermore, these transcriptional states appear to 
be highly plastic24, 25, which may result in a complicated relationship between somatic mutations 
and transcriptional states. In addition, recent studies in acute slice cultures26 have uncovered cell 
type-specific drug responses in GBM, but have relied on transcriptional profiling to define drug-
sensitive cellular subpopulations, which could be further refined by their genetics. Thus, joint 
single-cell RNA/DNA sequencing of individual nuclei could be a compelling approach to analyzing 
these tumors and their response to therapy.   

We applied DEFND-seq to a biobanked, cryopreserved primary IDH1 wildtype glioblastoma 
resection from which we had obtained and reported scRNA-seq profiles of corresponding fresh 
tissue several years ago23. Our previous work showed that this tumor’s transformed cells exhibited 
exceptional diversity, including neural progenitor-like cells, astrocyte-like cells, cycling cells, 
mesenchymal-like cells, and oligodendrocyte progenitor-like cells. In addition, there is an 
unusually small population of non-neoplastic cells (mainly oligodendrocytes), which we expect to 
be euploid. Thus, detecting and identifying these cells requires high-throughput and sensitivity. 
Furthermore, unlike when the sample was initially sequenced using fresh tumor tissue and the 
mRNA from whole cells, the sample has been cryopreserved for >4 years, and cDNA libraries 
would need to be constructed from nuclear mRNA. Thus, this previously characterized tumor 
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presents multiple compelling challenges for demonstrating the utility and broad applicability of 
DEFND-seq.  

DEFND-seq on the GBM tumor yielded a gene expression and gDNA dataset including 1,821 
nuclei with a median of 4,421 transcripts and ~214,000 unique DNA fragments detected per 
nucleus (at ~360,000 DNA reads/nucleus). Clustering the gene expression data and performing 
differential gene analysis on the clusters identifies a small cluster of non-neoplastic 
oligodendrocytes expressing myelin-associated genes, including MOBP (33 cells) (Figure 4a—b).  

We also identified six clusters of putatively transformed cells with the expected neural progenitor-
like (DCX, STMN2), astrocyte-like (CD44, GFAP), proliferative (TOP2A, BUB1B), and 
oligodendrocyte progenitor-like (SOX10, PLP1) phenotypes along with a transformed cluster 
resembling neurons (SLC17A7, NRG3) as we reported previously for this tumor23 (Figure 4c). The 
transformed clusters contain a focal deletion of a region of Chr. 10 containing PTEN, which is not 
present in the non-neoplastic oligodendrocyte cluster (Figure 4d, g, j). Deletions of PTEN are 
common in GBM and associated with shorter survival27. In this tumor, it appears there has been 
biallelic deletion of PTEN, as one copy of Chr. 10 is lost and the other harbors this focal deletion. 
The deleted region, which includes PTEN has a complex pattern with alternating ~1 Mb-sized 
focal deletions (Figure 4m).  

The transformed clusters also harbor an amplification of a region in Chr. 2 that includes the 
oncogene MYCN and a region in Chr. 12 containing CDK4 (Figure 4e-f). Amplification of both 
genes is associated with GBM tumorigenesis28. While the transcription factor MYCN is not highly 
expressed, the corresponding CNV is present throughout the transformed clusters (Figure 4h, k). 
Furthermore, CDK4, which is normally expressed during the G1-to-S transition of the cell cycle, is 
constitutively and highly expressed throughout the transformed clusters (Figure 4i, l). Other highly 
recurrent aneuploidies such as Chr. 7 amplification and chromosome 10 deletion, which are 
frequently used to identify transformed glioma cells in single-cell genomics23, are directly detected 
in the transformed cells, as is a complex series of amplified and deleted regions in Chr. 3 
(Extended Data Figure 1). Many of these single-cell CNAs are occurring at the sub-megabase 
level (e.g., MYCN amplification: ~200 kb long), which would have been obfuscated with larger 
bins (Figure 4m).  

The scalability of genomic profiling technologies like DEFND-seq are ultimately limited by 
sequencing costs, particularly the DNA sequencing component. Fortunately, sequencing costs 
are declining, and new entrants to the sequencing market may offer compelling advantages in 
terms of price, accuracy, and speed. While all of the DEFND-seq data shown so far has been 
generated using Illumina sequencers, we also tested DEFND-seq on the recently commercialized 
Element Aviti, resequencing the GBM libraries described above. Subsampling analysis revealed 
that the Element Aviti dataset had similar library complexity but with reduced transcription start 
site enrichment and ~25% longer fragments when compared to the same library sequenced with 
an Illumina NovaSeq 6000 (Figure 5 a—c), consistent with a less biased sampling of the library 
by the Element Aviti sequencer.  

We were interested in DEFND-seq’s ability to analyze single nucleotide polymorphisms and 
somatic variants (SNPs and SNVs). Furthermore, having sequenced the same library with two 
different sequencers could provide increased accuracy since the two technologies presumably 
have different error profiles. Unfortunately, the material for sequencing the germline of this patient 
was unavailable. Thus, we identified likely somatic SNVs by intersecting the mutation calls from 
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the two sequencers and filtering on large databases of common germline SNPs (see Methods). 
These putative mutations were then further filtered against the catalogue of somatic mutations in 
cancer (COSMIC)29, leading to the identification of a missense point mutation in PREX1 
(p.T1469M) (Figure 5g). PREX1 encodes a guanine exchange factor and is part of the PI3K 
signaling pathway, which is often mutated and activated in GBM. We detected either the wildtype, 
mutant, or both alleles in 76 transformed cells with an overall variant allele frequency of 0.38, 
suggesting that it is subclonal (Figure 5d). As we might expect for highly plastic transcriptional 
states in GBM, there is no statistically significant bias in the representation of the PREX1 mutant 
allele across clusters (Figure 5e). However, we found that PREX1 expression is significantly 
enriched among the astrocyte-like glioma cells (cluster 1, ~2.2-fold enriched, FDR<0.00001) 
(Figure 5f). Thus, DEFND-seq can discern relationships between genotype and phenotype for 
both somatic SNVs and CNVs. 

Although we did not find common hotspot somatic mutations in TP53 in this tumor, the patient 
harbors a p.P72R variant in TP53 (Figure 5h). While this variant has been confirmed to be somatic 
in several tumor types, including one GBM case in COSMIC30, it also corresponds to a well-known 
common SNP (rs1042522). Cells containing the p.P72R variant reportedly have decreased 
inhibition of PGC-1α, which is a master regulator of mitochondrial biogenesis and oxidative 
phosphorylation. This may increase the migration and invasion capacity of tumor cells since these 
p.P72R cells have greater mitochondrial function31. Furthermore, p53 with the p.P72R mutation 
has a greater ability to bind to p73 and neutralize p73-induced apoptosis32. All reads in every cell 
(53 cells total) with coverage of this locus contain this variant, implying homozygosity. 
Nonetheless, previous studies using The Cancer Genome Atlas (TCGA) have shown that 
heterozygous individuals with GBM exhibit loss of heterozygosity in their tumor tissue in favor of 
the p.P72R allele33. However, we do not observe a deletion at this locus in our DEFND-seq data, 
and conclude that this is likely a homozygous SNP.  

Discussion 
We have described a method for scalable co-sequencing of RNA and DNA from individual nuclei 
on a broadly available platform using commercial reagents. Nuclei are depleted of their chromatin 
packing through exposure to lithium diiodosalicylate, which sufficiently maintains the structure of 
the nucleus to allow manipulation of individual nuclei and extraction of high-quality mRNA with a 
droplet generator. Compared to libraries prepared without chromatin depletion or with other 
chromatin depletion methods, the LAND-treated nuclei yield higher complexity libraries and more 
uniform genomic coverage. Furthermore, we can generate full-length cDNA libraries from LAND-
treated nuclei. Compared to Yin et al.’s co-assay for DNA and RNA, we demonstrated much 
higher performance with extensive benchmarking13. Additionally, DEFND-seq is implemented on 
a platform that is widely and routinely used in single-cell studies without modification of the 
equipment or protocols. We performed experiments with up to 4,400 nuclei per chip lane but could 
readily scale this to ~40,000 nuclei per sample given the 8-lane capacity of a standard 10x 
Genomics chip and potentially >100,000 nuclei per flow cell with standard super-loading and 
demultiplexing with either SNP genotypes34, 35 or nuclear hashtag antibodies36. 

By applying DEFND-seq to a cryopreserved GBM tumor sample we were able to identify rare 
cells and investigate genotype-phenotype relationships in this complex tumor, including CNVs 
and SNVs. The snRNA-seq data obtained with DEFND-seq recapitulated our previous 
observations from whole-cell scRNA-seq on a fresh specimen from the same patient23. Most 
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importantly, this experiment demonstrated that high-quality DEFND-seq data can be obtained 
from archival human tumor tissue stored for several years, suggesting broad applicability to 
prospective and retrospective clinical studies of human disease.   

For simplicity, we implemented DEFND-seq without modification to the 10x Genomics Multiome 
protocol, but adjusting some steps may lead to more optimal results. For example, DEFND-seq 
libraries tend to have many more fragments than scATAC-seq libraries, thus reducing the number 
of polymerase chain reaction cycles may be beneficial for deeply sequenced libraries. 
Furthermore, some nuclei may be too delicate to sustain the lithium treatment and may require a 
lower concentration of lithium diiodosalisylate for use with DEFND-seq. In this situation, some 
optimization may be needed to ensure efficient nucleosome depletion. The results presented here 
were obtained with minimal optimization, so there is likely room for significant performance 
improvements.  

We anticipate that DEFND-seq can be combined with other multi-modal readouts for single-cell 
profiling. For example, by combining DEFND-seq with multiplexed targeted amplification either 
on-chip or retrospectively following pooled library construction on either the mRNA or gDNA 
libraries, we could likely enhance our genotyping capacity significantly for specific, targeted loci11, 

37. DEFND-seq should be seamlessly compatible with CRISPR-based pooled screening38, 39 and 
CRISPR40, 41 or static barcode-based42 lineage tracing. Taken together with the scalability of 
DEFND-seq, we expect broad applicability to basic and clinical questions from somatic mosaicism 
to tumor evolution and drug resistance. 

Methods 
Cell Culture 

3T3 cells (ATCC #CRL-1658) and U87 MG cells (ATCC #HTB-14) were cultured in Dulbecco's 
Modified Eagle's Medium (ATCC #30-2002) supplemented with 10% feline bovine serum (FBS, 
ThermoFisher # A3160401). Eagle’s Minimum Essential Medium (ATCC #30-2003) was used to 
culture BJ cells (ATCC CRL-2522). TrypLE Express Enzyme (ThermoFisher #12605010) was 
used for dissociating cells during cell passages. 

scATAC-seq 

Nuclei were prepared from cryopreserved BJ fibroblasts. Frozen cells were thawed and added to 
a Dounce homogenizer containing 1 mL of nuclei isolation buffer (NIB: 10 mM TrisHCl pH 7.4, 10 
mM NaCl, 3 mM MgCl2, 0.1% Igepal (Millipore Sigma #18896), and 1 x protease inhibitors 
(Millipore Sigma #118735800001)). The sample was gently homogenized on ice with 5 strokes of 
the loose pestle and 5 strokes of the tight pestle. The cells were transferred to a conical and 5 mL 
of PBS (Gibco #10010-031) was added. The sample was spun down at 500 g for 5 minutes, 
washed with 10 mL of PBS and resuspended in 100 µL of 10x Genomics Nuclei Buffer (10x 
Genomics, #2000207). Single-cell ATAC libraries were prepared with these nuclei using the 10x 
Genomics Single Cell ATAC kit (10x Genomics #1000176, #1000162, and #1000212) according 
to the manufacturer’s protocol.  

xSDS Preparation 

Nuclei that were cross-linked and then treated with sodium dodecyl sulfate (SDS) to remove 
nucleosomes (xSDS) were prepared following Vitak et al.14 Briefly, BJ fibroblasts were washed 
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with 10 mL of PBS and covered in 3 mL of TrypLE (ThermoFisher #12605028) for 10 minutes at 
37 °C. Then 9 mL of media was added, quenching the dissociation, and cells were spun down. 
The cells were resuspended in 10 mL of media with 406 µL of 37% formaldehyde (Millipore Sigma 
#252549) and gently rotated at room temperature for 10 minutes. 2.5 M glycine (800 µL) was then 
added and the suspension was incubated on ice for 5 minutes. Cells were centrifuged at 500 g 
for 8 minutes and washed with 10 mL of PBS. 5 mL of NIB was added to the pellet and the 
suspension was incubated for 20 minutes at 4 °C under rotation. Cells were then spun down at 
500 g for 5 minutes and washed with 900 µL of NEBuffer 2.1 (New England Biolabs #B7202). The 
cells were pelleted (500 g for 5 minutes) and resuspended in NEBuffer 2.1 with 12 µL of 20% 
SDS. The solution was placed in a gentleMACS and vigorously shaken at 42 °C for 30 minutes. 
200 µL of 10 % Triton-X (Millipore Sigma #T8787) was added and the cells were again shaken at 
42 °C for 30 minutes. The cells were pelleted (500 g for 5 minutes) and resuspended in 100 µL 
of 10x Genomics Nuclei Buffer, counted, and tagmented following the Chromium Single Cell 
ATAC protocol. Tagmented nuclei were loaded onto a 10x Chromoium controller and libraries 
were prepared according to the Chromimum Single Cell ATAC protocol (10x Genomics #1000176, 
#1000162, and #1000212). 

LAND Preparation for BJ Fibroblasts 

The LAND protocol for adherent cells using 10x reagents was adapted from the Vitak et al. LAND 
protocol14. BJ fibroblasts were first washed with 10 mL of PBS and dissociated with 3 mL of 
TrypLE for 10 minutes at 37 C. Media (9 mL) was used to quench the dissociation reaction and 
collect the cells. The cells were spun down (300 g for 5 minutes) and 200 µL of DEFND buffer 
(175 µL NIB, 10 µL 1 mg/mL protease inhibitor (Millipore Sigma #11429868001), 25 µL 100 mM 
lithium diiodosalicylate (Millipore Sigma #653-14-5)), was added and incubated on ice for 5 
minutes. Immediately following this incubation, 10 mL of nuclei isolation buffer was added and 
the nuclei were centrifuged at 4 °C for 5 minutes at 500 g. The supernatant was removed and 100 
µL of 10x Genomics Nuclei Buffer. A fraction of nuclei was stained with SYBR green and counted 
on a Countess with a GFP filter set. Nuclei were then tagmented and prepared for single-cell 
sequencing with the Chromium Single Cell ATAC kit (10x Genomics #1000176, #1000162, and 
#1000212) and protocol. 

DEFND-seq for BJ Fibroblasts 

The DEFND protocol followed the LAND protocol with the addition of RNAse inhibitors. Briefly, 
BJ fibroblasts were washed and dissociated with TrypLE. The cells were spun down and 200 µL 
of DEFND buffer with RNAse inhibitors (170 µL NIB, 10 µL 1 mg/mL protease inhibitor, 25 µL 100 
mM lithium diiodosalicylate, 5 µL SUPERase In (ThermoFisher #AM2694)), was added and 
incubated on ice for 5 minutes. Immediately following this incubation, 10 mL of nuclei isolation 
buffer with 10 µL SUPERase In was added and the nuclei were centrifuged at 4 °C for 5 minutes 
at 500 g. The supernatant was removed and 100 µL of 10x Genomics Nuclei Buffer, with 
suggested RNAse inhibitors for multiome experiments. A fraction of nuclei was stained with SYBR 
green and counted on a Countess with a GFP filter set. Nuclei were then tagmented and prepared 
for single-cell sequencing with the Chromium Single Cell Multiome kit (10x Genomics #1000285, 
#1000230, #1000215). 

 

DEFND-seq for Cryopreserved Tissue 
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A cryopreserved IDH wildtype Grade IV GBM sample was obtained from excess material collected 
for clinical purposes from de-identified brain tumor specimens. Nuclei were prepared from this 
anonymous sample according to Krishnaswami et al. 43, 44. Frozen tissue was placed in a Dounce 
homogenizer containing 1 mL of homogenization buffer (HB: 1 µM DTT, 250 mM sucrose, 25 mM 
KCl, 5 mM MgCl2, 10 mM tris, 1x protease inhibitor, 0.4 U/µL RNAse, 0.2 U/µL SUPERase In) 
and subjected to 15 strokes using the loose piston and 15 strokes using the tight piston. The 
homogenate was divided into 5 volumes and each was strained twice. The filtered homogenate 
was combined into a tube and centrifuged at 1000 g for 10 minutes at 4 °C. The pellet was 
resuspended in 1000 µL of HB and strained with 4 strainers (250 µL of homogenate for each 
strainer). The strained homogenate was again combined into a tube and centrifuged at 1000 g for 
10 minutes at 4 °C. The pellet was resuspended in 250 µL of HB to which 250 µL of 50% iodixanol 
dilution media (IDM: 250 mM sucrose, 150 mM KCl, 30 mM MgCl2, 60 mM tris) was added 
resulting in a 25% IDM/nuclei suspension. This suspension was carefully layered on top of a tube 
containing 50% IDM at the bottom and 29% IDM at the surface, and centrifuged at 18,000 g for 
23 minutes at 4 C. The nuclei formed a white pellet or sheet in the middle of the tube between the 
layers. All solution around this pellet was removed – first from the top and then from the bottom, 
and the pellet was resuspended in 1 mL of chilled PBS and centrifuged (500 g for 5 minutes at 
4 °C). The supernatant was removed and the pellet was then treated with DEFND buffer for 5 
minutes on ice. Immediately following this incubation, 5 mL of NIB with RNAse inhibitors was 
added at the nuclei were centrifuged at 500 g for 5 minutes at 4 °C. The pellet was resuspended 
in 10x Genomics nuclei buffer and a fraction was stained with SYBR green and counted on a 
Countess with a GFP filter set. Nuclei were then tagmented and prepared for single-cell 
sequencing using the Chromium Multiome protocol (10x Genomics #1000285, #1000230, 
#1000215). 

Bulk RNA Library Preparation 

Bulk RNA libraries were created for xSDS treated, LAND treated, and untreated BJ fibroblast 
nuclei with a modified PLATEseq protocol45, 46. Following treatment (see DEFNDseq, xSDS, and 
scATAC protocols above), 5,000 nuclei were lysed in Buffer RLT Plus (QIAGEN #1053393) for 
each condition. RNA from the lysate was extracted and purified with an RNeasy Mini Kit (QIAGEN 
#74104) following the manufacturer’s protocol, and eluted in 30 µL of H2O. Of this, 23 µL were 
mixed with reverse transcription master mix (1.25 µL of 10 µM scc primers, 10 µL Maxima RT 
buffer (ThermoFisher #EP0753), 5 µL dNTPs (New England Biolabs #N0447L), 2.5 µL 
SUPERase In, 1.25 µL SMART TSO, 2.5 µL Maxima H Minus Reverse Transcriptase 
(ThermoFisher #EP0753), and 0.5 µL 10% tween 20 (Millipore Sigma #P9416)). Reverse 
transcription proceeded on a thermocycler (42 °C for 90 minutes; 10 cycles: 50 °C for 2 minutes, 
42 °C for 2 minutes; 75 °C for 10 minutes; 4 °C hold). Then, 1.25 µL of exonuclease I (New 
England Biolabs #M0293S) and 12.08 µL of H2O were added to the RT product and incubated on 
a thermocycler (37 °C for 30 minutes, 85 °C for 15 minutes, 75 °C for 30 seconds, 4 °C hold). The 
product was cleaned up using Dynabeads MyOne Silane (ThermoFisher #37002D). Briefly, silane 
beads in buffer (30 µL silane beads, 90 µL Buffer RLT Plus, 60 µL EtOH) were mixed with the 
exonuclease product for 10 minutes, washed twice with 80% EtOH and dried. The cDNA was 
eluted from the beads with 50 µL of H2O. The cDNA was amplified by combining 25 µL of the 
silane purified product with PCR master mix (25 µL 2X Kapa HotStart Mix (Kapa Biosystems 
#KK2602), 2 µL of 5 µM SMART PCR primer) and amplified on a thermocycler (98 °C for 3 
minutes; 18 cycles: 98 °C for 20 seconds, 67 °C for 15 seconds, 72 °C for 5 minutes; 72 °C for 5 
minutes; 4 °C hold). Following amplification, the product was cleaned up using Ampure XP beads, 
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and analyzed with a BioAnalyzer 2100 using a High Sensitivity DNA Chip (Agilent Technologies 
#5067-4626)47. 

Mixed Species Experiment 

U87 and 3T3 cells were dissociated from their culture dishes, counted, and mixed together 
(1,000,000 cells each). The mixed cells were then treated according to the DEFND-seq protocol. 
Gene expression and genomic libraries were sequenced separately. Sequencing reads were 
analyzed according to the snRNA-seq Data Processing and snDNA-seq Data Processing sections 
below. Cells in the gene expression data were considered human or mouse if they had more than 
80% human or mouse purity calculated from gene expression reads. Similarly cells in the gDNA 
data were considered human or mouse if they had more than 80% human or mouse purity 
calculated from gDNA fragments. 

Illumina Sequencing 

Libraries were sequenced on Illumina sequencers according to 10x Genomics’ suggestions. 
LAND, xSDS, and scATAC-seq libraries were sequenced on Illumina NextSeq instruments using 
NextSeq High Output Kit (Illumina #20024907) with 64 cycles for read 1, 64 cycles for read 2, 16 
cycles for index 1, and 16 cycles for index 2. These runs were all loaded with 1.5 pM of library. 
DEFND-seq libraries were sequenced on NextSeq and NovaSeq platforms. The GEX was loaded 
with 1.8 pM of library and sequenced using a 150 cycle high output kit with 28 cycles for read 1, 
102 cycles for read 2, 10 cycles for index 1, and 10 cycles for index 2. The gDNA library was 
sequenced either using a NextSeq High Output Kit (150 cycles) or a NovaSeq S4. When using 
NextSeq, 64 cycles were used for read 1, 64 cycles for read 2, 8 cycles for index 1, and 8 dark 
cycles followed by 16 cycles for index 2. A custom recipe is needed to allow the 8 initial dark 
cycles on the NextSeq. For the gDNA library on the NovaSeq, 300 pM was loaded and 99 cycles 
were used for read 1, 99 cycles for read 2, 8 cycles for index 1, and 24 cycles for index 2. All 
libraries were sequenced with 1% PhiX regardless of the instrument used. 

Element Sequencing 

The GBM tumor gDNA library was also sequenced using Element Aviti technology. A fraction (0.5 
pmols) of the library from the 10x Genomics protocol was circularized with an Element Adept kit 
(Element Biosciences #830-00007) following the manufacturer’s protocol. Libraries were 
quantified with SYBR-based qPCR (ThermoFisher #AB0765). Circularized libraries were 
denatured and diluted for a target loading concentration of 6 pM with 2% PhiX. The library was 
loaded on an Aviti 2x150 Sequencing Kit with Adept primers and sequenced with 151 cycles for 
read 1, 151 cycles for read 2, 8 cycles for index 1, and 24 cycles for read 2. Fastqs were created 
using Element’s bases2fastq software.  

snRNA-seq Data Processing 

snRNA-seq data were processed as described previously47. The code is available at 
(https://github.com/simslab/DropSeqPipeline8). Briefly, we aligned the transcriptomic reads (read 
2) to the human or mouse genome and transcriptome annotation using STAR v2.7.0d48. For 
human data sets other than the mixed species experiment, we used GRCh38/Gencode v24. For 
the mixed species data set, we used a concatenated genome and annotation comprised of 
GRCh38/Gencode v32 and GRCm38/Gencode vM23. Because we are analyzing nuclei that 
contain a significant amount of unspliced mRNA, we identified reads that uniquely and strand-
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specifically aligned to the entire gene body of each gene (including exons, introns, intron-exon 
junctions, and exon-exon junctions), assigning an address to each aligned read containing the 
gene name, cell-identifying barcode sequence, and unique molecular identifier (UMI) extracted 
from read 1. Next, we demultiplexed the resulting table, correcting sequencing errors in the 
barcodes as described in Yuan and Sims47 to produce a count matrix for each sample.  

snRNA-seq Clustering and Visualization 

For the BJ fibroblasts, we analyzed nuclei with >3,200 unique transcripts and >200,000 unique 
DNA fragments detected. For the human GBM sample, we analyzed nuclei with >1,000 unique 
transcripts and >100,000 unique DNA fragments detected. We identified highly variable genes 
from the snRNA-seq count matrices based on their deviation from the gene drop-out curve as 
described in Levitin et al.49 and used them to construct a Spearman’s correlation matrix and k-
nearest neighbor graph from which we performed unsupervised clustering using Louvain 
community detection as implemented in Phenograph50 and visualized with Uniform Manifold 
Approximation Projection (UMAP)51. The cluster-enriched genes that appear in gene expression 
heatmaps (Figures 2, 4) are selected to highlight certain biological features of each cluster, but 
are all statistically enriched in a cluster with FDR<0.05 based on the binomial test as described 
in Shekhar et al.52. A computational pipeline for all this analysis is available here 
(https://github.com/simslab/cluster_diffex2018). 

snDNA-seq Data Processing 

snDNA-seq and snATAC-seq data were processed using a custom pipeline available here 
(https://github.com/simslab/dna10x). The pipeline attempts to mimic some of the basic data 
processing procedures that are implemented in the 10x Genomics Cell Ranger software packages 
for analysis of snATAC-seq and Multiome data, including the formatting of output files. We 
generated sample-demultiplexed fastq files using the mkfastq command in cellranger-atac v2.0.0 
(10x Genomics). We aligned paired-end reads 1 and 2 to the human or mouse genome using 
bwa mem v0.7.17-r118853 after removing a standard adapter sequence 
(CTGTCTCTTATACACATCT) from each read using cutadapt v2.854.  We then extracted all reads 
with an alignment score that was >90% of the read length and insert size <1 kb. We also 
implemented an error correction procedure for the cell-identifying barcodes from read 3. Briefly, 
for cell-identifying barcodes that do not appear in the standard list provided by 10x Genomics, we 
first determine the frequency falt of each barcode in the standard list in the data set. For each 
observed barcode sequence that has a Hamming distance of one from a sequence on the 
standard list, we estimate the posterior probability palt that the barcode deviates from the standard 
list due to sequencing error using the quality scores for the putatively errant base provided by 
Illumina or Element palt = falt10-q/10 where q is the quality score. If palt>0.975 for any alternative 
barcodes, then we replace the errant barcode with the alternative barcode from the standard list 
with the highest value of palt. Next, we establish read addresses for each alignment that passes 
the filter described above comprised of a cell-identifying barcode, chromosome, a fragment start 
position, a fragment end position and collapse identical fragments. Finally, we sort the fragments 
by alignment position on the genome and output a table in the format of the “fragments.tsv” file 
typically produced by Cell Ranger.  

snDNA-seq Data Analysis and Visualization 

The data processing pipeline described above produces output files that are formatted similarly 
to those of Cell Ranger, thus the data can be analyzed by multiple software packages that have 
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been developed for snATAC-seq or joint snRNA/ATAC-seq data.  We analyzed the data using a 
recently developed Python/Rust implementation of SnapATAC, called SnapATAC255, 56. 
Specifically, we used the pp.import_data function to convert the standard “fragments.tsv” file from 
our data processing pipeline into the h5ad format. This function also computes basic features of 
each profiled nucleus including the number of unique fragments detected, the transcription start 
site (TSS) enrichment score, and the duplication rate. We used the pp.make_tile_matrix function 
to produce all of the copy number variation (CNV) plots and heatmaps. The function bins the 
unique fragments detected along each chromosome in each nucleus for a given bin size (0.1 MB 
and 1 MB used for the figures shown here as indicated).   

Figs. 2, 3, 4 and 5 show CNV plots, heatmaps, and corrected coefficients-of-variation (CVs) for 
individual nuclei or clusters. The procedures used to correct coverage bias are sample-dependent. 
Ideally, for a given sample, we would identify a high-confidence subpopulation of euploid cells 
and normalize all cells by their median binned CNV profile. This would significantly correct for 
multiple sources of coverage bias that are present in all nuclei (e.g. GC content bias, Tn5 insertion 
bias). This is exactly what we did for the BJ fibroblast data as shown in Fig. 3. First, we identified 
any problematic bins using the gcCounter and mapCounter functions in HMM Copy / HMM Copy 
Utils57, 58. Specifically, we eliminated any bins where gcCounter did not output a GC content or 
where mapCounter scores the mappability of a bin as <0.95. Next, we identified the top 50 least 
noisy BJ fibroblast nuclear profiles by computing the CV in coverage (number of unique fragments 
per bin after normalizing by the total number of unique fragments) of all somatic chromosomal 
bins that were not eliminated by gcCounter or mapCounter.  Finally, we computed the median 
coverage profile of these top 50 profiles, multiplied these values by two for all sex chromosomal 
bins, eliminated any bins with a median coverage of zero for the top 50 profiles, and normalized 
all nuclear profiles by the resultant low-noise profile. For each nuclear profile, we divided the 
resulting, corrected coverage profile by the median corrected coverage of all somatic 
chromosomal bins and multiplied by two to arrive at an estimated copy number for each bin. 

For the GBM sample, there were too few euploid cells to take the approach described above. As 
an alternative, we reduced the GC-bias in our copy number profiles by directly correcting for it. 
We computed the GC content of each 100 kb genomic bin using gcCounter and the median 
coverage of each bin. We then median-filtered the coverage as function of GC content for all bins 
with GC content between 0.3 and 0.6 with a window-size of 0.001 as plotted in Supplementary 
Information, Figure S6. Finally, we fit a correction curve to this plot using LOWESS regression as 
implemented in the Python statsmodels function lowess with default parameters. For each 100 
kb bin, we computed an interpolated correction value from the LOWESS regression fit by which 
we normalized the coverage profile of each nucleus. Similar to the BJ fibroblast data, we 
eliminated any bins with mappability <0.95 as well as any bins with GC content <0.3 or >0.6. We 
divided the resulting corrected coverage profiles by the median corrected coverage for Chr. 2 and 
multiplied by two to obtain an estimated copy number for each bin in each nucleus. We chose 
Chr. 2 because it is the largest somatic chromosome with a copy number that was uniformly 
double that of the corresponding sex chromosomes both in this dataset in a previously published 
bulk WGS profile of this same tumor23 (i.e. Chr. 2 is likely diploid, even in the transformed glioma 
cells). 

We attempted to identify somatic single nucleotide variants (SNVs) from the DEFND-seq genomic 
data for the GBM sample. This was challenging because a germline genome of the subject was 
unavailable. We used the Genome Analysis Toolkit (GATK)59 tumor-only pipeline for this analysis 
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including removal of duplicate reads from the original bam file produced by bwa mem with the 
Picard gatk MarkDuplicates command, base quality score recalibration with gatk ApplyBQSR, 
and read sorting with samtools sort. We called mutations using Mutect2 via the gatk Mutect2 
command with Gnomad germline resource60 af-only-gnomad.vcf.gz and the 1000-genomes 
panel-of-normals 1000g_pon.hg38.vcf.gz provided GATK. This analysis cross-references 
mutations detected by Mutect2 with databases of common SNPs, marking them as potentially 
originating from the germline. For further filtering, we used gatk GetPileupSummaries and gatk 
CalculateContamination to generate a contamination table for filtering the Mutect2 variant calling 
format (VCF) file with gatk FilterMutectCalls. Finally, we used the table_annovar.pl Perl script as 
part of the Annovar61 package to annotate the resulting filtered VCF file.  

We performed the analysis described above to produce annotated VCF files for the GBM sample 
originating from two different sequencing runs – one obtained using an Illumina NovaSeq 6000 
and the other with an Element Aviti sequencer.  We reasoned that these two platforms would 
have somewhat different biases and error profiles, which could result in increased variant calling 
accuracy. We first intersected the two VCF files using bcftools62, identifying variants found in 
independent analyses from both sequencers. We then cross-referenced the intersected VCF file 
with the Catalogue of Somatic Mutations in Cancer (COSMIC) database29, which revealed a 
missense variant in PREX1 that had been previously confirmed as a somatic SNV in both a 
pancreatic ductal adenocarcinoma case and another case of GBM. Regions containing SNVs 
were visualized with the Integrated Genomics Viewer63 and presented in Figure 5. 

 

Custom Oligos 

Oligo Name Sequence Manufacturer 
SMART TSO AAGCAGTGGTATCAACGCAGAGTGAATrGrGrG IDT 
ssc primer AAGCAGTGGTATCAACGCAGAGTAC[8 bp 

barcode]N(8)T(29)V 
IDT 

SMART PCR primer AAGCAGTGGTATCAACGCAGAGT IDT 
 

Data Availability 
The sequencing data and count matrices reported in this paper are available in the following 
database: Gene Expression Omnibus GSE224149: 
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?&acc=GSE224149 
Code Availability 
All source code is available on the Sims Lab GitHub repository, https://github.com/simslab/, 
including code for generating expression count matrices (DropSeqPipeline8), clustering and 
differential expression (cluster_diffex2018), and genomic DNA analysis (dna10x). 
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Figures 

 

Figure 1: Schmatic and characterization of nucleosome depletion methods. (a) Schematic of the 
gDNA protocol. Nuclei are isolated, treated with lithium diiodosalicylate, and then tagmented with 
scATAC-seq reagents or multiome reagents. A gDNA library is produced using scATAC-seq 
reagents (10x Genomics). When using 10x Genomics Multiome reagents, gDNA and cDNA 
libraries are produced. We term this DEFND-seq. (b) Fragment length distribution for a scATAC-
seq library with PBMCs, scATAC-seq with BJ fibroblasts, BJ fibroblast nuclei prepared using the 
xSDS protocol, and BJ fibroblast nuclei prepared with the LAND protocol. (c - e) Subsampling 
analysis of (c) unique fragments, (d) transcription start site (TSS) enrichment, and (e) 100 kb bin 
coefficient of variation (CV) with BJ fibroblasts prepared with scATAC-seq, BJ fibroblasts 
prepared with xSDS, BJ fibroblasts prepared with LAND, and PBMCs prepared with scATAC-seq. 
(f) Bulk BJ fibroblast cDNA BioAnalyzer traces for cells prepared with ATAC, cells prepared with 
xSDS, and cells prepared with LAND.  
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Figure 2: DEFND-seq. (a)-(c) Subsampling analysis of (a) unique fragments, (b) transcription 
start site (TSS) enrichment, and (c) 100 kb bin coefficient of variation for BJ fibroblasts prepared 
with LAND and DEFND-seq. (d) Probability density of the coefficient of variation when using 100 
kb bins and 1,000 kb bins. (e) Mixed-species gene expression scatterplot. DEFND-seq was 
performed on a sample with mixed U87 (human) and 3T3 (mouse) cells. Cells were determined 
to be mouse (>85% of reads are mouse aligned) or human (>80% of reads are human aligned). 
(f) Mixed-species gDNA scatterplot. Genomic fragments were counted for the same cells in (e). 
Cells were determined to be mouse (>80% of fragments are mouse aligned) or human (>85% of 
fragments are human aligned). (g) Scatter plot of the human alignment rates for RNA and gDNA 
for the mixed species nuclei from (e) and (f). (h) Violin plots of gene expression performance. 
Bars represent median values. The number of unique transcripts at full sequencing depth is 
shown, as well as down-sampled violin plots comparing DEFND-seq to sci-L3-RNA/DNA. (i) Violin 
plots of gDNA performance. Bars represent median values. Total unique gDNA fragments at full 
sequencing depth are shown along with plots comparing down-sampled DEFND-seq to sci-L3-
WGS and sci-L3-RNA/DNA. The sci-L3-WGS data are presented as a single point representing 
the median. Data for sci-L3-RNA/DNA are of unknown read depth. (j) UMAP embedding colored 
by gene expression clusters for DEFND-seq BJ fibroblasts. (k) Coefficient of variation of 100 kb 
genome bins for clusters identified in (j). (i) Same as (j) but colored by TOP2A expression. These 
cells are primarily located in cluster 6. 
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Figure 3: Copy number variation from DEFND-seq analysis of BJ fibroblasts. (a) CNV heat maps 
with 100 kb bins of individual nuclei grouped by gene expression cluster number (1 – 5). The 
actively replicating cluster (cluster 6) was omitted because of the aberrant genomes of replicating 
cells. A chromosomal map colored by chromosome is included as a reference on the bottom 
margin. Red arrow indicates a partial Chr. 7q amplification in cluster 5. (b) Relative CNV plots for 
clusters in (a). For each cluster a plot is included for: cluster-median CNV with 100 kb bins, a 
single low-CV nucleus CNV with 1 Mb bins, the same low-noise nucleus CNV with 100 kb bins, a 
randomly selected nucleus with near-median CV using 1 Mb bins, and the same near-median CV 
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nucleus with 100 kb bins. Labels are colored by cluster. Bin colors alternate for different 
chromosomes. Red arrows and orange arrows indicate the Chr. 7q amplification found in cluster 
5 and the HAS2 focal amplification in Chr. 8, respectively. 
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Figure 4: DEFND-seq applied to cryopreserved GBM tumor sample. (a) UMAP embedding of 
gene expression data colored by unsupervised clustering. (b) Same as (a) but colored by 
expression of MOBP. (c) Differentially expressed genes for each cluster in (a). (d) Single-cell 
distributions of the log-ratio of the average unique fragements/100 kb bin detected in a focally 
deleted region containing PTEN to the average unique fragments/100 kb bin for Chr. 10 for each 
cluster in (a) showing focal deletion in clusters 1-6. Bars indicate the medians of each cluster. (e) 
Same as (d) but for a focally amplified region containing MYCN relative to Chr. 2 showing focal 
amplification in clusters 1-6. (f) Same as (e) but for a focally amplified region containing CDK4 
relative to Chr. 12 showing amplification in clusters 1-6. (g) – (i) Nuclei from (a) colored by 
genomic log fold change in the CNV-containing regions corresponding to (g) PTEN, (h) MYCN, 
and (i) CDK4. (j) – (l) Nuclei from (a) colored by mRNA expression (log counts-per-thousand) for 
(j) PTEN, (k) MYCN, and (l) CDK4. (m) Read count pileup of every base along selected genomic 
regions for all transformed cells. PTEN, MYCN, and CDK4 regions are presented along with a 
selection of genes located in the sampled window. 
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Figure 5: SNP and SNV detection. (a) Sequencing saturation analysis of the number of unique 
fragments per nucleus for a GBM DEFND-seq library sequenced on an Illumina NovaSeq 6000, 
and on an Element Aviti. (b) Sequencing saturation analysis of the transcription start site 
enrichment for a library sequenced on both Illumina NovaSeq 6000 and Element Aviti sequencers. 
(c) Insert size distribution for the GBM library sequenced on Illumina NovaSeq 6000 and Element 
Aviti sequencers. (d) PREX1 genomic mutation detection projected on a UMAP derived from the 
gene expression dataset. (e) Same as (d) but colored by PREX1 expression. (f) PREX1 variant 
allele frequency and average expression of PREX1 in astrocyte-like, proliferating, and proneural 
clusters. (g) Integrated genomic viewer (IGV) style plots of the transformed cells showing exonic 
regions of PREX1, coverage, and the location of the SNV63. The SNV is magnified to show the 
missense mutation and affected amino acid. Individual reads are shown for both the Illumina 
NovaSeq 6000 and Element Aviti sequencers and each read is colored by cell of origin (cell 
barcode). (h) Same as (g) but for the p.P72R mutation on TP53.  
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Extended Data Figure 1: Copy number variation heatmap of GBM tumor cells. Cells are grouped 
by gene expression cluster. Chromosome location reference on bottom margin.  
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