
RESEARCH ARTICLE

Decadal monitoring reveals an increase in

Vibrio spp. concentrations in the Neuse River

Estuary, North Carolina, USA

Brett FroelichID*, Raul Gonzalez, Denene Blackwood, Kellen Lauer, Rachel Noble

The University of North Carolina at Chapel Hill, Institute of Marine Sciences; Morehead City, NC, United

States of America

* bafroeli@unc.edu

Abstract

A decade long study was conducted to investigate the ecological, biological, and temporal

conditions that affect concentrations of Vibrio spp. bacteria in a well-studied lagoonal estu-

ary. Water samples collected from the Neuse River Estuary in eastern North Carolina from

2004–2014 (with additional follow-up samples from Fall of 2018) were analyzed to deter-

mine Vibrio spp. concentrations, as well as the concentrations of inorganic and organic nutri-

ents, fecal indicator bacteria, phytoplankton biomass, and a wide range of other physio-

chemical estuarine parameters. A significant increase in Vibrio spp. was observed to occur

in the estuary over the examined period. Strikingly, over this long duration study period, this

statistically significant increase in total culturable Vibrio spp. concentrations does not appear

to be correlated with changes in salinity, temperature, or dissolved oxygen, the three most

commonly cited influential factors that predict estuarine Vibrio spp. abundance. Further-

more, shorter term (~3 years) data on specific Vibrio species (V. vulnificus and V. parahae-

molyticus)show that while Vibrio spp. are increasing overall as a genus, the numbers of

some key potentially pathogenic species are decreasing as a part of the total population, fur-

ther supporting the concept that quantification of the entire genus is not a worthwhile use of

resources toward predicting levels of specific potentially pathogenic species of public health

concern. The significant increase in this concentration of Vibrio spp. in the studied estuary

appears to be related to nitrogen and carbon in the system, indicating a continued need for

further research.

Introduction

Bacteria in the genus Vibrio exhibit a great deal of variation, both phenotypically and genotypi-

cally. Most bacteria of the Vibrio genus are important aquatic ecosystem members that can be

found in fresh, brackish, and marine waters, often with strong, species-specific salinity prefer-

ences [1–3]. Vibrio are fast-growing, with some species capable of doubling in less than ten

minutes, and are therefore able to take rapid advantage of pulses of nutrient or shifts in meteo-

rological conditions [4,5]. Vibrio spp. are ubiquitous across aquatic environments and over
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longer time scales they are biogeochemically important members of mesohaline estuarine

environments. While most Vibrio spp. are not pathogenic, there exist several species that are

pathogenic to humans, fish, eels, shellfish, or other species [6–10]. The increasing number of

infections caused by Vibrio spp., especially Vibrio vulnificus, has generated great a deal of

attention and research. Furthermore, Vibrio spp. play important roles in ecosystem function

and organismal population dynamics, participating in nitrogen fixation, chitin degradation,

and metabolism of algal polysaccharides [11–13]. Other well-studied species serve as symbi-

onts, living inside squid or other organisms and functioning as the source of luminescence in

light organs and can be important members of biofilms and macroalgal associations, while still

other Vibrio sp. are capable of degrading petroleum [14,15]. While often monitored for short

term changes, there is far less information on the long-term shifts in Vibrio spp. populations.

The Vibrio spp. found along estuaries and coasts, are of particular interest. Coastal areas

offer resources, job opportunity, and the option of recreation and international trade routes

[16]. Coastal regions are highly populated worldwide, and US statistics show that populations

at the coasts of southeastern states grew 58%, between 1980 and 2003, a rate roughly double

that of the rest of the nation [17]. Migration was highest in Florida, Georgia, and North Caro-

lina (NC) [17]. The Neuse River Estuary (NRE) of NC provides extensive commercial and rec-

reational opportunities to residents and visitors while simultaneously serving as the drain for

one of the highest producing, including livestock production, and rapidly growing watersheds

in the state [18]. The high agricultural, industrial, and urban use of the NRE contributes to a

variety of anthropogenic inputs, and the estuary is classified as eutrophic [18].

There have been almost three decades of monitoring and research conducted on the NRE,

culminating in numerous peer-reviewed publications about its eutrophic status, discharge

characteristics, phytoplankton response to major storms and hypoxia/anoxia dynamics [18–

21]. The estuary is an intersection of a large, growing human population, and changing water

quality and thus serves as a sentinel for other temperate estuaries worldwide.

While short-term changes in the estuary, such as a nutrient pulse or an extreme heat wave,

can contribute to the concentration of Vibrio spp. in the context of “Vibrio blooms” [3,22] so

too can slow but significant long-term changes also cause alterations in bacterial populations.

For example, Vibrio spp. are highly correlated with water temperature, and population booms

are observed with both short-term upshifts in temperature, such as occur during summer

months, as well as long-term temperature shifts associated with climate change [3,23–29].

However, the overall concentrations of the genus Vibrio appear to be quite different than those

observed for specific species of interest such as V. parahaemolyticus. Therefore, examination

of the genus sometimes can mask important species dynamics. Even though this is true, there

are few, if any, long term studies that examined the response of the entire genus over longer

periods of time (e.g. decades). This is important for the understanding the potential for future

emergence of members of the genus as important contributors to both human and animal dis-

ease, and in the context of climate change.

In this study, total Vibrio spp. concentrations along with a wide range of estuarine ecosys-

tem, physical, chemical and environmental parameters were monitored along the NRE for ten

years (2004–2014. Other Vibrio species, specifically human pathogens, were also monitored

for four years of the study. The objectives of the analyses were to 1) assess longer-term

responses to often cited drivers of Vibrio spp. populations, including temperature and salinity,

2) identify additional chemical and biological parameters driving Vibrio spp. population

change, and 3) examine the relationships of minor level factors in Vibrio spp. abundance. Pre-

vious studies over shorter time scales have shown that Vibrio spp. respond to changes in salin-

ity and temperature [3,4,26,29–39]. This accounts for the seasonal changes, and for the well-

documented long-term global climate changes, including warmer weather and extreme events
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(such as floods, storms, and heat-waves) [25]. A significant increase in Vibrio spp. concentra-

tions were observed in the decadal study, but the long-term increases are caused by neither

salinity nor temperature increases, as would be expected. Other estuarine factors are reported

as correlating with this long-term increase in Vibrio spp. concentrations in the NRE.

Materials and methods

Study location and period

The NRE (Fig 1), located in eastern NC, USA, is a well-described, lagoonal estuary, with wind-

driven mixing characteristics and minimal tidal influence due to the protection offered by the

proximal Pamlico Sound. Being broad and shallow (generally less than 10 feet in depth), the

estuary flow and mixing is dominated by wind and river input [40]. This estuary has been

monitored since 1994 through the NRE Modeling and Monitoring program (ModMon,

https://goo.gl/BERvPB). For the current project, samples were collected from surface water at

one ModMon station (Station 70 Fig 1) along the estuary between June 24, 2004 and October

27th, 2014. Sampling occurred approximately every two weeks during warmer periods

(between April through November), or every 4 weeks from December through March. This

Fig 1. Study region with ModMon sampling stations.

https://doi.org/10.1371/journal.pone.0215254.g001
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sampling scheme resulted in 245 individual samples collected over the ten-year period. Water

was collected via a weighted hose and diaphragm pump into acid washed polypropylene sam-

pling containers. Surface samples were collected at an approximate depth of 0.5 m below the

surface [41].

Measurement of environmental parameters

Concomitant to water sample collection, measurements of water temperature (TEMP), salinity

(SAL), dissolved oxygen (DO), pH, turbidity (TURB), and chlorophyll A (CHL) were con-

ducted using a calibrated YSI 6600 multiparameter sonde (Yellow Springs Instruments, Yellow

Springs, OH). Water samples were kept in a cooler at ambient temperature and transported to

the laboratory within 6 h of collection for immediate analysis.

Water samples were vacuum filtered through precombusted (500˚C) 25mm glass fiber fil-

ters (GF/F), filtrates were stored in scintillation vials at -20˚C. Colored dissolved organic mat-

ter (CDOM) was measured on a TD-700 fluorometer (Turner Designs, San Jose, CA).

Dissolved organic carbon (DOC) was recorded with a TOC-5000A total organic carbon ana-

lyzer (Shimadzu, Pleasanton, CA). Dissolved inorganic carbon (DIC) was measured using HCl

acidification followed by analysis on the TOC-5000A total organic carbon analyzer (Shi-

madzu). The concentration of nitrate and nitrite (NOX) was measured with a QuikChem 8000

flow injection analyzer (Lachat/Zellweger Analytics, Loveland, CO), using method FIA 31-

107-04-1-C and ammonium (NH4) was measured using method FIA 31-107-06-1-A/B, total

dissolved nitrogen (TDN) used method FIA 31-107-04-03-B as described in Peierls et al [42].

Dissolved inorganic nitrogen (DIN) was calculated by the sum of NOX and NH4. Dissolved

organic nitrogen (DON) was calculated by subtracting DIN from TDN. Orthophosphate

(PO4) was measured using method FIA 31-115-01-1-F/G.

Total suspended solids (TSS) were measured by vacuum filtering water via laboratory avail-

able vacuum water through a 0.7 μm pore size, pre-dried 25mm glass fiber filter until the filter

was visibly discolored or 50 ml had been filtered, whichever was greatest. Filters were oven-

dried until all moisture was evaporated, and the filter weighed to determine TSS concentra-

tions. TSS results were reported in mg/L.

Particulate organic carbon (POC) and nitrogen (PN) were measured via elemental analysis,

as described in Paerl et al [18]. One hundred ml of water was filtered through a precombusted

25mm diameter GF/F filter. Carbonates were removed via vapor phase acidification with HCl.

Once dry, filters were rolled up inside tin disks and combusted in a 2400 Series II CHNS/O

analyzer (Perkin-Elmer).

Bacterial quantification

Water samples were diluted with phosphate buffered saline (PBS) and vacuum filtered through

0.45 μm pore size cellulose fiber filters (Pall, Port Washington, NY). Filters were incubated on

Thiosulfate-Citrate-Bile Salts-Sucrose (TCBS, Beckton Dickinson) agar at 35˚C for 24 hours.

For samples collected on August 15th, 2011 and onward, additional filters were also placed on

ChromAgar Vibrio (ChromAGAR, Paris, France) and incubated at 37˚ for 24 hours. Vibrio
spp. concentrations were determined by counting the total number of visible yellow and green

colonies that exhibited relief from the plate surface from TCBS, adjusting for dilution, and

expressing as colony forming units (cfu) per 100 ml. TCBS media manufacturers changed over

the course of the study, but all TCBS formulations always adhered to the Bacteriological Ana-

lytical Manual [43], and the directions were followed. It should be noted that no recovery test-

ing between batches of TCBS was performed, and thus possible artifacts could exist from

changing brands of TCBS or from a manufacturer altering the sources of ingredients. While
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recipes and methods were standardized to minimize these artifacts, it is impossible to deter-

mine if any exist. An assumed concentration of V. vulnificus was determined by collecting 10

dark blue colonies from ChromAGAR Vibrio, and subjecting them to PCR confirmation uti-

lizing the vvhA gene as confirmatory for V. vulnificus as in Warner and Oliver [44].

Total coliform (TC) and E. coli concentrations (EC) were determined using the Colilert-

181 defined substrate technology using the Quanti-Tray 2000 system (IDEXX Laboratories,

Westbrook, ME). Trays were incubated for 18-22h at 35˚C and most probable number (MPN)

was calculated based on aggregate numbers of large and small wells as indicated in the manu-

facturer’s instructions. Concentrations were reported as MPN per 100 ml.

Statistical analyses

Station 70S is in the geographic middle of the estuary, is mesohaline, and historically demon-

strates fluctuations in both total Vibrio spp. concentrations, environmental parameter ranges

(making it useful for correlative modeling approaches), and the location of theCHL maximum

during certain periods over the time of this study [45]. An alpha of 0.05 was used for all statisti-

cal tests. The detection limit for Vibrio spp. is 0.5 cells per 100 ml, and the detection limit for

fecal indicator bacteria using the Quanti-tray 2000 system is 10 cells per 100 ml. Microbial

data were log-transformed prior to analysis. Non-detectable microbial results were given a

value of 1 cell per 100 ml. (i.e. 0 log). A Grubb’s outlier test found no significant outliers at the

0.05 level. The Vibrio spp. data were log transformed, reducing skewness from 9.16 to -0.48

and kertosis from 91.59 to -0.07.

Yearly periods were analyzed using one-way ANOVA with Tukey post-test. Time series

analysis used the monthly mean and produced a seasonal autoregressive integrated moving

Fig 2. 12 month mean of log Vibrio spp. at station 70S. Each 12-month period is from June–May. Labels indicate the

year that the 12-month period began.

https://doi.org/10.1371/journal.pone.0215254.g002
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average (ARIMA) model with order (1,1,1) and seasonal (1,1,1) terms. Six-year groupings

were analyzed with a two-way (month and period) ANOVA with Bonferroni post-testing.

Ten-year monthly averages were constructed using recorded and predicted values from the

ARIMA model projection. Non-linear fit of salinity and Vibrio spp. abundance was found

using a two-phase exponential associate equation and the Levenberg-Marquardt iteration algo-

rithm. Non-linear fit of salinity over the course of the study was found using a LogNormal

equation and the Levenberg-Marquardt iteration algorithm until a fit was converged.

All statistics were calculated using OriginPro 2018 (OriginLab Co., Northampton, MA)

except for the principal component analysis and the ARIMIA model, which were performed

using JMP 13.0 (SAS Co., Cary, NC).

Results

Vibrio spp. increase significantly over 10-year period

Each 12-month period (June–May) of Vibrio spp. abundance data, was averaged (Fig 2), and

significant differences among years were observed (p<0.00001). Vibrio spp. concentrations in

years 2011, 2012, and 2013 were significantly higher than 2006; 2011 and 2013 were also signif-

icantly greater than years 2004, and 2008; and 2013 was also significantly greater than 2005,

Fig 3. Vibrio spp. concentrations at each sampling date for station 70S. Line is the linear regression of the data (r2 = 0.20, p<0.0001).

https://doi.org/10.1371/journal.pone.0215254.g003
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2007, and 2009 (p<0.05, Fig 2). A weak but significant linear increase in the concentration of

Vibrio spp. over time at station 70S is shown in Fig 3 (r2 = 0.20, p<0.0001).

Time-series analysis, (Fig 4, r2 = 0.38) generated a model showing the increasing trend and

permitted the forecasting of Vibrio spp. in the NRE. The mean monthly Vibrio spp. abundance

at station 70S was averaged over 6 years, with 3 six-year periods being examined (Fig 5). The

periods included 2005–2010, 2007–2012, and 2009–2014, i.e. the first, middle, and last six

years of the project. In the last 6 years of the project, significantly more (P<0.0001) Vibrio spp.

were observed than the first 6 years. This is especially striking as there are two years of data

overlap (for 2009 and 2010) that is shared between the first and last 6-year period. The largest

difference in means was seen in January, February, and March (1.02 log, 1.17 log, and 1.04 log,

respectively). This shift became evident during the routine sampling, as early in the project, Vib-
rio spp. were generally non-detectable at times during the winter, while during the last years of

the project, all samples and all seasons, including the coldest months, contained culturable Vib-
rio spp. The 10-year monthly average of total Vibrio spp. was calculated for actual (2004–2013),

2-year projection (2006–2015) and 5 years projected (2008–2018, Fig 6). If Vibrio spp. abun-

dance increases at a similar rate, that there could be nearly a full log difference in total projected

Vibrio abundance in every month after 5 years (e.g. in July 2.71 log vs. 3.56 log, Fig 5).

Vibrio spp. increases are not uniform

Species-specific data on V. vulnificus and V. parahaemolyticus was collected the last three years

of the study. There was a small but significant linear decrease (R2 = 0.10, p<0.05) in V.

Fig 4. Seasonal ARIMA model (1,1,1)(1,1,1) of mean monthly log Vibrio spp. data at station 70S. Dots are actual measurements, red line represents

modeled abundance, and blue lines are the 95% confidence interval.

https://doi.org/10.1371/journal.pone.0215254.g004
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vulnificus over those three years while the total Vibrio spp. and V. parahaemolyticus popula-

tions did not decrease (Fig 7).

Correlation of Vibrio abundance with measured variables

Spearman’s rank correlation coefficients and significance were calculated for Log Vibrio, TSS,

TEMP, SAL, DO, DO saturation, pH, TURB, CDOM, POC, PN, DOC, DIC, NOX, NH4, DIN,

TDN, DON, PO4, and CHL. A complete list of correlations is in S1 Table, while significant

correlations are listed in Table 1. Because several of the measured variables obviously co-vary

(e.g. DIN and NOX), the significant variables were used in a principal component analysis.

The first 5 principal components (PC) described 83.5% of the variation seen in Vibrio spp.

abundance (S2 Table). These 5 PC (Table 2) were regressed with Log Vibrio spp. abundance

stepwise and only PC 1 and 2 were found to have significant effect (p<0.0001) in the model,

generating the equation: Log Vibrio = 2.09912 + (PC1 � -0.18173) + (PC2 � 0.19563) with r2 =

0.42. The eigenvectors with the largest coefficients of PC 1 and PC2 were SAL/CDOM/DIC/

NOX/DIN and TEMP/DO/DOC/DON, respectively.

The role of temperature on Vibrio abundance in the Neuse River Estuary

As has been shown in several other studies at other locations and in the NRE, log Vibrio spp.

abundance has a significant (p< .05, r2 = 0.21) linear relationship with temperature, shown in

Fig 5. Monthly six-year average of Vibrio spp. observed during the first (black line), middle (tan line), and last (red line) six

years of study duration at station 70S. Error bars are standard error of the mean.

https://doi.org/10.1371/journal.pone.0215254.g005
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Fig 8 [3,12,26,30,31,34–37,39,46]. Water temperature trends in the NRE have not changed sig-

nificantly (p>0.05) during the 10-year study (Fig 9), indicating that an increase in water tem-

perature is not responsible for the increased Vibrio spp. abundance.

The role of salinity on Vibrio spp. abundance in the Neuse River Estuary

There was a significant non-linear relationship (p<0.05, r2 = 0.25) between salinity and log

Vibrio spp. abundance (Fig 10), which has been reported previously [3,4,26,30,32,34,37,39] in

other locations and in the NRE. The non-linear relationship was stronger than a linear rela-

tionship (r2 = 0.23, S5 Fig), though the maximum salinity recorded at station 70S was 18.56, a

permissive salinity for most coastal Vibrio spp. When including all the samples from all sta-

tions and depths along the entire estuary, the minimum and maximum salinity values are 0

and 27.56‰. When the data from the entire estuary were used in both linear and non-linear

regression, the r2 values were 0.23 and 0.24, respectively, though visually the linear fit seems

more appropriate (Fig 11). Salinity in the estuary has not been increasing, and in fact was at

some of the lowest values when Vibrio spp. concentrations were the highest. Fig 12 shows the

salinity of station 70S over the course of the study (r2 = 0.17). The data show that salinity

increased during the middle of the study and then decreased towards the end. The salinity data

mirrors the precipitation the estuary received during the study period. The freshening of the

NRE has been reported previously by Van Dam and Wang [47]. Fig 13 shows the Palmer

Fig 6. 10-year monthly average Vibrio spp. abundance (symbols) and 3-month moving average (lines) during the study (blue

line), and 2 (yellow line) and 5 (red line) years beyond the study. Error bars are standard error of the means.

https://doi.org/10.1371/journal.pone.0215254.g006
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Drought Severity Index (PDSI), with extreme drought conditions between 2007 and 2011

when NC suffered the worst drought in the history of the state. The PDSI uses precipitation

and temperature to estimate relative dryness in a standardized index that ranges from 10 (wet)

to– 10 (dry). A return to normal and wet conditions, with a corresponding decrease in estua-

rine salinity at station 70S, occurred in mid-2011. The drought index increased (wetter condi-

tions) at the same time that increase in Vibrio spp. abundance began. This appears to be

unrelated to salinity, however, because increased salinity correlates with increased Vibrio spp.

abundance, but salinity decreased during the Vibrio spp. increase.

Fig 7. Vibrio spp. (black squares), V. vulnificus (red triangles), and V. parahaemolyticus (blue stars)

concentrations at each sampling date for the last four years of study at station 70S. Lines are the linear regression of

the data for V. vulnificus (red line, r2 = 0.1, p<0.05), V. parahaemolyticus (blue line, p>0.05) and Vibrio spp. (black

line, p>0.05). Non-detectable samples were removed from this analysis.

https://doi.org/10.1371/journal.pone.0215254.g007

Table 1. Spearman’s Rank correlation coefficients and p values of measured variable significantly corrected to log

Vibrio.

Corr. coef p value

TEMP 0.41493 < .0001

SAL 0.46661 < .0001

DO -0.39972 < .0001

TURB -0.25777 < .0001

CDOM -0.26351 0.002

DIC 0.52297 < .0001

NOX -0.54125 < .0001

DIN -0.33622 < .0001

TDN -0.19375 0.008

DON 0.22437 0.002

PO4 0.23061 0.002

TC 0.46306 < .0001

https://doi.org/10.1371/journal.pone.0215254.t001
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Dissolved oxygen and the relationship to Vibrio spp. increase

Similar to previous studies [30,31,34–36,46] DO was negatively correlated (Table 1) with Vib-
rio spp. abundance and linear regression showed a weak but significant (p<0.05, r2 = 0.10)

Table 2. Eigenvectors of the principal components.

PC 1 PC 2 PC 3 PC 4 PC 5

TEMP -0.19248 0.38630 -0.20129 0.26589 -0.40561

SAL -0.38242 0.05313 0.38318 -0.15641 0.17040

DO 0.04040 -0.47686 -0.21787 -0.25300 0.37175

pH -0.19842 -0.28107 -0.48587 -0.06252 0.08977

TURB 0.25845 -0.17136 0.07708 0.28147 0.05055

CDOM 0.37154 0.22121 -0.25614 -0.25750 0.11455

DOC 0.29747 0.35773 -0.12827 -0.14252 0.12061

DIC -0.39715 0.08478 0.34237 -0.07664 0.15437

NOX 0.30235 -0.29391 0.25330 0.31205 -0.25947

NH4 0.21945 0.24779 0.36520 -0.25228 0.31895

DIN 0.39121 -0.16055 0.30898 0.12653 0.02836

DON 0.15450 0.36917 -0.12465 -0.00694 0.10384

TC -0.09044 0.13514 -0.12392 0.68706 0.65230

https://doi.org/10.1371/journal.pone.0215254.t002

Fig 8. Linear regression of water temperature and log Vibrio spp. concentration at station 70S. Regression

line = p<0.05 r2 = 0.214.

https://doi.org/10.1371/journal.pone.0215254.g008
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negative relationship (S1 Fig). While the relationship exists, DO in the NRE did not change

significantly over the course of the study (S2 Fig, p>0.05), thus changing DO is not related to

the increased abundance.

The relationship of carbon and nitrogen to Vibrio spp. abundance

In the NRE, there was a significant negative correlation between NO3/NO2 (NOX) and Vibrio
spp. concentrations (Table 1). Regression analysis shows a significant decrease in Vibrio spp.

concentrations as the amount of NOX increases (Fig 14, p<0.05, r2 = 0.31). In the years of the

largest increase in Vibrio spp. observed in the NRE, starting in mid-2011, the NOX levels were

the lowest, as noted by a Gaussian non-linear fit of the NOX data at station 70S over the course

of the study (Fig 15, r2 = 0.19). NOX and salinity are negatively correlated, and it was consid-

ered that the relationship with Vibrio spp. could just be a byproduct. But when salinity

decreased in 2011, so did NOX, yet this was the period of the largest Vibrio spp. increase.

Therefore, it appears that reduced NOX is potentially related to increased Vibrio spp. abun-

dance, as lower NOX correlates with larger Vibrio spp. concentrations.

A significant correlation (Table 1) and linear regression (p<0.05, r2 = 0.37) of DIC and Vib-
rio spp. concentrations is shown in Fig 16. A linear fit of DIC at station 70S over the course of

the study reveals a significantly higher trend (p<0.05, r2 = 0.12, Fig 17). DIC and salinity are

strongly correlated, but as with NOX, the changes in salinity in the estuary do not appear to

Fig 9. Water temperature at station 70S in the Neuse River Estuary during each sampling date. Slope of regression

line is not significantly different than zero (p>0.05).

https://doi.org/10.1371/journal.pone.0215254.g009
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correspond with the changes in Vibrio spp. Thus, it is likely the increase in DIC over time in

the NRE could be a potential contributor to the increased Vibrio spp. abundance that was

observed.

Regression analysis revealed that lower DIN concentrations correlate with increased Vibrio
spp. abundance (p<0.05, r2 = .23, S3 Fig). DIN concentrations did not change significantly

over the course of the study (p>0.05, S4 Fig), an indication that DIN was not involved in the

increase in Vibrio spp.

Five year predicted vs. actual sample concentrations

Utilizing the same methodology, additional samples were collected in late September to late

October of 2018. The 5-year prediction in Fig 6 was compared to the actual data collected in

2018 and is displayed in Table 3. The values predicted for 5 years after the last decadal sample

were higher than the actual samples collected (Table 3), yet strikingly, all samples collected in

2018 were greater than the historical samples, with one being nearly one log greater (Table 3).

Discussion

This is the longest Vibrio spp. monitoring program that has taken place in the State of North

Carolina, and perhaps along the east coast of the United States. Vibrio spp. were routinely

Fig 10. Non-linear regression of salinity and log Vibrio concentration at station 70S. Regression line = p<0.05 r2 = 0.246.

https://doi.org/10.1371/journal.pone.0215254.g010
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monitored for over ten years. The NRE, the site of the monitoring program, is part of the Albe-

marle-Pamlico Estuarine System (Fig 1). The NRE experiences large seasonal variability in

nutrient concentrations [48] and is affected by anthropogenic inputs, both urban and agricul-

tural. The estuary is also heavily used, both commercially and recreationally, and is part of the

Intracoastal Waterway. The NRE is undergoing eutrophication, driven in part by urban expan-

sion, agricultural runoff, and high degree of livestock operations occurring in the watershed

[41,49]. Thus, factors driving the health of this important estuarine ecosystem are changing

making an understanding of the dynamics of bacterial populations important to study. This

continuous monitoring effort revealed that Vibrio spp. concentrations appear to be increasing

in the NRE in eastern NC (Fig 3). Yearly averages show that Vibrio spp. means tended to

increase one year, lower the next, and then exhibit an even larger increase the following year

(Fig 2). A seasonal ARIMA model shows that the increase was heaviest starting in 2011, and in

2012 throughout the rest of the study, Vibrio spp. exhibited continuous detection, even in the

winter months (Fig 4). The increase of winter Vibrio spp. is especially noticeable when

monthly averages from the beginning, middle, and ending of the monitoring program are

compared (Fig 5). The largest increases, based on monthly averages, were in the cold winter

months. This indicates that the seasonal reduction in either live or culturable Vibrio spp., that

had been considered normal, is no longer as pronounced. This has important ramifications for

species-specific shifts in the total Vibrio spp. population, and especially important ramifica-

tions for winter-dominant commercial shellfish harvest. Vibrio spp. have been thought to

Fig 11. Linear regression of salinity and log Vibrio concentration at all stations and depths (N = 2120). Regression

line = p<0.05 r2 = 0.23.

https://doi.org/10.1371/journal.pone.0215254.g011
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either enter the viable-but-non-culturable state or overwinter in the sediments, but they are

detectable year-round now [35,50–52]. Interestingly, not all Vibrio species are behaving in the

same fashion. Individual species data were only collected the last 4 years of the study including

V. vulnificus and V. parahaemolyticus. V. vulnificus showed a significant decrease during that

period while the total Vibrio spp. and V. parahaemolyticus populations did not (Fig 7). This

seems to indicate that some species are becoming more abundant, and that the species makeup

of the Vibrio spp. population may be in flux. Shifts in water column conditions have been

shown in the NRE previously to affect certain Vibrio species in differing manners, such as was

seen after the prolonged drought around 2007 (Fig 13) caused V. vulnificus to nearly disappear

from the estuary while more salt tolerant species were thriving [53]. Similar effects have been

reported in the Gulf Coast [54]

Increased Vibrio spp have been reported in various coastal areas throughout the world. Vez-

zulli et al [55], using a continuous plankton recording device, showed that Vibrio spp. abun-

dance was increasing in parts of the North Atlantic and North Sea. They concluded these

increases were due to rising sea water temperatures. A report by Martinez-Urtaza et al [56]

describes some pathogenic Vibrio species increasing in Peru, Alaska, and the Gulf of Mexico

due to warmer water temperatures. Other reports by Baker-Austin and others describe emerg-

ing Vibrio spp. related infections occurring in novel areas, such as Sweden and Finland, caused

by anomalous increases in water temperature [7,24]. Interestingly, the increase observed in the

NRE was not accompanied with anomalous temperature shifts and the water temperature

Fig 12. Salinity of station 70S over the course of the study. Red line is LogNormal fit to data, r2 = 0.165.

https://doi.org/10.1371/journal.pone.0215254.g012
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during the decade of the study has not changed significantly (Fig 9). Temperature typically has

the strongest influence on Vibrio spp. concentrations in natural environments, including in

the NRE, but evidence suggests that water temperature on the coast of NC may actually be

decreasing [55]. Recently, the effects of temperature were examined on the abundance of V.

vulnificus in South Carolina [57]. V. vulnificus abundance is normally strongly dependent on

temperature [50,58,59] yet this study found that an increase in V. vulnificus was not obviously

related to temperature, but rather to sea level rise. Thus, other factors were investigated that

might be related to the increase in Vibrio spp. in the NRE.

Salinity is commonly the second most influential factor in determining the abundance of

coastal Vibrio spp, and this is true in NC (Figs 9 and 10) as well [3,4,26,30,32,34,36,37,53,55].

Salinity in the NRE at this study location rose, peaked, and then later fell (Fig 12) during the

decadal study. This shift in salinity in the NRE corresponded with a record-breaking drought

[53], the most severe in NC history, that began in 2007 and persisted until 2011 (Fig 13). Dur-

ing this drought, when salinity levels were elevated, some specific species of Vibrio (i.e. V. vul-
nificus) declined to the point of being nearly undetectable, while others that were more salt

resistant, including V. mediterranei and V. coralliilyticus, were detected instead [53,60]. Even

though salinity and Vibrio spp. abundance is strongly correlated, the increase in Vibrio spp. in

the NRE coincides with an overall decrease in estuarine salinity seen from 2010 through the

end of the study, probably as related to freshwater discharge and groundwater height due to

precipitation (Fig 12). While short-term increases in salinity do promote higher Vibrio spp.

Fig 13. Palmer Drought Severity Index for the Neuse River Estuary during the course of the study. Scale is reversed with negative

(dry) values being the topmost part of the graph. Colors added to aid in visualization of drought index severity.

https://doi.org/10.1371/journal.pone.0215254.g013
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concentrations, the longer-term shifts in salinity do not appear to have this effect on the trend

overall. Thus, the two biggest contributing environmental factors that have been previously

used to predict estuarine Vibrio spp. abundance, i.e. salinity and temperature, appear to not be

significantly involved in the decadal increase of Vibrio spp. observed in the NRE. Thus, it is

evident that there is more going on in the NRE that is driving this increase.

Few studies have looked at the correlation between NO3 or NO2 (NOX) and Vibrio spp. A

study by Asplund et al [30] found a slight positive correlation with NO3 and Vibrio spp. Vibrio
spp. abundance was found to increase with reduced concentrations of NOX in the NRE (Fig

14). There was a marked decrease in NOX in the same years as the largest increases in Vibrio
spp. were observed (Fig 15). Reductions or limiting amounts of NOX typically result in

reduced phytoplankton concentrations (i.e. Chla). Overall, phytoplankton blooms were

reported to have been stunted during the study period, attributed to the reduced nitrogen

availability, even though there were specific periods with heightened concentrations of specific

phytoplankton types [41]. Vibrio spp. are able to reduce nitrate to nitrite or ammonia and are

often the dominant nitrate-reducing group [61,62]. These are some of the highest energy yield-

ing processes, but typically only in anoxic environments [63]. While it could be possible that

the increase in Vibrio spp. in the NRE could have resulted in a reduction in the NOX recorded,

station 70S did not experience anoxic conditions (S2 Fig) and the level of ammonia did not sig-

nificantly change over the course of the study (S7 Fig), so this remains speculative. Combined

NOX was significantly correlated with CHL, which is a proxy for phytoplankton (S1 Table).

Fig 14. Linear regression of Vibrio abundance to NOX at station 70S. Regression line is p<0.05, r2 = 0.31.

https://doi.org/10.1371/journal.pone.0215254.g014
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There was very slight but significant increase in CHL (p<0.05, r2 = 0.03, S6 Fig) over the

course of the study. The reduction in NOX could be associated with increased phytoplankton

activity as well. Additionally, it has been shown that a reduction in flow will result in a reduc-

tion of NOX, because of less runoff for example [42]. In this study, however, the decrease in

NOX occurred during a period of increased precipitation, and thus greater flow, suggesting

that the NOX decrease was not caused by a lack of input into the system. The lack of correla-

tion of Vibrio abundance with CHL (S1 Table) appears to indicate that the increase in Vibrio
spp. in the system is not associated with phytoplankton abundance.

Increases in DIC had a strong connection with increases in Vibrio spp. as shown in Fig 16.

The increase in Vibrio spp. coincides with an increase in DIC in the NRE (Fig 17). This

increase in DIC could be the result of increased photochemical oxidation of DOC, but DOC

changes at the site correspond more with rainfall than with Vibrio spp. (S8 Fig). Van Dam and

Wang [47] showed that the pH of NRE during this time period showed a decrease. DIC does

correlate strongly with salinity, but over the course of the study DIC increases in the NRE

while salinity only increased in the drought years, followed by decrease (Fig 12). Thus, there is

a decoupling of DIC with salinity. The increase in Vibrio spp. could potentially be the cause

the of increased DIC. The combined increased of DIC with the decrease in NOX is indicative

of there being more respiration versus photosynthesis, and indeed after the drought of 2007,

and through 2009, primary production was reduced in the NRE [41]. This, however, remains

speculation in such a complicated system.

Fig 15. Nitrate and nitrite at station 70S over the course of study. Gauss non-linear fit to data (red line), r2 = 0.19.

https://doi.org/10.1371/journal.pone.0215254.g015
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Five years after the last sample of the study was taken, four additional samples were col-

lected at the same location using the same methodology. All four samples contained Vibrio
spp. concentrations that were greater than the average from the same time during the 10-year

study (Table 3). While none of these samples reached the values predicted by the ARIMA

model, they are all within the 95% confidence of the model. This appears to indicate that the

increase in Vibrio spp. observed during 2003–2013 in the NRE is either holding steady or con-

tinuing to increase.

The increase in Vibrio spp. concentrations in the NRE would, at first glance, not seem

unusual as Vibrio spp. appear to be increasing in coastal areas worldwide. What makes this

increase remarkable is that it does not coincide with increases in temperature, which is the

most commonly cited reason for increase in other reports. Furthermore, the second and third

most cited influence on Vibrio spp. abundance, salinity and dissolved oxygen, respectively,

also do not appear to be involved. Measured DO has remained unchanged, over time, while

salinity has decreased, which should be associated with a subsequent decrease in Vibrio spp.

Other factors, including NOX and DIC were found to have correlated with the change in Vib-
rio spp., but are likely a result of the increased bacterial population, rather than a cause. Meta-

genomic analysis of these samples is being conducted and may offer other explanations of this

phenomenon.

Fig 16. Regression of dissolved inorganic carbon and log Vibrio concentration at Station 70S. Red regression line is

significant (p<0.05, r2 = 0.37).

https://doi.org/10.1371/journal.pone.0215254.g016
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Supporting information

S1 Fig. Linear regression of Vibrio abundance to dissolved oxygen at station 70S. Regres-

sion line is p<0.05, r2 = 0.1.

(TIF)

S2 Fig. Dissolved oxygen at station 70S during the study. Slope of regression line (red) is not

significantly different than zero (p>0.05).

(TIF)

S3 Fig. Dissolved inorganic nitrogen vs. log Vibrio abundance at station 70S. Red regression

line is significant (p<0.05, r2 = .23).

(TIF)

Fig 17. Dissolved inorganic carbon at station 70S recorded during the duration of the study. The slope of the linear

fit of data (red line) is significantly different from zero (p<0.05, r2 = 0.12).

https://doi.org/10.1371/journal.pone.0215254.g017

Table 3. The historic average (during 2003–2013), the predicted values, actual values, and differences from historic and predicted concentrations of Vibrio from sta-

tion 70S in the NRE collected during 2018.

Sample Date Historic Value Predicted Value/100ml Actual Value/100ml Increase from Historic Difference from predicted

Sept 26, 2018 380 2344 730 350 1614

Oct 8, 2018 275 2188 1200 925 988

Oct 12, 2018 182 1513 231 49 1282

Oct 30, 2018 120 912 740 620 172

https://doi.org/10.1371/journal.pone.0215254.t003
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S4 Fig. Dissolved inorganic nitrogen at station 70S during the study. Slope of regression

line (red) is not significantly different than zero (p>0.05).

(TIF)

S5 Fig. Linear regression of salinity and log Vibrio concentration at station 70S. Regression

line = p<0.05 r2 = 0.230.

(TIF)

S6 Fig. Chlorophyll A at station 70S over time during the study. Red line is linear regression

(p<0.05, r2 = 0.03).

(TIF)

S7 Fig. Ammonia at station 70S over time during the study. Red line is linear regression

(p>0.05, r2 = -0.005).

(TIF)

S8 Fig. DOC at station 70S over time during the study. Red line is 5 order polynomial

regression (p<0.05, r2 = 0.06).

(TIF)

S1 Table. R2 values of Spearman correlations. Green Highlights indicated significant

(p<0.05) correlations.

(DOCX)

S2 Table. Eigenvalues and variance for each principal component.

(DOCX)
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