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Abstract

This last decade has seen a resurgence of yellow fever (YF) in historical endemic

regions and repeated attempts of YF introduction in YF‐free countries such as the

Asia‐Pacific region and the Caribbean. Infected travellers are the main entry routes

in these regions where competent mosquito vectors proliferate in appropriate

environmental conditions. With the discovery of the 17D vaccine, it was thought

that YF would be eradicated. Unfortunately, it was not the case and, contrary to

dengue, chikungunya and Zika, factors that cotribute to YF transmission remain

under investigation. Today, all the signals are red and it is very likely that YF will be

the next pandemic in the YF‐free regions where millions of people are immuno-

logically naïve. Unlike COVID‐19, YF is associated with a high case‐fatality rate and

a high number of deaths are expected. This review gives an overview of global YF

situation, including the non‐endemic Asia‐Pacific region and the Caribbean where

Aedes aegypti is abundantly distributed, and also proposes different hypotheses on

why YF outbreaks have not yet occurred despite high records of travellers

importing YF into these regions and what role Aedes mosquitoes play in the

emergence of urban YF.
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1 | INTRODUCTION

Yellow fever (YF) has been a historical arboviral threat following

massive populations displacements from its cradle of origin in Africa

into the New World since the 17th century.1 The discovery by Carlos

Finlay and Walter Reed of yellow fever virus (YFV) transmission by

the mosquito Aedes aegypti brought hope in the control of YF out-

breaks in the Americas at the beginning of the 20th century.2,3 Thus,

vector control was the first attempt to eradicate urban YF trans-

mission before the discovery of a YF vaccine. Unfortunately, relaxa-

tion of vector control measures and vaccine supply shortage hinder

the control of YF. With the growing geographical expansion of Ae.

aegypti, YF continues to be a burden for human health, causing each

year, 51,000–380,000 severe cases and a very high in‐hospital case

fatality rate (20%–60%),4,5 with an estimated global disability‐
adjusted life year of 314 (95% uncertainty interval [UI] [67.2–900])

Abbreviations: CI, confidence interval; Crl, credible interval; CHIKV, chikungunya virus; DALY, disability‐adjusted life year; DENV, dengue virus; ISV, insect‐specific virus; JEV, Japanese

encephalitis virus; NHP, non‐human primate; PAHO, Pan‐American Health Organisation; UI, uncertainty interval; YF, yellow fever; YFV, yellow fever virus; ZIKV, Zika virus.
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in 2017.6 Although the current YF epidemics are still restricted to

Africa and South America, the past history of YF in the Caribbean and

Mediterranean Europe has shown that the sporadic exportation of

YF to the non‐endemic regions could lead to local outbreaks in the

presence of competent vector,7‐9 particularly in the Caribbean

islands which experienced deadly YF epidemics during the colonial

era, and with a still on‐going sylvatic YF circulation in Trinidad.10 On

the contrary, even though YF has never struck the Asia‐Pacific re-

gion, the region remains at high risk of emergence as it hosts millions

of immunologically naive people living at close proximity with urban

mosquitoes competent for YFV.11 These two essential factors for YF

urban transmission, along with expanding global transportation raise

fears of YF occurrence in cities and its arrival in the Asia‐Pacific

region. This review compiles the current knowledge on YF and de-

scribes the entomological factors which might contribute to YF

resurgence and emergence.

2 | DISCOVERY OF AEDES AEGYPTI‐MEDIATED
YELLOW FEVER VIRUS TRANSMISSION

Between 1881 and 1889, YF caused thousands of deaths during the

construction of the Panama Canal until the transmission mode of

YFV was elucidated.12 In 1881, Carlos Finlay hypothesised that YF

was transmitted by Ae. aegypti (which was then called Culex fasciatus).

Finlay inoculated 102 healthy volunteers with YFV‐infected

mosquitoes, and found that volunteers could develop YF symp-

toms.2 However, the theory of transmission by mosquitoes was not

very well accepted as some experimental designs could be improved,

such as unstandardised criteria for mild YF diagnosis, and incorrect

assumption on mosquito vector competence.2,13 The mosquito‐
mediated YFV transmission was verified in 1900. Walter Reed and

colleagues confirmed Finlay's hypothesis with improved experimen-

tations; two members of Reed's research team, James Carroll and

Jesse Lazare volunteered for self‐experimentation with YFV‐infected

mosquitoes and developed into severe and lethal symptoms.14 The

death of Jesse Lazare brought enough attention and a more rigorous

experimentation was carried out thereafter. After several tests with

human volunteers and YFV‐infected mosquitoes, Reed proved the

route of YFV transmission by mosquitoes.3 In these experiments, YF

symptoms could be observed in the volunteers exposed to Ae. aegypti

having become infected 14–25 days after feeding on symptomatic

patients.3 These findings opened a new era in the control of infec-

tious diseases through controlling mosquito vectors.

3 | YELLOW FEVER VIRUS GENOME

YFV was first isolated in 1927, from a symptomatic patient in

Ghana.15,16 Belonging to the family Flaviviridae, YFV is an enveloped

virus with an icosahedral capsid of 40–60 nm diameter. The genome

of YFV is a positive sense, single‐stranded RNA molecule. Except the

highly structured 50 and 30 untranslated regions that are essential for

virus replication, the 11 kb YFV genome contains a single open

reading frame encoding for three structural proteins (capsid [C],

matrix [M], and envelope [E]) and seven non‐structural proteins (NS1,

NS2A, NS2B, NS3, NS4A, NS4B, and NS5). All the viral proteins have

a defined role to allow infecting the host cells and escape the immune

system.17

4 | YELLOW FEVER VIRUS GENOTYPES IN AFRICA
AND AMERICA

There are seven YFV genotypes identified: five African genotypes

(West Africa I, West Africa II, Angola, East Africa, and East/Central

Africa) and two American genotypes (South America I and South

America II) (Figure 1). Phylogenetic studies have suggested that

among the five African genotypes, the Angola, East Africa, and East/

Central Africa genotypes are genetically more heterogeneous than

the West Africa genotypes I and II.18 While the two American ge-

notypes are closely related to each other, the two West African ge-

notypes were less diverged than the other African genotypes to the

American genotypes, suggesting that West Africa is the possible

origin of the YFV strains circulating in America.19 Evidence suggests

that the West Africa II and East/Central Africa genotypes are enzo-

otic YFV in Africa, whereas the West Africa genotype I might be

circulating among human populations, even though nucleotide and

amino acid sequence variations between West Africa genotypes I and

II are close. Interestingly, the Angola genotype is the most divergent

genotype compared to the other African genotypes, however, it does

not present significant differences in amino acids sequence; the

sequence variation between YFV Angola and East Africa genotype is

only 0.4%–0.9% in amino acids but 16.7%–17.4% in nucleotides.18 In

South America, the YFV phylodynamic data suggests that the recent

YFV epidemics were initiated by different genotypes originating from

different regions. The last outbreaks were mainly caused by the

America genotype I from Trinidad and Tobago, which was imported

from Northern Brazil in the 1950s and responsible for the outbreaks

before the 1990s. The most recent genotype belongs to the America

genotype II which can be traced back to 1956; this genotype spread

from Peru to the neighbouring countries of Bolivia, Ecuador, North-

ern Brazil, Trinidad and Tobago, where only sylvatic YFV trans-

missions were reported.20

5 | YELLOW FEVER VIRUS TRANSMISSION

5.1 | Sylvatic, rural, and urban cycles of yellow
fever virus

Three transmission cycles are classically described; they involve

different vectors and hosts in different ecological environments. In

the sylvatic cycle, the virus is circulating only between NHPs (playing

the role of amplification hosts) and zoophilic mosquito species. In the

intermediate cycle, the virus can be passed from NHPs to humans
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through the transmission by an anthropo‐zoophilic mosquito;

increasing human activities at the fringe between the forest and the

human dwellings accentuate spill over events (emergence zone). The

urban cycle occurs when infected people are repeatedly confronted

to bites of anthropophilic YFV‐infected mosquitoes. Up to date, YFV

circulation is restricted only in sub‐Saharan Africa and South

America.

5.2 | Aedes aegypti as the main epidemic vector of
urban yellow fever virus

A competent mosquito can become a vector by ingesting the virus

from an infected host, and being able to transmit the virus to other

hosts through the bite. In a mosquito, the ingested virus infects and

replicates in mosquito midgut epithelial cells. After several days of

incubation, virions are produced and released in the mosquito gen-

eral cavity named hemocele. With the haemolymph, viral particles

disseminate and infect several internal organs and tissues. Finally, the

virus reaches the salivary glands where it replicates and is excreted

with saliva during blood feeding. Among many mosquito vectors that

are able to transmit human pathogens, Ae. aegypti is a major vector

for various arboviral diseases. As it is highly adapted to artificial

containers, has an anthropophilic behaviour, and limited flight range,

Ae. aegypti proliferates in human habitats where it intervenes in ur-

ban epidemics. Ae. aegypti is mainly present in tropical and subtrop-

ical regions of Africa, Asia, and America,21 with a trend of rapid

expansion due to the eggs resistance to desiccation22 that facilitates

long‐distance transportation; it also contributed to the establishment

of Ae. aegypti in Mediterranean Europe during the early 17th century

to the mid‐20th century, until its disappearance after 1950.8 Ae.

aegypti is an efficient vector for YFV transmission; accumulating

studies have indicated that its vector competence for YFV depends

on the combination of virus genotype and mosquito population.23 In

general, in the YFV epidemic regions, it is believed that African Ae.

aegypti (from Kenya, South Africa, Guinea, and Capo Verde) were less

susceptible to African YFV strains24‐27 compared to American Ae.

aegypti (Brazil, Venezuela, and the USA) that are more susceptible to

American genotypes.26,28,29

5.3 | Aedes albopictus as a potential vector of rural
yellow fever virus transmission

YFV can be transmitted by Aedes albopictus; like Ae. aegypti, Ae.

albopictus is also an invasive species. Native to Asia, Ae. albopictus has

invaded the Americas from 1985 through two main routes: via Japan

to North America, and via Southeast Asia (Cambodia, Vietnam, and

Thailand) to South America. Ae. albopictus has similar geographical

distribution to Ae. aegypti but can also be found in temperate re-

gions.21 In Caribbean countries, the presence of Ae. albopictus was

firstly reported in the Dominican Republic in 1993,30 and has reached

several Caribbean countries since then, including Barbados,31

Cayman Islands,32 Cuba,33 Haiti,34 Jamaica,35 and Trinidad.36 Similar

to those of Ae. aegypti, eggs of Ae. albopictus are resistant to desic-

cation, but in contrast to those of Ae. aegypti, eggs of Ae. albopictus

are able to diapause ensuring a dispersion over long distances and a

survival at low winter temperatures37,38 In addition, Ae. albopictus is

F I GUR E 1 Africa and America yellow fever (YF) epidemics from 2000 to 2020 and circulating genotypes. The severity of YF virus
transmission was calculated with the annual reported cases that weighted by the year of outbreak, the more recent the heavier. Data were

extracted from Global Healthy Observatory, WHO (https://www.who.int/data/gho/data/indicators/indicator‐details/GHO/yellow‐fever‐‐‐
number‐of‐reported‐cases); the map was created by Microsoft PowerPoint
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able to colonize artificial and small natural breeding sites, and to feed

on animals in the absence of humans as a blood source,39 whereas Ae.

aegypti is highly anthropophilic and adapted to artificial containers.

Therefore, owing to its great ecological and physiological plasticity,

Ae. albopictus is able to colonize both tropical and even temperate

regions. Moreover, Ae. albopictus from Africa and America can

transmit different strains of YFV.26,28,40 On the field, YFV‐infected

Ae. albopictus was found at the edge of a forest in Brazil,41 suggest-

ing that Ae. albopictus has the potential to act as a bridge vector

allowing YFV spillover events from the sylvatic cycle to the urban

cycle where Ae. aegypti is predominant.

5.4 | Yellow fever virus transmission in Africa

Africa has been the historical epicentre of YF,42 and is still contrib-

uting to more than 90% of clinical cases worldwide each year; in

2018, approximately 100,952 (95% credible interval [CrI] [63,001–

158,362]) severe infections and 47,318 (95% CrI [29,126–74,981])

deaths were reported.16,43,44 Although the mortality rate of YF in

Africa is lower than in South America,45 the recent massive YF

outbreak in Angola during 2015–2016 still caused 375 deaths, and

was then spread to countries such as Democratic Republic of Congo,

Uganda, and even China.46,47 In Africa, several Aedes spp. mosquito

species are responsible for sylvatic, rural, and urban YFV trans-

mission cycles, which increase the complexity of YFV control by

breaking the transmission between each cycle. Forest canopy

dwelling Aedes spp. mosquitoes such as Aedes africanus, Aedes furcifer,

Aedes taylori, Aedes luteocephalus, and Aedes opok, are the major

vectors for YFV transmission between NHPs in the jungle, whereas

Ae. aegypti, Ae. furcifer, Aedes vittatus, Aedes bromeliae, and Aedes

keniensis that feed on both NHPs and humans, are bridge vectors

helping YFV to spill out of the sylvatic cycle.48 Among these last

mosquitoes, Ae. aegypti is the only species able to survive in urban

areas and mediate YFV transmission among human populations. The

situation has been worsened with climate change; an estimation of

YF sylvatic spillover transmission based on a YF occurrence model

and environmental factors in Africa, indicated that there will be

93.0%(95% confidence interval [CI] [92.7%, 93.2%]) chance of annual

deaths to increase in 2050.49

5.5 | Yellow fever virus transmission in South
America

In South America, Haemagogus spp. and Sabethes spp. are the

mosquitoes that transmit YFV among NHPs in the sylvatic cycle,50,51

and the major source of human infections come from a YFV sylvatic

transmission in Brazil.52 The recent YF epizootic in Brazil between

2016 and 2019 that initiated in Minas Gerais state, affected more

than 15,000 NHPs in the forest and even caused 2251 human in-

fections.52 Evidence suggested that humans were infected from the

sylvatic cycle only 4 days after an epizootic was declared.53

Vaccination is still the prevention measure against YFV infection in

South America, particularly in high‐risk areas, even though it still

cannot stop YFV sylvatic transmission during epizootics.53,54 Unlike

Africa, the rural cycle at the boundary between rural and urban cy-

cles has an unclear status in South America. A competent mosquito

vector could act as a bridge vector for a transmission of YFV from

one transmission cycle to another. Ae. albopictus can play this role

because of its both anthropophilic and zoophilic behaviour. This

species can experimentally transmit YFV.28 However, since the

mosquito eradication campaigns organised in the early 20th century

by the Rockefeller Foundation followed by the Pan‐American Health

Organization,55 which likely had held off YFV urban transmission, YF

only persists in a sylvatic cycle and no urban epidemics have been

reported up to date.53

5.6 | Yellow fever virus transmission in the
Caribbean

Vector‐borne diseases played a significant geopolitical role during

the colonial era in the Caribbean region. Started from Barbados in

1647, the Caribbean islands suffered from massive urban YF out-

breaks.1 It spread to Cuba, Guadeloupe, Jamaica, Martinique, and

Saint Kitts.1 From 1793 to 1798, in the British‐dominated Santo

Domingo (today Haiti) island, tropical diseases caused the death of

about 12,700 British troops, and mostly were believed to be YF.56

Later on, in 1804, the French troops lost 50,000–55,000 of soldiers

in the island during the most serious epidemic of YF in the Carib-

bean history, leading to Santo Domingo's independence.57

Concomitantly, YF indirectly led to the sale of Louisiana by Napo-

leon Bonaparte to the United States because of high human losses

due to malaria and YF. Although the current YFV transmission in the

Caribbean is still restricted to Trinidad where a sylvatic YFV

transmission is ensured by Haemagogous janthinomys and Sabethes

chloropterus,10 growing exchanges between the Caribbean islands

increase the risk of urban YFV. Moreover, the risk of YFV spillover

transmission is also increased by the abundant distribution of Ae.

aegypti and newly invaded Ae. albopictus in Trinidad.36,58 Thus, YFV

circulating in Trinidad was the cause of YFV epizootic in America in

1978–1980.20

5.7 | Yellow fever raged in Europe

The history of European YF epidemics has demonstrated the risk of

YFV transmission in temperate regions with the presence of

competent vectors. In the 19th century, Europe was affected by YF

like in the Caribbean. Both YFV and Ae. aegypti were introduced as

early as 18th century in Europe, mainly in port cities surrounding the

Mediterranean Sea.55 Outbreaks were reported in Spain (Barcelona,

Gibraltar, Sevilla, Cadiz, Malaga), Portugal (Lisbon, Porto), France

(Marseille, Brest, Saint‐Nazaire, Rochefort, Bordeaux), and Italy

(Livorno).59 More than 3500 people died in Barcelona in 1821, and
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more than 6000 in Lisbon in 1857.60 After the 1950s, better man-

agement of water collections in cities and vector control with DDT,

along with decrease in maritime traffic between harbours of Medi-

terranean countries could have contributed to eradicate Ae. aegypti

from Europe.7 Its last record was reported in ltaly in 1971.61 How-

ever, the mosquito can still be found in South Russia, West Georgia,

and North Turkey,62‐64 with gaining ground towards the West.63

Nonetheless, the estimation on the suitability of Ae. aegypti in the

European region is low, as the minimum temperature and humidity

do not reach the requirements of Ae. aegypti to establish sustainable

populations.65 The risk of YFV transmission carried out by Ae. aegypti

in Europe is considerably low.

6 | THE EXCEPTION OF THE ASIA‐PACIFIC
REGION

6.1 | The Asian paradox

Even though 75% of global dengue disease burden are reported in

the Asia‐Pacific region in the last century,66 YFV has never settled in

Asia despite several opportunities of introduction. While historical

records trace more clearly the introduction of YF in America via the

slave trade, past interactions between Africa and Asia received much

less attention.67,68 The history of the slave trade from Africa to Asia

can be traced back to 2900 B.C. in Egypt.69 From the 17th to the

19th century when YFV was introduced into America, there were

more than five million slaves transported to Asia, mostly to countries

of the Indian Ocean and South Asia.69 Furthermore, after the

completion of the Panama Canal in the early 1900s which shortened

the duration of travel between Latin America and Asia, many cities in

the Asia‐Pacific region were considered at high YFV transmission

risk.70 However, the concern regarding to YFV introduction through

the Panama Canal to Asia was discussed, but no confirmed incident

was ever reported except of a non‐laboratory confirmed YF‐like

outbreak in Hong Kong in 1865–1866.71 In 2016, 11 YFV‐infected

workers returned to China from Angola where a YFV outbreak was

active.72 Although these incidents were properly managed in China,

the probability of priming an epidemic hitting millions of immuno-

logically naive people caught the attention of the scientific commu-

nity as experienced today with the COVID‐19 pandemic.73

6.2 | Mosquito vectors in the Asia‐Pacific region

Mosquito species should not be an obstacle for YFV transmission in

the Asia‐Pacific region where both Ae. aegypti and Ae. albopictus are

abundant. Vector competence of Asian Ae. aegypti for YFV was suc-

cessfully demonstrated in laboratory conditions early in 1929.74 Ae.

aegypti mosquitoes collected in Indonesia were susceptible to YFV

from West Africa, and able to transmit YFV from an infected patient

to monkeys. More recent studies showed that Ae. aegypti mosquitoes

from Cambodia and Vietnam were more susceptible than Brazilian

populations to the South America genotype I,26 and an Ae. aegypti

colony from Laos was also able to transmit the West Africa genotype

I.75 Moreover, a more extensive study analysing Aedes spp. from the

Asian‐Pacific region indicated that both Ae. aegypti and Ae. albopictus

were susceptible to the West Africa genotype I; the Ae. aegypti from

Cambodia, Vietnam, Laos, Thailand, Singapore, Taiwan, New Cale-

donia, and French Polynesia were able to transmit YFV, corrobo-

rating the status of competent vector assigned to Ae. aegypti from the

Asia‐Pacific region. On the contrary, Ae. albopictus mosquitoes from

the region were less susceptible to YFV.11

7 | MOSQUITO MICROBIOTA CAN INFLUENCE
MOSQUITO VECTOR COMPETENCE

Different mosquito genetic backgrounds in various geographical lo-

cations cannot solely explain the absence of YF in Asia‐Pacific region,

factors other than mosquito genetics that cause regional differences

in endemic arboviral diseases are to be elucidated. The impact of

mosquito microbiota in non‐YF endemic regions on vector compe-

tence for YFV, is the next to be investigated to access the future risk

of YFV transmission.

Accumulating studies have suggested mosquito microbiota can

either directly or indirectly affect mosquito vector competence for

arboviruses. From larval to adult stages, Ae. aegypti and Ae. albopictus

acquire microbes vertically or from the environment, and harbour

them in gut or other organs/tissues.76‐80 The composition of micro-

biota (mainly viruses and bacteria) changes with mosquito age,

probably resulting from competition among symbionts for re-

sources77,81 or mosquito immunity82 with effects on vector compe-

tence. Although the molecular mechanisms still need to be

elucidated, accumulating evidence has indicated that insect‐specific

viruses (ISVs) influence mosquito immunity, with effects directly on

viral replication and indirectly on mosquito microbiota leading to

shape vector competence for arboviruses.83‐88 An example is Nhu-

mirim virus (Flaviviridae) that was originally found in Culex chides-

teri,89 was able to reduce Zika virus (ZIKV) transmission but not

chikungunya virus (CHIKV) in Ae. aegypti, suggesting a species‐
dependent manner for the interaction between ISVs and arbovi-

ruses in mosquitoes. Although not necessarily vertically transmitted,

arboviruses are also part of mosquito virome and can also influence

the vector competence.90 Ae. aegypti is able to co‐transmit CHIKV,

DENV and ZIKV simultaneously, but the effects of one arbovirus on

transmission of the other are not significant.91 On the contrary, the

impact of bacteria on mosquito vector competence has been exten-

sively studied. Mosquito bacteria affect vector competence by

inducing immune responses,80,92‐94 competing for nutritive re-

sources,95,96 producing secondary metabolites,97,98 and even trig-

gering RNAi immunity.99,100 Among all mosquito symbionts,

Wolbachia is the most intensively studied bacteria that suppresses

YFV replication in Ae. aegypti,101,102 even though the molecular

mechanism is still unclear. The interactions between mosquito

microbiota and arbovirus depends on the composition of microbiota
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that a mosquito acquired from different environments. Thus, the

microbiota diversity among geographic populations could be another

factor that shapes the mosquito vector competence, and subse-

quently limiting the spreading of YFV.103,104

8 | DISCUSSION

Although competent vectors are abundantly present, the Asia‐Pacific

and Caribbean regions are still free of YF urban transmission. How-

ever, the growing international exchanges have once again raised the

risks of YF spreading, threatening immunologically naïve populations.

It is believed that to establish persistent transmission cycles, both

sylvatic and urban, and repeated introductions of YF are critical as

experienced in the past between Africa and America (Figure 2). The

global expansion of the urban vector, Ae. aegypti has challenged the

current prevention systems for YF in South America and the Carib-

bean, threatening them with urban YF outbreaks like in the past. In

Trinidad, YFV circulates within a sylvatic cycle and has proved in the

past to be able to escape from this jungle cycle.20 This viral strain is

responsible for the large outbreaks currently observed in South

America, making this scenario more real than ever. In Asia, the air

traffic between China and African nations has grown significantly in

the last decades. The risk of YFV importation into China is consid-

erably high as Guangzhou airport welcomes millions of passengers

including those from YFV endemic countries, such as Ethiopia and

Kenya.105 Moreover, Guangzhou is the city where Ae. albopictus is

abundantly distributed and has caused dengue fever outbreaks since

2013.106 Fortunately, even though the environment favours YFV

transmission, the YFV importation in 2016 did not lead to any

autochthonous transmission. However, Guangzhou remains a city in

Southeast Asia possessing the highest probability of YFV out-

breaks.107 Moreover, the distribution of the main YF vector Ae.

aegypti is moving north and has reached southern China, in a region

only 500 km away from Guangzhou.108 As it is predicted that the

environmental conditions in Guangzhou will become more suitable

for Ae. aegypti in a few decades,108 this renders the scenario more

realistic than in 2016, and likely more possible than ever. Notably, Ae.

aegypti and Ae. albopictus from the Asia‐Pacific region are experi-

mentally competent to transmit YFV. Thus, vector populations are

seemingly not a brake to the emergence of YF in the region.11

Likewise, in Asia, all the ingredients to fuel a sylvatic cycle are

gathered with Macaca spp. monkeys being able to play the role of a

YFV amplification host.74,109,110 The establishment of a wild cycle

could be a prerequisite for spillovers and human infections in Asia as

it has been shown in South America (Figure 3).53

F I GUR E 2 The mode of yellow fever (YF) sporadic urban outbreaks. Aedes mosquitoes are pivotal to initiate YF virus (YFV) urban
outbreaks in non‐epidemic areas, and potentially playing the role of bridge vector in rural areas, spilling YFV back to sylvatic cycle. YFV could
be therefore circulating between mosquitoes and natural amplification hosts, until it spills over to rural and urban cycles to initiate a persistent
outbreak. Mosquito and virus genotypes, bacteriome, and virome are factors that influence the risk of YFV urban transmission and are

important targets for surveillance systems to prevent YF outbreak in a non‐epidemic area. Icons in this figure were created with BioRender.
com, or acquired from science clipart PNG designed by Morphart with Pngtree.com
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Globalisation is changing the landscape of global arboviral dis-

eases transmission and challenging the current circulation zone of

each arbovirus. Therefore, local endemic viruses might have the

chance to interact with introduced viruses from distinct geographic

regions, which could change the virome of local mosquito pop-

ulations, and subsequently affect the vector competence. YFV

endemic to Africa and South America and Japanese encephalitis virus

exclusively present in Asia, are both Flaviviruses that could be

transmitted by Ae. aegypti in the Asia‐Pacific region. Co‐infections

can occur either simultaneously or sequentially in mosquitoes with

an outcome depending on interactions between arboviruses and ISV

and microbial communities.

To conclude, the growth of international traffic and expansion of

Ae. aegypti geographical distribution have posed YF urban outbreaks

as a global threat to public health. While vaccination against YF

remains the most effective method to limit YFV in endemic areas in

response to an ongoing outbreak, mosquito vector surveillance and

control are still playing a decisive role to break YFV transmission

chain, before or even at the beginning of an outbreak. Information

regarding the factors that are affecting mosquito vector competence

for YFV could be more widely assessed and monitored as a

component of a national surveillance programme. Insecticides are

currently the main approach for mosquito control programme

despite several other alternatives proposed to reduce the size of the

F I GUR E 3 Yellow fever (YF) transmission cycles. (a) Past dynamics of transmission. (b) Risk of YF outbreaks in the future. Yellow fever
virus (YFV) has two transmission cycles described in Africa and America: sylvatic and urban (the intermediate cycle being described only in

Africa). The sylvatic cycle (also named jungle cycle) involves the transmission of YFV between non‐human primates and zoophilic mosquitoes.
The urban cycles involve the transmission of YFV between humans and anthropophilic mosquitoes, primarily Aedes aegypti. Today, outside
Africa, only persists a sylvatic cycle in America. However, all components likely to favour YFV circulation in Asia are there, immunologically
naïve human populations, competent mosquito vectors, and susceptible natural reservoir hosts, in contrast with Europe where there is no

reservoir hosts and limited number of competent vectors for YFV. Solid arrows: the direction of YFV spreading in the past. Dashed arrows: the
current risk of YFV spreading. The size of circles represents the probability of each transmission cycle to occur: the sylvatic transmission is
more likely to occur than the urban and sporadic imported cases. World map in this figure is adapted from freepnglogos.com; the icons were

designed by Voysla, Freepik, and kerismaker from Flaticon
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target population or replace the target population with a pathogen

refractory strain. This can be achieved with Wolbachia‐carrying and

genetically modified mosquito control approaches.111 To prevent a

foreseeable urban YFV transmission, more investment should be

made in mosquito vector surveillance and control programme, and

vaccine development, in response to different YF transmission sce-

narios in the future.
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