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Abstract

The antiproliferative response to anticancer treatment is the result of concurrent responses in all cell cycle phases,
extending over several cell generations, whose complexity is not captured by current methods. In the proposed
experimental/computational approach, the contemporary use of time-lapse live cell microscopy and flow cytometric data
supported the computer rendering of the proliferative process through the cell cycle and subsequent generations during/
after treatment. The effects of treatments were modelled with modules describing the functional activity of the main
pathways causing arrest, repair and cell death in each phase. A framework modelling environment was created, enabling us
to apply different types of modules in each phase and test models at the complexity level justified by the available data. We
challenged the method with time-course measures taken in parallel with flow cytometry and time-lapse live cell microscopy
in X-ray-treated human ovarian cancer cells, spanning a wide range of doses. The most suitable model of the treatment,
including the dose-response of each effect, was progressively built, combining modules with a rational strategy and fitting
simultaneously all data of different doses and platforms. The final model gave for the first time the complete rendering in
silico of the cycling process following X-ray exposure, providing separate and quantitative measures of the dose-
dependence of G1, S and G2M checkpoint activities in subsequent generations, reconciling known effects of ionizing
radiations and new insights in a unique scenario.
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Introduction

Anticancer research spans a wide range of scales, from the

microscopic/molecular up to the macroscopic level of clinical

assessment of treatment efficacy. On an intermediate scale of

preclinical testing in vitro and in vivo, cancer research maintains the

need to evaluate the antiproliferative activity of old and new

treatment options in cancer cell populations. In fact, even for new

drugs, assessment of activity against a molecular target does not

guarantee antiproliferative activity and control of expansion – if

not eradication – of cancer cells, which is clearly the primary goal

of any treatment. However, the impressive advances in the

molecular understanding of cancer(s) have not been accompanied

by a deeper comprehension of proliferation in treated samples,

often simplistically estimated with scores based on treated/control

ratios. These do not catch the complexity of the phenomena in

play, leaving unanswered several questions, from the contribution

of inter-cell heterogeneity to the origin of dose-dependence, from

the dynamics of the response of checkpoint controls to the

overlapping of cytostatic and cytotoxic phenomena [1–3]. In

particular, biomedical research is now acknowledging the impor-

tance of cell-to-cell diversity and dynamic variability for protein

levels [4–7] and response to environmental interactions [8] or

treatments [9], even within populations of genetically identical

cells. This calls for a probabilistic view of the single cell response

representing a change of perspective compared to exclusively

molecularly-driven research, often dominated by a deterministic-

mechanistic view according to which a drug makes a given effect

or not, without specifying the probabilities of the events and their

dose-dependence.

Mathematical modelling is increasingly adopted to tackle

biological complexity, together with experimental procedures

producing appropriate quantitative data, for in silico rendering of

biological structures and processes in different fields and scales,

from X-ray crystallography to medical imaging [10–14]. The

question is normally tackled by adopting a computational model of

the biological phenomenon, whose inputs are meaningful biolog-

ical parameters and outputs are measurable quantities. For

instance, in the crystallography field a model of the diffraction

keeps the 3D structure of a molecule as input and gives as output

the data that a molecule’s crystal would produce when challenged

in X-ray diffraction experiments. The model can be used in two

ways: to infer the 3D structure from experimental data (optimi-

zation problem) or to simulate the expected data from hypothetical

3D structures (simulation) [15].

Adopting a conceptually similar approach, we present here a

mixed experimental/computational method (Figure 1) to render

the process of proliferation at the cell population level, using a

computational model whose input parameters are simple descrip-

tors of the functional activities of the main intracellular molecular

controls of the cell cycle and whose outputs can be directly fitted to

data obtained by time-lapse live cell microscopy (TL) and DNA
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flow cytometry (FC). The two platforms convey complementary

information, FC focusing on cell distributions in G1, S, G2M cell

cycle phases, TL on lineage trees following cells in subsequent

generations.

Valuable examples of modelling proliferation over subsequent

generations can be found in the immunological field, were data

from cells labelled with suitable trackers are exploited to follow

lymphocyte expansion after introduction of stimuli triggering their

entry in cycle [16,17]. These models usually do not include cell

cycle phases. On the other hand, models based on cell cycle phases

were used [18,19] and adapted to model treatment [20] not

distinguishing generations, although effects of treatment were

observed not only in cells directly exposed but also to their

descendants [21,22].

In this paper we attempt to build a model deciphering the effects

of treatment including both cell cycle phases and subsequent

generations, exploiting together FC and TL data. By modelling

proliferation at the cell population level it was possible to

incorporate different kinds of heterogeneity in the structure of

the model, both for untreated and treated cell populations. For

untreated cells, intercell heterogeneity was included by distin-

guishing G1, S and G2M phases and introducing frequency

distributions of the duration of each phase. After treatment,

observations demonstrate that some cells die other survive, some

are blocked in a given phase, and among them some die and

others cycle and reach subsequent generations and so on. In this

case the heterogeneity is rendered by the model parameters

themselves, which are probabilities or rates of occurrence of each

phenomenon in play and were applied to the cell cohorts arriving

at each checkpoint at a given time.

A multi-phase and multi-generation model for proliferation in

the absence of treatment was already presented [23] showing the

feasibility to reproduce proliferation at a deeper level than models

explaining simply the time course of the overall cell number or

equivalent measures, or cell phase percentages alone or cell

generations alone. This model was here modified to include the

effects of a treatment. Our previous attempts in treatment

modelling were based on ‘‘single-cycle’’ models, where cells after

division re-enter in the same cycle and generations were mixed,

and on FC data, alone or coupled with absolute cell counts, with

simplified descriptions of the time-dependence of checkpoint

activities, and trial-and-error simulations [24]. These treatment

models were revised and modules rendering the main effects of

treatments were included in each phase and generation of the

multi-phase and multi-generation model. This eventually enabled

us to explain most of time-dependences required in the previous

treatment models as different effects in subsequent generations.

Moreover, a non-linear fitting procedure was included and,

correspondingly, the experimental design was strongly enriched,

with the inclusion of TL data, for different treatment doses.

Setting the method obliged us to study and solve a number of

related subproblems, concerning the data structure, the cell cycle

model and the optimization (Figure 1). A robust rendering of the

proliferation process up to the fourth generation was achieved,

designing a formal workflow for model building and fitting,

considering contemporaneously data from treatments at different

doses and exploiting cross-validation between FC and TL datasets.

This approach was used here to disclose the details of the

proliferation of a cancer cell population after X-ray exposure,

leading to a measure of the dose- and time-dependence of the

main checkpoint activities and of the balance between recycling

and death over three cell generations after treatment. Recon-

struction of the process was then used for in silico experiments,

evaluating the consequences of default or potentiation of specific

checkpoints on the overall effect of treatment.

Results

Experimental plan and data structure
Human ovarian cancer cells (IGROV-1) in exponential growth

were exposed to different doses of X-rays (0 h). The response to

the treatment was monitored over time using TL and FC

(Figure 2). Two FC techniques were applied (Figure 2A): i)

monoparametric cell cycle analysis, which gave FC DNA

histograms, ii) BrdU pulse-chase, which gave biparametric DNA-

BrdU histograms at different times after treatment. Through a

first-level analysis (supplementary Text S1), we obtained time-

courses of FC cell percentages in cell cycle phases and BrdU

subsets, which were collected in the FC database.

TL movies (see representative examples as supplementary

Videos 1 and 2) were analysed tracking all the cells in the fields

of view at 0 h, defined as ‘‘generation 0’’ (gen0), and their

descendants, constituting gen1, gen2 etc. Observations were

collected in a ‘‘lineage database’’ reporting for each cell: i) a cell

identification code, including information about treatment, field,

lineage and generation number; ii) time of birth; iii) time and kind

of outcome (mitosis (M), death (D), survival at 72 h (S), re-fusion of

two newborn cells to make a polyploid one (R) or loss from the

field of view (FL)) (Figure 2B). Other events, like anomalous

mitoses (resulting in three or four offspring), occurred with a

frequency lower than 1% and were neglected in this analysis.

Lineage data were then analysed, deriving cell population

statistics. For each dose we calculated: i) the frequency distribution

of intermitotic times; ii) the time course of the number of cells in

each generation and of polyploid cells, relative to the number of

cells present at 0 h and corrected for FL cells; iii) the frequency of

the cell events in each generation. These data made up the three

sections of the TL database.

Qualitative visual inspection of FC and TL data after this first

level of analysis already enabled us to depict a preliminary view of

the effects of X-ray exposure (supplementary Text S2). TL data

(Figure S1) indicated the presence of cell cycle delays even at

Author Summary

The antiproliferative response to anticancer treatment is
the result of concurrent effects in all cell cycle phases,
where molecular control pathways (checkpoints) are
activated and cells may be arrested to repair DNA damage
or killed if not able to succeed in the repair process. The
complexity and inter-cell variability of these phenomena
are not captured by the available methods, and the origin
of the dose-dependence of the response remains elusive.
In this work, we present an experimental-computational
method that discloses and measures the individual
responses of cell cycle controls in each phase and
generation. We demonstrate that the method, exploiting
jointly data sets obtained by flow cytometry and time-
lapse in vivo imaging with a suitable experimental design,
is able to achieve a full reconstruction in silico of the actual
movement of cell cohorts following X-ray exposure,
providing separate and quantitative measures of the
dose-dependence of G1, S and G2M checkpoint activities
in subsequent generations. Best fit parameters values are
actual measures of the probability of activation of the
specific pathways of arrest, repair or death within the cell
population, linking the molecular scale to the ‘‘macro-
scopic’’ response, with full appreciation of its dynamics
and inter-cell heterogeneity.

Generation-Wise Cell Cycle Modelling
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0.5 Gy, and cell death was detectable from 2.5 Gy, and up to

gen2; some sibling cells eventually re-fused, producing a subset of

polyploid cells within which mitosis was a rare event. FC data

provided complementary information, indicating the activation of

blocks/delays in all cell cycle phases, but without distinguishing

different generations (Figures S2, S3).

Cell cycling models
The overall process of proliferation of cancer cell populations

involves the passage of cell cohorts through cycle phases in

subsequent generations. Treatment changes the cycling (i.e. the

‘‘unperturbed’’ cycling of untreated controls), imposing delays and

blocks and killing cells with different mechanisms in each phase.

This is reflected in the structure of the modelling framework

implemented in silico (Figure 3A). Response to treatment was

modelled with modules for G1, S and G2M checkpoint response in

gen0, gen1, gen2 etc. superimposing and modifying the flow of the

cells through the cycle. An additional module governs polyploi-

dization at the end of each generation. The user interface of the

software enables the researcher to build the desired model,

including the modules of choice for G1, S and G2M in gen0, gen1

etc. (see supplementary Dataset S2).

The rendering of the proliferation works on cohorts of cells

whose positions within G1, S or G2M are tracked by their age

(time from entering) in that phase. Cells are grouped in each phase

within age compartments of length D and straightforward balance

equations connect the age distributions of cells at time t to those at

time t+D (Figure S4). When a group of cells ends the cycle and

divides, their offspring enter the next generation at the beginning

of G1. This modelling of the cell flow through the cycle was

extensively tested in previous studies [24–27] and is consistent with

the general mathematical theory of age-structured cell populations

[24–30], with the simple assumption of the balance of the number

of cells entering, lost and exiting in each compartment. Recently,

we introduced a separate simulation for cell populations of

different generations, using this model to render the proliferation

of a cell population by fitting at once FC and TL data [23]. The

section ‘‘Modelling proliferation of untreated cells’’ recapitulates

the model, including a further generalization for future uses. Using

this model, cycling of the untreated IGROV-1 cell population was

simulated (Figure S5) on the basis of average and coefficient of

variation of the time spent in each phase and refined including

quiescence characteristics for the cell line under study, calculated

in preliminary TL and FC experiments, during asynchronous

exponential growth. In addition to measuring cell cycle percent-

ages and the number of cells in each generation, these experiments

included the measure of intermitotic times, a detailed time course

after BrdU pulse labelling and evaluation of quiescent cells by

continuous BrdU labelling.

In order to render proliferation in the presence of an anticancer

treatment, the basic proliferation model was nested with a model

of the response to treatment, considering that the response can be

very different not only in each cell cycle phase but also in

subsequent generations. For this purpose, cycling of treated

Figure 1. Outline of the experimental/computational method. (A) Individual cancer cells respond to the challenge of a treatment activating
molecular pathways that cause cell cycle arrest, damage repair or cell death. The response has complex time-dependence and the effects are still
detectable in the descendants of the cells exposed to the drugs. Cell outcomes are not homogeneous, and the overall antiproliferative response at
the cell population level is the sum of the different stories of all cells. (B) Different experimental techniques can be applied to interrogate the
biological system and retrieve information about cell proliferation during or after treatment. Flow cytometry gives percentages of cells in the various
cycle phases, while time-lapse live cell microscopy indicates the propagation of the effects through subsequent cell generations. A proper
experimental plan, including time course measures with both techniques on samples treated with different doses, can potentially give a complete
scenario of the effects in play, but is not easy to interpret. (C) A computer model renders in silico the dynamics of cell proliferation, based on
parameters associated with unperturbed growth and the activity of cell cycle checkpoints, producing outputs that mimic experimental data obtained
with both FC and TL platforms. A best fit rendering fully consistent with all experimental data discloses the details of the proliferation and of the
underlying checkpoint activities, with their dose-dependence.
doi:10.1371/journal.pcbi.1003293.g001

Generation-Wise Cell Cycle Modelling
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samples was simulated by perturbing the basic flow of untreated

cells with modules that can be applied to any phase. Module types

for G1 phase are shown in Figure 3, panels B to D (see

Computational Methods for details). Modules render complex

biological phenomena, e.g. the operation of a checkpoint in a

specific cell cycle phase, with the minimum choice of parameters

that enables quantifying the main antiproliferative effects (block,

block recovery or death) occurring in that phase. The cycling cells

death module (Figure 3B) mimics an immediate cell loss, possibly

occurring at high doses with no detectable previous cell cycle

arrest. The mitosis/polyploidy module (Figure 3C) deviates

polyploid cells to a specific pool. Four different types of modules

render checkpoint activity with increasing levels of complexity

(Figure 3D). At the lowest level (type I), the effect is simply a delay

of the progression in the phase where it is located. Type II acts

permanently arresting a fraction of the cells transiting to the next

phase in a specific compartment of blocked cells, which then may

die or not, according to a ‘‘death probability’’ parameter. Type II

can be applied together with a type I module, modelling a

situation where some cells are permanently arrested and eventu-

ally die, while the others are simply delayed. Type III aims at

rendering the competition between repair and cell death in

blocked cells, adding a new parameter describing recycling to the

type II module. Type IV adds further complexity to type III,

introducing time-dependence for the onset of one or more of the

effects (block, recycling or death). Parameters of each module are

probabilities (e.g. a ‘‘block probability’’) or rates (e.g. a ‘‘death

rate’’) of a specific event in the phase and generation where the

checkpoint is located.

For any set of values of the input parameters of all modules, the

software (supplementary Text S4) gives the simulation of the entire

time course of the progression of the cell population within the

phases and in subsequent generations, of both BrdU2 and BrdU+

cycles, and plots the results. Outputs are simulated data equivalent

to those obtainable with different experiments, like cell cycle flow

cytometry, time lapse imaging, Coulter counter and potentially

any proliferation-based test (see Computational Methods).

Optimization
A rational workflow (Figure S6 and supplementary Text S4) was

devised to build progressively the most suitable model of X-ray

treatment, starting from the simplest and adding complexity when

required, reaching a balance between the desired detail of

rendering the process and the available data, avoiding over-

simplification on one hand and over-parameterization on the

other. Testing of tentative models was based on non-linear fitting

of individual doses first, then performing a multi-dose fitting

considering all data together. For multi-dose fitting, single dose

parameters were constrained to obey simple dose-response

relationships, using Hill or gamma functions. The workflow was

successfully applied to fit simultaneously all FC and TL data of all

doses in the experiment of X-ray exposure of IGROV-1 cells

(Figure 4). The resulting best fit with the final model gives a

dynamic (0–72 h) rendering of the flow of cells through the phases

of the cell cycle and through subsequent generations, for controls

and each X-ray dose (Videos S1 to S5). Figure 5 shows the cell

cycle distribution at representative times and doses taken from the

Movies 1 (control), 2 (0.5 Gy) and 4 (5 Gy). In particular the

Figure 2. Experimental plan and first-level data analysis. For FC analysis, cells from replicated samples were collected, fixed and stained at 6,
24, 48 and 72 h. For TL, the same fields were snapped every 20 min up to 72 h in replicated wells. The same experimental protocol was adopted for
controls and 0.5, 2.5, 5 or 10 Gy exposures. (A) Representative FC data: i) monoparametric cell cycle analysis, from which we calculated %G1, %S,
%G2M, ii) biparametric DNA-BrdU analysis after BrdU pulse labeling, from which we calculated the percentages of BrdU-positive cells (%BrdU+), i.e.
cells which were in S phase at the time of labelling, and undivided BrdU+ cells (%Und+). (B) Representative TL data: movies were collected and each
cell was tracked with its descendants. At least 300 lineages were analysed in each treatment group. Three representative lineages are shown, where
coloured squares indicate the outcome event of each cell. Analysis of lineage data gave population statistics like frequency distribution of
intermitotic times and number of cells in each generation (bottom).
doi:10.1371/journal.pcbi.1003293.g002

Generation-Wise Cell Cycle Modelling
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0.5 Gy panels show that cells arrested in gen1 at 24 h were no

longer there at 72 h, and most cells (85%) were cycling in gen3 at

72 h. Instead, at 72 h, 5 Gy-treated cells are distributed in the G1

and G2M blocks in gen1 and gen2 (40%) and in the polyploidy

compartments (17%), with few (10%) cycling cells in gen3. The

details of the dynamics of the process can be appreciated in the

respective Supplementary Videos. Supplementary Dataset S3

includes FC and TL data of all X-rays doses and the user interface

to simulate the final model, together with the instructions to

download and run the simulation program as a Matlab standalone

executable file (PaoSim_MultiDose).

G1 and G2M block/repair/death in irradiated cells
Rendering the proliferation in silico enabled us to retrieve

information not available by direct observation and to quantify the

processes in play. In particular, the best fit provided a quantitative

evaluation of the activity of each checkpoint, separately in

irradiated cells (gen0) and their descendants (Figure 6).

We found that the G1 checkpoint was activated in cells

directly exposed to radiation at all doses (Figure 6A, gen0),

inducing a partial G1 block immediately after exposure.

Blocking activity was relatively weak at 0.5 Gy and high at

2.5 Gy, with no further increase at 5 and 10 Gy. G2M block

probability was similar to that in G1 at 2.5 Gy, but was stronger

and continued to increase at higher doses. Among cells reaching

G2M in gen0 (i.e. not only cells originally in G2M but also those

irradiated in G1 and S that progressed in the cycle) .95% were

intercepted there at 10 Gy.

The fate of cells blocked in G1 and G2M was different. All G1-

blocked cells were able to recycle only with 0.5 Gy, then gradually

the recycling decreased and death increased, and at 10 Gy the

majority of these cells eventually died (Figure 6B, gen0). In

contrast, the balance between repair and death among G2M-

blocked cells in gen0 was completely on the side of repair, as at

least 95% of those cells eventually succeeded in dividing and

entering gen1 also at the highest dose.

Figure 3. Structure of the modelling framework, with detail of cell progression and perturbation modules. (A) The model reproduces
the flow of cell cohorts through the cell cycle phases and subsequent generations, each phase including specific quiescence (Q) and perturbation
modules. A cohort of cells entering a phase is first processed by the quiescence module, committing a fraction of them to the G1 quiescence
compartment. Then untreated cells progress through the subsequent age compartments of each phase, exiting at different ages as shown in Figure
S4 and detailed in supplementary Text S3. In treated samples this process is altered by perturbation modules, which can be applied to any phase,
providing a flexible framework to build proliferation models with the desired complexity. (B) Cycling cell death module, exemplified for G1 phase. It
applies first-order death kinetics to all cycling cells in phase G1 with a rate DRG1. (C) The mitosis/polyploid module acts on dividing cells, doubling the
number of cells exiting G2M and assuming that a fraction (pPol) of newborn siblings re-fuse, collecting re-fused (polyploid) cells in a separate
compartment, from which they die with a rate DRPol. (D) Checkpoint modules, exemplified for G1 phase. A specific type of checkpoint module can be
selected, as described in Computational Methods, with parameters DelG1 (producing a transit delay), pBLG1 (block probability), DRBLG1 (death rate of
blocked cells), RecG1 (recycling rate of blocked cells).
doi:10.1371/journal.pcbi.1003293.g003

Generation-Wise Cell Cycle Modelling
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G1 and G2M block/repair/death among descendants of
irradiated cells

After the first division, cells irradiated with 0.5 Gy were

minimally perturbed in gen1 and gen2, 25% of them being

temporarily arrested or delayed in G1 (Figure 6A, gen1 and gen2).

At higher doses, cell cycling was strongly hampered in all phases.

50% of the cells traversing G1 were intercepted and blocked there

with 2.5 Gy or higher doses (Figure 6A, gen1 and gen2). Most of

these G1-blocked cells died or were still arrested at 72 h (Figure 6B,

gen1 and gen2). A dose-dependent G2M block was detected,

reaching 0.8 probability at 10 Gy (Figure 6A, gen1 and gen2), with

different outcome in gen1 and gen2. The majority of cells

recovered from G2M block up to 5 Gy in gen1, while in gen2 most

G2M-blocked cells died (Figure 6C, gen1 and gen2). At 10 Gy

mortality in the G2M block was high in both generations.

S checkpoint and polyploidization
The activity of S checkpoint is shown in Figure 6D, reporting

the reduction of the rate of DNA synthesis. Gen0 cells exposed to

X-rays while in S phase (BrdU+) were only moderately delayed in

that phase and eventually reached G2M. The delay was stronger at

10 Gy for cells entering S after having overcome the G1

checkpoint (BrdU2), requiring more than 20 h on average to

complete DNA synthesis. Cells in gen1 were then strongly delayed

while traversing S phase at 2.5 Gy and higher doses, and no S

checkpoint activity was observed in gen2.

Figure 4. Data and fit with the final model. Time courses of measurable quantities obtained from the final model compared with experimental
data (symbols), for each radiation dose. The good quality of the fit indicates that the model successfully predicts FC and TL data of all doses at the
same time. a) Time course of %G1, %S, %G2M; b) percentage of residual undivided BrdU+ cells (supplementary Text S1); c) number of cells in gen0
(g0), gen1 (g1), gen2 (g2), gen3 and higher generations (g3+) and polyploid (pol), normalized assuming N(0) = 1000; d) percentage of cells which died
in the 0–72 h observation time among cells entered in each generation. The symbols and error bars represent the mean and standard deviation of
experimental data of at least three independent experiments (FC) or five replicate culture wells (TL).
doi:10.1371/journal.pcbi.1003293.g004

Generation-Wise Cell Cycle Modelling
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Cell re-fusion was measured by the polyploidization module,

acting on cells entering gen1 and gen2. Polyploidization was dose-

dependent (Figure 6E), with about one third of re-fusions among

cells that divided after 10 Gy. Most polyploid cells survived

without dividing up to the end of observation, at 72 h, so that the

fate of these cells remained unknown.

In silico experiments
The final model can be used for in silico experiments, addressing

specific questions.

In a first experiment in silico we explored the impact on the

overall proliferation of checkpoint activity in gen1 and gen2. We

ran the simulation assuming the effects of radiation would be

limited to the cells directly exposed to X-rays, with no effects on

their descendants. In this scenario, we found that cancer cell

expansion was not stopped even at the highest dose (Figure 7A),

demonstrating that the events in gen1 and gen2 are crucial for the

response to treatment.

At the lowest dose, in the absence of effects on descendants, the

growth curve almost overlaps the growth of untreated cells, so

most of the modest growth inhibition has to be attributed to

perturbations in gen1 and gen2. As the dose increases, the

perturbations in gen0 become more obvious, but cell cycle

checkpoint activities on the descendants of irradiated cells still

make a major contribution to the overall effect.

Other in silico experiments were run strengthening the G1 block

or preventing the exit from G2M block, miming hypothetical co-

treatments with agents eliciting these specific effects in combina-

tion with X-rays. Figure 7B shows the effects of co-treatments with

two hypothetical drugs: drug A acting in G1, resulting in

potentiation of the G1 block, drug B acting in G2M, inhibiting

recycling from that phase, possibly acting on one of the stages of

the repair process.

At 0.5 Gy the effect of drug B is irrelevant, in view of the limited

importance of the G2M checkpoint at this dose, while drug A,

acting on G1, would potentiate the X-ray effects. At 2.5 Gy drug B

would potentiate X-rays more than drug A in the short term, but

in a long term the differences tend to disappear and eventually re-

growth would be similar in both instances. At very high doses, the

effects of drug A would become irrelevant, because the G1

checkpoint is already strong with X-rays alone. Drug B would be

more effective in the short term, but less on a longer term, as it

would prevent cells reaching the G1 checkpoint in gen1 and gen2

where cytolethal activity was greater.

The results suggest that strengthening the G1 block would

potentiate the effects of radiation, but only at intermediate doses.

A drug preventing the exit from G2M block would be more

effective in the short term, but less on a longer term.

Discussion

Mathematical modelling of biological or biomedical systems is

now facing the challenge of quantitative rendering of the biological

phenomena, taking into consideration the vast amounts of data

produced by experimental biomedicine, with appreciation of the

biological complexity, with its dynamics, and the processes of

measure, with their strengths and limitations.

Also in cancer research the demand for proper quantitative

interpretation of the processes in play is rising [31,32]. The

method we propose enables a detailed study of the mechanisms

concurring to build the response to anticancer treatment at the

‘‘cell population’’ level, where measures were made on single cells

and on a statistically representative number of them, accounting

Figure 5. Dynamic rendering t of proliferation after X-ray exposure. Cell distributions in the cell cycle and over generations are shown at
representative times (24 h and 72 h) and doses (ctrl, 0.5 and 5 Gy). The whole time courses for all doses (the final best fit model) are reported as
Supplementary Videos. The plots shows the density of cycling cells in G1 (red dots in the inner sector), S (green, intermediate sector) and G2M (blue,
external sector) phases according to their age (progressing clockwise from the starting point of each phase). The whole cycle lasts 24 h. The S and
G2M starting points are placed in the figures at points corresponding to the mean duration of the previous phase, and are preceded by a
compartment collecting quiescent cells. G1 blocked cells are presented as red dots in the intermediate sector, before the starting point of S phase,
G2M-blocked cells are blue dots at the end of the cycle, external to the G2M sector. Polyploid cells are presented as black dots in a sector placed to
the upper right of the cycle.
doi:10.1371/journal.pcbi.1003293.g005
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Figure 6. Checkpoint activities in the best-fit final model, as a function of the dose, in subsequent generations. (A), G1- and G2M-block
probability (i.e. the fraction of cell intercepted and blocked at G1 and G2M checkpoints among cycling cells entering these phases) in irradiated cells
(gen0) and their descendants (block probabilities in gen1 and gen2 were not distinguishable). (B) Outcome of G1-blocked cells, showing the
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for inter-cell variability. This provides a different view respect to

that obtained with bulk measures on cell homogenates, represent-

ing ‘‘average’’ quantities, unpredictably weighted by the relative

numerosity of cell subsets with different amounts of the measured

quantity. At the cell population level, we may exploit a very rich

amount of information, coming from established or new

techniques. It remains a challenge to find the way to organize

all that we can measure, and possibly put together complementary

information from different techniques, in order to give sense to the

observed heterogeneity. This challenge must be addressed, if we

really aim to reach an unbiased picture of the behaviour of a

multicellular system, from in vitro cultures to in vivo organs or

tumours.

We demonstrated that it is possible to integrate FC and TL

platforms via in silico rendering of the dynamics of the underlying

cell cycle progression. This was achieved with a flexible model-

building environment, which enabled us to challenge a variety of

tentative models in a manageable time. Once the model of

unperturbed proliferation was established, we progressed to study

how the system responds to a hypothetical treatment. Different

types of modules were implemented in the model, miming the

activity of cell cycle controls at increasing levels of complexity. The

user can select a specific effect and look at its consequences in

simulated experiments.

Wishing to build a model for a real treatment, we strengthened

the parameter estimation by fitting data from different treatment

levels (four X-ray doses in our example) simultaneously and

optimizing the dose-response for each parameter, with simple

regularity assumptions. This combination of data from different

doses and platforms provided internal cross-validation to exclude

the existence of multiple solutions in models including several

variable parameters. Our optimization procedure initially estab-

lishes a relatively simple model with a unique best fit solution,

which was then cautiously refined, up to the definition of a final

model, by which the data of all doses were fitted with average

errors 1.6% (FC cell cycle percentages) and 3.6% (TL cell

generation numbers) (Figure 4). The final model provided a

unifying view of the effects of radiation that puts in order and

defines the relative importance at the different doses of the main

phenomena in play, which are described separately in the

literature [21,22,33,34] (supplementary Text S5).

Study of the final model disclosed the dynamics of checkpoint

activities and their dose-dependence, showing up basic differences

between G1 and G2M checkpoint responses that were not

perceivable by simple data inspection. In particular, G2M-blocked

cells were eventually able to recover from the block and divide

even after treatment with 10 Gy, while at this dose the majority of

G1-blocked cells eventually died there. The response was not

restricted to gen0 cells, but cell cycle progression was also

hampered in gen1 and gen2. Our results strongly support the

concept of a limited efficiency of a single checkpoint to process the

damage [35], suggesting that cycling of individual cells may be

subsequently hampered in different phases. The model was also

used as a basis to explore, with in silico experiments, the

percentages of cells that re-enter the cycle, die or remain blocked at 72 h in the indicated generations. (C) Outcome of G2M-blocked cells,
symbols as in panels B. (D) Dose-dependence of the delay in phase S (fractional reduction of DNA synthesis rate) in gen0 and gen1. Data fit
required a distinction between the delay of cells irradiated in S phase (BrdU+) and in G1/G2M (BrdU2) in gen0. No delay was found in gen2. (E)
Polyploidization rate, as the percentage of cells that re-fused in gen1 and gen2. Error bars indicate 95% confidence intervals for parameter and
derived quantities (e.g. fraction of blocked cells), calculated by fitting 1000 synthetic datasets generated by a Monte Carlo procedure (see
Uncertainty Analysis in supplementary Text S4).
doi:10.1371/journal.pcbi.1003293.g006

Figure 7. In silico experiments, exploring the consequences of default of specific checkpoints. (A) Simulated growth curve in the absence
of perturbations in descendants (red line) compared to the best fit final model (black line) and proliferation in untreated cells (green line). (B) Growth
curve in the final model (black line), in the presence of an additional agent (drug A) increasing the probability of G1 block (p = 0.8) (red line) and with
an additional agent (drug B) preventing exit from G2M block (green line).
doi:10.1371/journal.pcbi.1003293.g007
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consequences of default or potentiation of specific checkpoints,

which in principle could become feasible with new, molecularly

targeted co-treatments, or may occur in tumours with

particular genetic defects. Obviously, the real response to

treatment is even more complex than the proposed model. It

does not include, for instance, possible correlations between

sibling cells for probabilities of specific outcomes, or signalling

between cells or spatial issues driving neighbour cells towards a

common fate. Still our model works at a quite high complexity

level, including details of the effects in each phase and

generation at different treatment doses. This was made possible

avoiding over-parametrization only through fitting of a very

rich and complex data set. Further details would require more

parameters and additional data, which are not precluded in

future studies.

Materials and Methods

Experimental methods
Cell culture and treatment. Cells from a human ovarian

carcinoma line (IGROV-1) were grown in RPMI-1640 medium

(Biowest) as described before [36]. For these experiments,

IGROV-1 cells were seeded in six-well plates (Iwaki) and after

two days, while in exponential growth, they were irradiated with a

RadGil (Gilardoni) 200 kVp X-ray machine at a dose rate of

1.2 Gy/min. The experiments were conducted in parallel by time-

lapse microscopy and flow cytometry. The same experimental

protocol was adopted for controls and 0.5, 2.5, 5 or 10 Gy

exposures, spanning the range from low to high efficacy based on

preliminary tests.

Flow cytometry. For flow cytometry, cells from replicated

samples were collected at the specified times, pooled, fixed in cold

70% ethanol and stained. We applied two flow cytometric

techniques: (i) monoparametric cell cycle analysis and (ii) 59-

bromo-29-deoxyuridine (BrdU) pulse labeling. For analysis of

DNA content a suspension of permeabilized cells was stained with

propidium iodide (PI) (Calbiochem) [36]. Short-term perturbations

were investigated by BrdU pulse-chase analysis. Pulse labelling was

obtained adding 30 mM BrdU (Sigma) to the cell cultures for

15 minutes. After thorough BrdU washout, the cells were

irradiated and incubated in BrdU-free medium for the indicated

times, then harvested, fixed and stained with PI and BrdU

monoclonal antibody (Becton Dickinson) [36]. Incorporation of

BrdU instead of thymidine during DNA replication enabled to

analyse separately cells in S-phase (BrdU+), from those in G1/G2M

(BrdU2) at the time of the pulse.

Time-lapse microscopy. By time-lapse microscopy we

snapped the same field of view at discrete time intervals. Cells

were seeded in six-well plates (Iwaki), irradiated while in

exponential growth, then placed on a time-lapse instrument to

capture transmission-phase images from multi-well plates. The

Imaging Station cell‘R (Olympus) used for these time-lapse

experiments consists of: a) X81 motorized inverted microscope

(Olympus) fitted with an incubator to maintain 37uC, 5% CO2

and 60% humidity (OKOlab); b) ORCA-ER CCD camera

(Hamamatsu); c) X-Y positioning stage. All images were collected

with an UPlanFLN 106 (Ph1) objective with 0.30 NA. Sequences

were captured every 20 minutes for 72 h, and for the same field in

each well.

Time-lapse microscopy movies were analysed using free ImageJ

software (W. Rasband, National Institute of Health), tracking all

cells in the fields of view (50–100 cells per field) and their

descendants, using a modified version of the ‘‘Manual Tracking’’

plug-in distributed with ImageJ.

Modelling proliferation of untreated cells
Asynchronous proliferation of untreated cell populations in the

biological system is achieved by a balance of the cell cycling process,

quiescence and cell death [37]. The multi-generation cell cycle

model, with variable phase durations but without quiescence and

death, is shown in Figure S4 and Supplementary Text S3. State

variables are G1(k,t,geni), S(k,t,geni), G2M(k,t,geni), giving the

number of cells in generation geni, with age k at time t in the

respective cell cycle phases. Model parameters are (�TTG1, CVG1, �TTS,

CVS, �TTG2M, CVG2M), i.e. the average and coefficient of variation of

the phase durations, on which basis the exit probability for each

compartment (bph kð Þ) were calculated (see supplementary Text S3).

Because quiescence and spontaneous cell death are often not

negligible even in untreated cell populations growing in vitro in

optimal environmental situations, quiescence modules were includ-

ed in G1, S and G2M to render these phenomena.

Quiescence module. Parameters: Quiescence probability

(pQph), Death rate (DRQph).

Quiescent cells are localized in a distinct Q compartment in

each phase, and their numbers G1Q(t), SQ(t) and G2MQ(t) add to

the list of the state variables of the basic model shown in Figure S4.

The probability that a cell entering G1, S or G2M phase becomes

quiescent is represented by pQG1, pQS and pQG2M respectively.

Cell death among quiescent cells due to spontaneous processes is

included in the model by parameters DRQG1, DRQS, DRQG2M.

The module can be used to render the approach to confluence,

a phenomenon that should be taken into account when the

observation lasts several days. During this process, the fraction of

quiescent cells and death events increase, progressively shifting the

distribution equilibrium, reducing the fraction of cycling cells. This

was modelled by increasing pQ, (specifically pQG1 as %G1

increases approaching confluence) using a Hill function linked to

the overall cell number. The multi-generation model was adopted

in recent publications to fit both FC and TL data in untreated cell

cultures, including refinements describing the approach to

confluence [38]. More details of the procedure of fitting of

untreated cells are reported there.

Further generalization: The multi-cycle model. We

currently use as basis of treatment modelling a multi-cycle model

which is a generalisation of the multi-generation model of untreated

cell populations. In the multi-cycle model the connection between

subsequent cycles is not fixed, with a fraction of newborns

(parameter pOuti) entering cycle ‘‘i+1’’ while the others (i.e. a

fraction 1-pOuti) re-enter in the same cycle ‘‘i’’ of their mother cells

(‘‘i’’ ranges from 0, representing the first cycle, to ‘‘f’’, representing

the final or last cycle considered). This provides flexibility to the

user, who can be interested to model different situations:

i) by setting pOut0 = 0 cells continue to re-cycle in cycle 0,

obtaining a single-cycle model (cells after division re-enter in

the same cycle and generations were mixed);

ii) by setting pOuti = 1, for i = 0 to f21, cells enter subsequent

cycles, intended as ‘‘generations’’, obtaining the multi-

generation model. Then, for the last generation ‘‘f’’ pOutf = 0

would make the cells of ‘‘f’’ and subsequent generations to be

pooled together in the final cycle. Instead setting pOutf = 1,

cells of generation f+1 would not be considered;

iii) by setting pOut parameters to any value it becomes possible to

model differentiation chains, intending the cycles as ‘‘differ-

entitiation stages’’ and pOuti as the fraction of dividing stage

‘‘i’’ cells that differentiate to the (more mature) stage ‘‘i+1’’.

Although these situations may require additional features

(e.g. feedback controls between stages) the multi-cycle model
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could be a convenient framework, in which such features

could be implemented in the future.

The dynamics of the multi-cycle model is provided by the

following balance equations (the suffix ‘‘gen’’ is replaced by ‘‘cyc’’,

cyci referring to the cycle ‘‘i’’) :

G1Q t,cycið Þ~ 1{DRQG1ð Þ:G1Q t{Dt,cycið Þ

zpQG1
:pOuti{1

:2
XkG2M

k~1

bG2M kð Þ:G2M k,t{Dt,cyci{1ð Þ

zpQG1
: 1{pOutið Þ:2

XkG2M

k~1

bG2M kð Þ:G2M k,t{Dt,cycið Þ

ð1Þ

G1 1G1,t,cycið Þ~

1{pQG1ð Þ:pOuti{1
:2
XkG2M

k~1

bG2M kð Þ:G2M k,t{Dt,cyci{1ð Þ

z 1{pQG1ð Þ: 1{pOutið Þ:2
XkG2M

k~1

bG2M kð Þ:G2M k,t{Dt,cycið Þ

G1 kz1,t,cycið Þ~ 1{bG1 kð Þ½ �:G1 k,t{Dt,cycið Þ for 1ƒkƒKG1{1

SQ t,cycið Þ~ 1{DRQSð Þ:SQ t{Dt,cycið Þ

zpQS

XkG1

k~1

bG1 kð Þ:G1 k,t{Dt,cycið Þ

S 1s,t,cycið Þ~ 1{pQSð Þ:
XkG1

k~1

bG1 kð Þ:G1 k,t{Dt,cycið Þ

S kz1,t,cycið Þ~ 1{bS kð Þ½ �:S k,t{Dt,cycið Þ for 1ƒkƒKS{1

G2Q t,cycið Þ~ 1{DRQG2ð Þ:G2Q t{Dt,cycið Þ

zpQG2
:
XkS

k~1

bS kð Þ:S k,t{Dt,cycið Þ

G2M 1G2M ,t,cycið Þ~ 1{pQG2ð Þ:
XkS

k~1

bS kð Þ:S k,t{Dt,cycið Þ

G2M kz1,t,cycið Þ~ 1{bG2M kð Þ½ �:G2M k,t{Dt,cycið Þ

for 1ƒkƒKG2M{1

where the terms containing cyci21 should be omitted in the cyc0

equations.

An additional feature already implemented in the model is the

G0 sub-phase, that is a single-compartment phase set before G1 of

each cycle. Differently than definitively quiescent cells, modelled

with the above quiescence module, G0 cells may leave G0, with

first order output kinetics, and enter G1. This enables the user to

include classical probability transition cell cycle models [39] within

our framework. The parameters associated to the G0 phase are: c
(rate of exit from G0 to G1); h (probability to by-pass G0 to enter

directly in G1) [40] and DRG0 (death rate of G0 cells). The balance

equation for G0 adds to eqs. 1:

G0 t,cycið Þ~ 1{cð Þ: 1{DRG0ð Þ:G0 t{Dt,cycið Þ

z 1{hð Þ:pOuti{1
:2
XkG2M

k~1

bG2M kð Þ:G2M k,t{Dt,cyci{1ð Þ

z 1{hð Þ: 1{pOutið Þ:2
XkG2M

k~1

bG2M kð Þ:G2M k,t{Dt,cycið Þ

ð1bisÞ

With straightforwards corresponding changes in the entry in G1

and G1Q.

In this way, the user is free to build and compare various cell

cycle models, including G0 and G1, S and G2M phases with not

fixed duration.

Starting age distribution of cells
Simulation is intended to start at a laboratory time (0 h)

corresponding to the start of a treatment in the experimental

setting. Thus the model requires the input of the age

distributions at 0 h (G1(k,0,0), S(k,0,0) and G2M(k,0,0)) from

which the time evolution is simulated according to the previous

equations. The user can provide any starting distribution, but

we chose the asynchronous distribution in all our studies aiming

at rendering experiments with non-synchronised cell popula-

tions. Any cell population, under constant environmental

conditions, reaches asynchronous exponential growth, and good

laboratory practice requires that cells are in this condition (or as

near as possible) before an in vitro treatment, for data

reproducibility. In this condition the probability distribution of

cells in the cell cycle phases and ages is time-independent. A

desynchronization routine of our program automatically calcu-

lates the asynchronous distribution, by running the cell cycling

procedure from an approximated initial distribution until the

cell cycle percentages varied by less than the desired precision

(0.1% in the present study). Then the G1, S, and G2M age

distributions were normalized in order to start the cell cycle

simulation with a given number of cells at 0 h (e.g. 1000 cells),

providing G1(k,0,0), S(k,0,0) and G2(k,0,0). A program perform-

ing the desynchronization routine is freely available as specified

in supplementary Dataset S1 (see also the Software section in

Supplementary Text S4).

To simulate pulse-chase BrdU experiments, we run two cell

cycle simulations independently for BrdU2 cells and BrdU+ cells.

The effect of pulse labeling was reproduced by splitting the starting

distribution, assigning G1(k,0,0) and G2(k,0,0) (plus quiescent cells)

to the BrdU2 cycle and S(k,0,0) to the BrdU+ cycle. Thereafter the

two cell cycle simulations proceeded independently. The program

can also reproduce the effect of labeling of any duration (if

required for specific experiments, e.g. with continuous BrdU

labeling), transferring cells entering S phase from the BrdU2 to the

BrdU+ cycle up to the time when BrdU is removed. These features

guarantee maximum flexibility to the program, to simulate

different experimental plans.

(1bis)
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Connecting the model to experimental data
At the end of a simulation run, the program derives the time

courses of several kinds of simulated data with simple calculations

from the time courses of the state variables. First, the proportions

of cells in G1, S and G2M are trivially calculated by summing the

number of cells in all compartments of that phase and dividing by

the total number of cells. These predictions are compared with

experimental FC percentages at the measurement times. Then the

program calculates the time courses of the number of cells in each

generation (Ngen(i)(t)), summing up the number of cells in all

compartments of all phases of the generation. Predicted Ngen(i)(t)s

are directly compared with the corresponding TL data.

The time course of overall cell number (N(t)) is also calculated,

summing the number of cells in all generations, and can be

compared with experimental measures obtained by TL or other

techniques (e.g. Coulter counter). Similarly, simulated percentages

of cells in the BrdU2 and BrdU+ subsets are calculated summing

the number of cells in the appropriate subset compartments and

plotted with experimental counterparts. The time course of the

percentages of undivided BrdU+ cells (%Und+(t)) is obtained by

summing the numbers of cells in all gen0 compartments of the

BrdU+ cell cycle and dividing by the overall cell number.

Another valuable item is the the distribution of Tc, measurable

by TL. It comes from frequency measures of intermitotic times in a

sampling of the whole population (we had a total of 2480 cells),

which were normalized and assumed to be representative of the

distribution of Tc in the whole population (experimental F(Tc)).

While the simulated average �TTc is easily calculated directly in our

model as �TTG1z�TTSz�TTG2M, and compared with the corresponding

datum, a specific routine was designed to calculate the whole

F(Tc), on the basis of FG1(k), FS(k) and FG2M(k). Considering two

phases, e.g. S and G2M, the joint probability that a cell traverses S

and G2M with times kS and kG2M is FS(kS)6FG2M(kG2M). Thus the

probability that the duration of S+G2M is kSG2M is given by the

formula: F(kSG2M) =gFS(kS)6FG2M(kG2M) where the summation

includes all combinations of kS and kG2M, such that

kS+kG2M = kSG2M. Then F(Tc) is calculated as F(kG1SG2M) =g
FG1(kG1)6F(kSG2M) where the summation includes all combinations

of kG1 and kSG2M, such that kG1+kSG2M = kG1SG2M.

Simulated data are derived in the same way when perturbation

modules are included except in the case of F(Tc), which was

calculated only for untreated cells.

Summarizing the simulation procedure, upon input of the

parameter values, the program: i) calculates Fph(k) and bph(k), ii)

runs the subroutine to produce the asynchronous starting cell

distribution, iii) simulates the movement of the cells through the

cell cycle in subsequent generations, calculating the time course of

the state variables up to the desired end-time, and iv) calculates the

time course of all derived quantities (such as %G1(t), %S(t) and

%G2M(t), %BrdU+(t), %Und+(t), �TTc, F(Tc), Ngen(i)(t) etc.) and

updates their plots with the corresponding experimental data.

Modelling proliferation of treated cells
Perturbations of cell cycling induced by treatment are modelled

with modules for G1, S and G2M response in the gen0, gen1, gen2

etc., superimposing and modifying the ‘‘unperturbed’’ flow of the

cell through the cycle. An additional module governs polyploidiza-

tion at the end of each generation.

The user can choose among several modules types, emulating

different biological effects, and locate them in any phase and

generation, so that it is possible to deal with the different

antiproliferative effects of anticancer treatments without modifi-

cations of the software. Supplementary Dataset S2 includes the

user interface to build a single-dose model, together with the

instructions to download and run the simulation program as a

Matlab standalone executable file (PaoSim_SingleDose). The

interested reader can also test the model for untreated cells using

the PaoSim_SingleDose program with no perturbation modules.

During the optimization procedure, the choice of the module

and module type for each phase was guided by the law of

parsimony: in general we applied the module type that satisfac-

torily reproduced the data with the smallest number of parame-

ters. The optimization procedure therefore involved several steps,

as described in supplementary Text S4.

Checkpoint modules. We implemented four types of

checkpoint modules, aiming to render the activity of a checkpoint

with increasing levels of complexity:

N Checkpoint Module Type I. Parameter: Delay (Delph).

N Checkpoint Module Type II. Parameters: Block probability

(pBLph), Death rate (DRBLph).

N Checkpoint Module Type III. Parameters: Block probability

(pBLph), Death rate (DRBLph), Recycling rate (Recph).

N Checkpoint Module Type IV. Parameters: pBLph(t)

(pBLphmax, pBLphmin), DRBLph(t) (DRBLphmax,DRBLphmin),

Recph(t) (Recphmax, Recphmin).

With checkpoint module type I, cell cycle progression is

hampered in the phase where the module is located, resulting in

a longer phase duration. Cell death is not considered and each

type I module has only one input parameter, rendering a

progression delay within a phase. Delph is comprised between 0

(no effect) and 1, the latter indicating complete cell ‘‘freezing’’

within that phase, and affects the average duration of a phase

according to the formula:

�TTDel
ph ~

Tph

1{Delph

� �

where �TTDel
ph is the average duration of a phase ‘‘ph’’ (either G1, S or

G2M) in the presence of delay and �TTph in its absence. The delay

parameter in phase S is equivalent to the fractional reduction of

average DNA synthesis rate in replication, so equation (2) can be

rewritten as

DNAtot

�TTDel
ph

~ 1{DelSð ÞDNAtot

�TTS

where DNAtot is the total amount of DNA to be replicated.

Similarly, DelG1 and DelG2M emulate a lengthening of the respective

phases with a generic connection with the underlying molecular

events tracking the maturation within G1 or G2M.

In the model, this checkpoint module acts on all age

compartments of a phase, keeping in the original compartments

a fraction (Delph) of the cells that should have moved to the next

(i.e. from k to k+1) in a given step-time. Thus, the ph(k,t, geni)

equations (1) of the number of cells in compartment k of the

generic phase ‘‘ph’’ are modified by this module as follows:

ph 1,t,genið Þ~Delph
:ph 1,t{Dt,genið Þ: 1{bph 1ð Þ

� �

ph kz1,t,genið Þ~ 1{Delph

� �
:ph k,t{Dt,genið Þ: 1{bph kð Þ

� �

zDelph
:ph kz1,t{Dt,genið Þ: 1{bph kz1ð Þ½ � kw1

ð3Þ
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It is possible to demonstrate by simulation that this modelling

prolongs the phase duration specified by equation (2), dealing also

with the limit case Delph = 1.

If only modules of this kind are applied in a given generation,

the average cell cycle can be calculated with the formula:

�TTDel
C ~

�TTG1

1{DelG1ð Þz
�TTS

1{DelSð Þz
�TTG2

1{DelG2ð Þ ð4Þ

�TTDel
C compares with the corresponding experimental datum

obtained in TL.

Checkpoint module type II emulates cell killing induced by

treatment assuming that part of the cells passing through a phase

are first arrested then possibly die. pBLph represents the probability

that a cell does not exit a phase, becoming definitively blocked

there. The simulation diverts a corresponding fraction of cells,

among those completing a phase at a given time, into a separate

compartment of blocked cells. DRBLph is the probability of dying,

among blocked cells, in a step-time. The model makes no

distinction between different death processes (apoptosis, necrosis,

etc.), and only considers the final loss of the dead cells from the

number of counted cells. Additional balance equations for the

number of blocked cells (Bph(t, geni)) were included as follows:

Bph t,genið Þ~ 1{DRBLph

� �
:Bph t{Dt,genið Þ

zpBLph
:
Xkph

k~1

ph k,t{Dt,genið Þ:bph kð Þ
ð5Þ

with consequent modifications of the equations for quiescence and

the first compartment of the next phase, to take account of the

reduced entry due to the cells blocked in the previous phase.

Checkpoint module type II is compatible and can be joined with

type I, to describe the effect of treatment with three parameters

(Delph, pBLph, DRBLph).

Type III modules include the connections between block,

recycling and killing, assuming three alternative fates for cells

intercepted at the checkpoint: i) to repair the damage and recycle,

entering the next phase, ii) to die at the checkpoint, or iii) to

remain definitively blocked. Recph is the probability that a blocked

cell re-enters the cell cycle in a step-time. This parameter is

indicative of possible repair that can occur in cells blocked at each

checkpoint. pBLph is the probability of being intercepted by the

checkpoint for cells passing through a phase, including cells

definitively or temporarily blocked in that phase; as such it is a

measure of the strength of the checkpoint itself (differently from

the block parameter in model II). In the in silico rendering of the

process, a fraction of cells corresponding to the Block probability is

deviated into the block compartment, where they may die,

according to the Death rate, or exit, according to the Recycling

rate. The corresponding equation for the compartment of blocked

cells was modified as follows:

Bph t,genið Þ~ 1{Recph

� �
: 1{DRBLph

� �
:Bph t{Dt,genið Þ

zpBLph
:
Xkph

k~1

ph k,t{Dt,genið Þ:bph kð Þ
ð6Þ

and the pool of cells entering the next phase was accordingly

modified, to take into account blocked and recycled cells.

With type III the increase of Tc is the consequence of the

dynamics of entering/exiting the block, emulating the biological

process of G1 and G2M checkpoints in a more realistic way than

the Delay parameter used in type I modules, which are better to

render hampering DNA replication caused by the S checkpoint.

However, differently from type I, no simple relationship can be

drawn between the values of a type III and �TTph.

Type IV is a refinement of type III. We considered time-

dependent parameters to render a delay between block and

subsequent recycling or death rate. We modelled the time

dependence with a Hill function, as

y tð Þ~startz
end{startð Þ:tm

IT50mztm

where t is time, y is either pBLph(t), DRBLph(t) or Recph(t), start and

end are initial (t = 0) and final (asymptotic) values, IT50 the time when

half the maximum is reached and the sigmoidicity ‘‘m’’ measures the

steepness of the curve. In the present studies we kept the parameters

IT50 and m fixed, with values based on inspection of the data and on

simulation tests. In addition, to avoid over-parameterization, we

applied this module only in gen0, when the data provided

compelling evidence for time-dependence of recycling.

Cycling-cells death module. Parameters: Cycling cells

death rate (DRph).

An additional module was required to model immediate cell

death, possibly occurring at high doses with no detectable previous

cell cycle arrest. This was trivially obtained with a single death rate

parameter (DRph), acting on all non-blocked cells in a phase.

Because this module was designed to model immediate cell death,

it was used only in gen0.

Mitosis module. Parameter: m = 2 (fixed).

The mitotic module in the present study simply doubles the

number of cells that ends a cycle before they enter the next

generation. In general, m,2 would render cell death in mitosis.

Polyploid module. Parameters: Polyploidization probability

(pPol), Polyploid cells death rate (DRPol).

Polyploidization was modelled introducing the parameter pPol,

representing the probability that newborn cells re-fuse together,

and the corresponding death rate (DRPol). The polyploid module

assumes that a fraction (pPol) of newborns re-fuse, collecting re-

fused (polyploid) cells in a separate compartment, where they die

at a rate DRPol. Polyploid cells were localized in a new

compartment and the equation for the number of polyploid cells

(Pol(t, geni), for gen1 and higher generations) was:

Pol t,genið Þ~Pol t{Dt,genið Þ: 1{DRPolð Þ

zpPol:RecG2M
: 1{DRBLG2Mð Þ:BG2M t{Dt,geni{1ð Þ

zpPol: 1{pBLG2ð Þ
XkG2

k~1

G2M k,t{Dt,geni{1ð Þ:bG2 kð Þ

ð7Þ

with consequent changes of equations for G1Q(t, geni) and G1(1G1, t,

geni).

A refinement of this module led us to introduce a time-

dependence of pPol, with a Hill function as in checkpoint module

type IV.

Supporting Information

Dataset S1 User interface for the desynchronization
routine, including instructions to download and run the
Matlab standalone executable file (PaoSim_Desync) that
performs the simulation.

(XLS)
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Dataset S2 User interface for building a single-dose
model, including instructions to download and run the
Matlab standalone executable file (PaoSim_SingleDose)
that performs the simulation.

(XLS)

Dataset S3 User interface for the final multi-dose
model, including instructions to download and run the
Matlab standalone executable file (PaoSim_MultiDose)
that performs the simulation. This dataset includes FC and

TL data of IGROV-1 cells treated with X-rays as described in the

main text.

(XLS)

Figure S1 Main statistics of TL experiments. The

cumulative distribution of the time to division in gen0 (panel A)

and the average Tc in gen1 and gen2 (panel B) were indicative of

cell cycle delays, the percentage of dead cells in each generation in

the whole 0–72 h observation time (panel C) of the cytolethal

effect, the percentage of re-fused cells (panel D) of the

polyploidization. Columns and error bars in panels B, C and D

represent mean and standard deviation respectively, in at least five

independent culture wells. All wells were pooled in panel A.

(TIF)

Figure S2 Main results of FC experiments: DNA histo-
grams. Abscissa is proportional to cellular DNA content, with G1

and G2M cells in the positions indicated. Signals below the G1

peak indicate the presence of cell debris, at doses and times

consistent with cell death observed with TL. Signals above the

G2M peak indicate tetraploid cells, again confirming TL

observations.

(TIF)

Figure S3 Main results of pulse-chase BrdU experi-
ments. Representative dot plots for a pulse-chase BrdU

experiment, taken at 6 h (upper panels) or 24 h (lower panels).

Abscissa: cellular DNA content measured by PI fluorescence. The

positions of G1 and G2M are indicated. Ordinate: cellular BrdU

content measured by Anti-BrdU and a secondary FITC-labeled

antibody. The lines mark the region of interest, separating BrdU+

from BrdU2 and divided from undivided BrdU+ cell subpopula-

tions.

(TIF)

Figure S4 Basic cell cycle model with variable phase
durations. Cells enter the first age compartment (0–0.5 h) in a

phase ‘‘ph’’ (G1, S or G2M) then gradually progress through the

subsequent age compartments, while other cohorts enter the

phase. Because the time spent in a phase (Tph) is variable for the

cells of the cohort, when the cohort reaches a given age, it has

been depleted of the cells that have already completed the phase

and a further fraction (bph) of the remaining is expected to exit the

phase at that age. The exit probability bph is a function of age that

univocally depends on the average (�TTph) and coefficient of

variation (CVph) of the phase durations. At a given time, some

cells from all age cohorts complete the phase, collectively forming

the pool of exiting cells that will enter the next phase model at the

next time.

(TIF)

Figure S5 Model of IGROV-1 proliferation (asynchro-
nous growth). Data from preliminary experiments with

untreated IGROV-1 cells during exponential growth were fitted

with the model described in Computational Methods. Further

refinements were included when fitting departed from exponential

growth (e.g. the approach to confluence) as reported elsewhere

[38] [23]. Left panels: best fit parameters. Main parameters were

the average phase durations and their CV (with the frequency

distributions of TG1, TS and TG2M shown in the lower panel).

Additional parameters (probabilities of quiescence: pQG1, pQS,

pQG2M and death rate: DRQ) were included to explain the small

percentage (4–8%) of quiescent cells observed by BrdU continuous

labelling or TL and spontaneous death (1–3% per generation)

observed by TL, as required to fit simultaneously all data shown in

the right panels. Right panels: experimental data (symbols) and

simulation (continuous lines) including: A) cell cycle percentages

from monoparametric FC, B) BrdU+, Und+ and %Res+

(percentage undivided among initially labelled cells, see supple-

mentary Text S1) from FC BrdU pulse chase experiments, C) time

course of the number of cells in each generation (normalized

assuming N(0) = 1000) from TL, D) frequency distribution of

intermitotic times from TL (2480 cells).

(TIF)

Figure S6 Flow chart of the optimization procedure.
(TIF)

Table S1 Qualitative inspection of TL data.
(DOC)

Table S2 Modules and parameters of the single-dose
model A.
(DOC)

Table S3 Dose-dependence and variable coefficients in
multi-dose model A.
(DOC)

Table S4 Dose-dependence and variable coefficients in
the final model.
(DOC)

Table S5 Best fit values of variable parameters in the
final model, with 95% confidence intervals.
(DOC)

Text S1 First-level data analyses.
(DOC)

Text S2 Data inspection.
(DOC)

Text S3 Modelling proliferation of untreated cells.
(DOC)

Text S4 Optimization procedure and softwares.
(DOC)

Text S5 Antiproliferative response to X-ray exposure.
(DOC)

Video S1 Movie of a representative control sample
obtained by TL microscopy. Only one frame per hour is

shown to reduce file size.

(AVI)

Video S2 Movie of a representative treated sample
(5 Gy) obtained by TL microscopy. Only one frame per hour

is shown to reduce file size.

(AVI)

Video S3 Computer rendering of cell cycle progression
in untreated cells.
(AVI)

Video S4 Computer rendering of cell cycle progression
after 0.5 Gy exposure.
(AVI)
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Video S5 Computer rendering of cell cycle progression
after 2.5 Gy exposure.

(AVI)

Video S6 Computer rendering of cell cycle progression
after 5 Gy exposure.

(AVI)

Video S7 Computer rendering of cell cycle progression
after 10 Gy exposure.

(AVI)
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