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Purpose: Glioma is the most common primary brain tumor, with varying degrees of
aggressiveness and prognosis. Accurate glioma classification is very important for
treatment planning and prognosis prediction. The main purpose of this study is to
design a novel effective algorithm for further improving the performance of glioma
subtype classification using multimodal MRI images.

Method: MRI images of four modalities for 221 glioma patients were collected from
Computational Precision Medicine: Radiology-Pathology 2020 challenge, including T1,
T2, T1ce, and fluid-attenuated inversion recovery (FLAIR) MRI images, to classify
astrocytoma, oligodendroglioma, and glioblastoma. We proposed a multimodal MRI
image decision fusion-based network for improving the glioma classification accuracy.
First, the MRI images of each modality were input into a pre-trained tumor segmentation
model to delineate the regions of tumor lesions. Then, the whole tumor regions were
centrally clipped from original MRI images followed by max–min normalization.
Subsequently, a deep learning-based network was designed based on a unified
DenseNet structure, which extracts features through a series of dense blocks. After
that, two fully connected layers were used to map the features into three glioma subtypes.
During the training stage, we used the images of each modality after tumor segmentation
to train the network to obtain its best accuracy on our testing set. During the inferring
stage, a linear weighted module based on a decision fusion strategy was applied to
assemble the predicted probabilities of the pre-trained models obtained in the training
stage. Finally, the performance of our method was evaluated in terms of accuracy, area
under the curve (AUC), sensitivity, specificity, positive predictive value (PPV), negative
predictive value (NPV), etc.

Results: The proposed method achieved an accuracy of 0.878, an AUC of 0.902, a
sensitivity of 0.772, a specificity of 0.930, a PPV of 0.862, an NPV of 0.949, and a Cohen’s
Kappa of 0.773, which showed a significantly higher performance than existing state-of-
the-art methods.
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Conclusion: Compared with current studies, this study demonstrated the effectiveness
and superiority in the overall performance of our proposed multimodal MRI image decision
fusion-based network method for glioma subtype classification, which would be of
enormous potential value in clinical practice.
Keywords: glioma classification, multimodal MRI images, decision fusion, tumor segmentation, deep learning
INTRODUCTION

Glioma is the most common primary tumor of the brain and
spine, representing 80% of malignant brain tumors (1) and
having varying degrees of aggressiveness and prognosis. The
clinical manifestations of glioma include increased intracranial
pressure, neurological/cognitive dysfunction, and seizures.
According to the 2016 WHO classification of tumors of the
central nervous system (CNS), glioma can be classified into
astrocytoma (grade II or III), oligodendroglioma or
mesenchymal oligodendroglioma (grade II or III), and
glioblastoma (grade IV), depending on the pathology and
molecular alterations (2). Low-grade glioma is well-
differentiated and presents an aggressive growth pattern in
terms of biological characteristics, whereas high-grade glioma
is a malignant brain tumor that is difficult to identify and has a
poor prognosis (3).

Precise glioma classification or grading is crucial for deciding
the right therapeutic strategies that may further impact the
prognosis process of patients (4, 5). In clinical practice, MRI is
the standard medical imaging technique for brain tumor
diagnosis for its advantages of relative safety and non-
invasiveness as compared to pathological biopsy examinations
(6). With respect to unimodal MRI images, multimodal MRI
images can provide more morphological, functional, and tumor
metabolic status information due to their correlation and
complementary information for all types of brain tumors.
Clinically, the low contrast between tumor masses and
surrounding tissues as well as the varying levels of physicians’
experience may lead to misdiagnosis; more importantly,
diagnosing based on manual analysis is a time-consuming
procedure (7). With the development of artificial intelligence
and computing facilities, computer-aided diagnosis (CAD)
technology based on computer vision has been applied to
many medical fields and provides help for physicians in
visualization and tumor identification to improve the
subjective diagnosis manually (8).

So far, the methods for brain tumor classification in the latest
studies can be loosely classified into two categories: traditional
machine learning methods and deep learning methods (9).
Among the latest traditional machine learning methods (5, 10–
12), the most commonly used one is radiomics. Radiomics uses
data characterization algorithms to extract quantitative features
from MRI images (13, 14), and these features usually contain
complex patterns that are difficult to recognize or quantify by
human eyes, such as tumor heterogeneity, infiltration, and
metastasis (15). The other general method is deep learning,
which was successfully applied to tumor segmentation (16),
g 2
tumor classification (7, 8, 17), survival prediction (4, 18), and
molecular genetic prediction (19, 20) for its powerful feature
representation in medical imaging fields. Compared with
radiomics-based methods, deep learning-based methods do not
need domain-specific knowledge for feature extraction and
outcompete the formers when experimental data are sufficient.
Furthermore, considering the powerful feature learning
capability of deep learning and the powerful classification
capability of traditional machine learning, researchers have
combined them together for glioma classification or grading
(21–23).

The aim of this study was to diagnose the glioma subtype
preoperatively using MRI images only for assisting in making
appropriate treatment decisions. Misdiagnosis caused by
inaccurate glioma prediction algorithm may lead to severe
injury or death, so prediction accuracy is the most concerned
performance undoubtedly. Since Computational Precision
Medicine- Radiology-Pathology (CPM-RadPath) on Brain
Tumor Classification challenge held in 2018, many studies
have been conducted in glioma subtypes prediction using
multimodal MRI images based on tumor segmentation. Pei
et al. (4) proposed a 3D convolutional neural network (CNN)
model for glioma classification based on tumor segmentation
results from the CANet model, and experimental results
demonstrated the effectiveness of using MRI images only. Xue
et al. (24) trained a 3D residual convolutional network with MRI
images for glioma classification, and the results showed that
using tumor segmentation regions would get higher accuracy. Pei
et al. (25) applied a 3D CNN model with MRI images for brain
tumor segmentation, which distinguished brain tumors from
healthy tissues, and then the segmented tumors were used for
tumor subtype classification with another 3D CNN model. Yin
et al. (26) achieved the first rank in CPM-RadPath 2020 using
both MRI and pathological images. For multimodal MRI images,
they used the pre-trained model on the Brain Tumor
Segmentation (BraTS) challenge 2019 for tumor segmentation
and then built a densely connected convolutional network
(DenseNet) model for glioma prediction in their scheme.
Although promising in their results, they concatenated the
multiple modalities as different input channels such that a
deep learning network could automatically learn to extract the
multimodal features. With such an image fusion strategy, it is
difficult to adjust the contributions of each modality for
prediction results and consequently not easy to get the best
classification accuracy.

Using multimodal MRI images for glioma subtype
classification has great clinical potentiality and guidance value.
In order to further improve the glioma subtypes prediction
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accuracy in clinical applications, we propose a Multimodal MRI
Image Decision Fusion-based Network (MMIDFNet) based on
the deep learning method. Inspired by image fusion (27), the
proposed method uses a linear weighed module to assemble the
models trained with a single modality together for mining their
complementary predictive capabilities. To evaluate the
effectiveness of our proposed method, we compared the
classification performance between our method and recent
state-of-the-art methods. Additionally, since radiomics-based
methods are also commonly used in recent brain tumor
classification studies, we also implemented a radiomics-based
method as the benchmark for performance comparison with
our MMIDFNet.
MATERIALS AND METHODS

Study Cohort
Our experimental data were obtained from the CPM-RadPath
challenge 2020 dataset1, which is supported by Medical Image
Computing and Computer-Assisted Intervention Society. The
dataset classified patients into three subtypes based on the
WHO-CNS pathomorphological classification criteria, named
Glioblastoma (abbreviated as “G”), Astrocytoma (abbreviated
as “A”), and Oligodendroglioma (abbreviated as “O”) separately
(25, 26). Each patient contained preoperative 3D MRI images
and pathological whole slide images. MRI images comprise four
different modalities of T1-weighted (T1), T2-weighted (T2),
post-contrast T1-weighted (T1ce), and fluid-attenuated
inversion recovery (FLAIR). Considering the purposes of our
study, we just used MRI images to predict pathological subtypes.
According to the dataset description, MRI images were obtained
from multi-parametric MRI scans in routine clinics with 1T to
3TMRI scanners in multi-center institutions and stored in NIfTI
format. All four MRI modalities were preprocessed with bias
field correction, skull stripping, and co-registration into the same
anatomical structure template (24). The volume size of each MRI
modality data is 240 × 240 × 155, where 155 indicates the
number of slices. The cohort in our experiments consisted of
221 patients collected from the original dataset, in which there
were 133, 54, and 34 samples provided for subtype “G”, “A”, and
“O”, respectively. To overcome the bias caused by a particular
selection for the pair of training and testing sets, a 3-fold cross-
validation strategy was used in this work. Specifically, the dataset
was split into 3 smaller sets, the model was trained using 2 of the
folds as training data, and then the trained model was validated
on the remaining part of the data. The performance reported by
3-fold cross-validation was measured with the averaged
evaluation indices.

MMIDFNet Architecture
To improve the accuracy of glioma diagnosis using multimodal
MRI images, we designed the MMIDFNet for glioma subtype
classification, as shown in Figure 1. The MMIDFNet architecture
1https://miccai.westus2.cloudapp.azure.com/competitions/1
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includes two parts: one is the tumor segmentation module
using a pre-trained model, and the other is the two stages of
unimodal model training and multimodal image decision
fusion inferring module. In the training stage, we used the
images of each single modality to train the network to obtain
its best accuracy on the testing set. In the present work, we
used images from four MRI modalities. Thus, we have four
pre-trained models. In inferring stage, a decision fusion
strategy was used; in other words, a linear weighted module
was applied to assemble the predicted probabilities of the
above four pre-trained models for each modality. Adopting
the decision fusion strategy, we can fully take advantage of the
complementary capabilities among unimodal models trained
from different modalities. Note that the weights for the four
MRI modalities in our linear weighted module did not
participate in training in inferring stage.

Tumor Segmentation
Accurate segmentation of brain tumors from MRI images is of
enormous potential value for improved diagnosis (28). It can be
done automatically to cope with the time-consuming
disadvantage of manual segmentation (29, 30). Considering
that the MRI images in our study were also used in the BraTS
challenge and that the ground truth of tumor segmentation for
patients in our cohort are not all available, we used the pre-
trained model on the BraTS challenge 2019 to delineate the
regions of tumor lesions, which achieved the accuracy of 90.45%
on the validation set (31). In the BraTS 2019 dataset, all the
samples in the training set are provided with four ground truth
labels for 4 regions: background (label 0), necrotic and non-
enhanced tumor (label 1), peritumoral edema (label 2), and
enhanced tumor (label 4). We reassigned the non-zero labels
into three combined subregions, representing enhanced tumor
(ET: label 4), tumor core (TC: label 1 + label 4), and whole tumor
(WT: label 1 + label 2 + label 4). The WT, TC, and ET regions of
the MRI images were obtained by the pre-trained segmentation
model. Since glioma grows within the substance of the brain and
often mixes with normal brain tissues, the surrounding area is
also valuable for the assessment. Hence, we used the whole tumor
regions as the segmentation regions of interest (ROIs) and
centrally cropped the original image to 128 × 128 × 80. In
order to make the intensities of the cropped images more
homogeneous, max–min normalization was applied. Besides,
for all the patients having ground truth, after carefully
comparing the pairwise central locations of WT regions
obtained by our tumor segmentation and the ground truth, we
found that they were all consistent or nearby, which also
demonstrates that our tumor segmentation scheme is feasible.
A glioblastoma patient case before and after segmentation with
the pre-trained model is displayed in Figure 2 using the ITK-
SNAP software. The red region indicates the necrotic and non-
enhanced tumor, the yellow region the enhanced tumor, and the
green region the peritumoral edema.

Unimodal Prediction Model Building
Through stacking multiple convolutional layers together, deep
neural networks (DNNs) can automatically learn discriminative
February 2022 | Volume 12 | Article 819673

https://miccai.westus2.cloudapp.azure.com/competitions/1
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Guo et al. Multimodal MRI Image Decision Fusion
FIGURE 1 | The structure of our proposed MMIDFNet.
A

B

D

C

FIGURE 2 | An example of glioma patients on multimodal MRI images (patient ID: CPM19_CBICA_AAB_1, Glioblastoma). (A) Original images. (B) Tumor
segmentation on panel (A). (C) Ground truth on panel (A). (D) Normalized followed centrally clipped from panel (A) based on panel (B).
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features from imaging data. Among different DNN models as
well as their variants, DenseNet has shown superior classification
performance as it strengthens feature propagation from one
dense block to the next and overcomes the problem of
vanishing gradient (32). In the training stage of our
MMIDFNet method, we designed a network based on unified
DenseNet architecture with 121 layers (32), which included four
dense blocks, and each dense block was composed of several
convolutional layers (BN+ReLU+Conv). The number of
convolutional layers in four dense blocks was set as 6, 12, 24,
and 16. The features of images were extracted through these
dense blocks. After that, two fully connected layers were used to
map the features into three glioma subtypes. In order to maintain
the 3D structural features of MRI images, we used them as the
model input directly without converting them into 2D slices. In
the training stage, the model loss used focal loss for handling
class imbalance, the initial learning rate was set to 5 × 10−4 with
the updating strategy of scheduler optimization, the optimizer
used Adam algorithm with impulse, the batch size was set to 8,
and the number of training epoch was set to 100. To overcome
overfitting in the training process, many strategies (e.g., sample
normalization, data augmentation, applying L2 normalization to
model loss, designing dropout layer for the model, and setting
weight decay for optimizer) were employed. Our unimodal
prediction models were implemented by the PyTorch
framework (version 1.4.0, Facebook), and the details of
network architecture can be found in Figure 1. All the data
augmentation strategies of dimension resizing, random rotation,
random scaling, random Gaussian noise adding, and random
contrast adjusting were implemented using the Medical Open
Network for AI (MONAI) toolkit2. Since our model with a large
number of parameters would lead to high computational cost, we
used NVIDIA Tesla A100 GPU to reduce the running time of
model training and validation.

Multimodal Prediction Model Building
Due to the correlation among different modality images,
multimodal MRI can provide help to extract features from
different views and bring complementary information (33). For
exploring richer patterns among multimodal MRI images to
handle the issue of insufficient classification ability and
generalization ability of the unimodal model, we used
multimodal MRI images to build prediction models based on
image decision fusion strategy. In our MMIDFNet method, since
the classification capacity of different pre-trained models using a
single MRI modality in the training stage is usually different and
complementary, we assembled a multimodal prediction model
with multimodal MRI images by calculating the linear weighted
sum of predicted probabilities from the four pre-trained
unimodal models trained in the training stage. Based on the
heuristic searching strategy, the weights of each pre-trained
unimodal model were assigned according to their classification
ability. The final predicted probabilities of our MMIDFNet
model for gliomas subtype classification was calculated as
follows:
2https://github.com/Project-MONAI/MONAI
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fusion _ prob =o
m

i=1
wi*probi (1)

where m is the number of pre-trained models, and wi and probi
are the weight and the prediction probability of the ith pre-
trained model, respectively.

Radiomics-Based Prediction Models
Building
The radiomics-based method mainly includes four stages: tumor
segmentation, radiomics feature extraction, feature selection, and
classification model building (34). The major challenge of the
radiomics-based method is how to extract features from 3D MRI
images. By using the Pyradiomics3 package, for each original 3D
MRI image, a total of 106 radiomics features were extracted
based on the mask obtained in the above tumor segmentation
stage. These features were composed of 18 first-order statistical
features, 14 shape features, and 74 wavelet texture features.
Besides, 12 other types of images (8 wavelets, gradient, mean
square, root mean square, and exponential) transformed from
each 3D MRI image were also used to extract radiomics features.
Finally, the features of the original image as well as its 12
transformed images were concatenated together in an end-to-
end manner, thus forming a total of 1,378 (106 × 13) features for
each MRI image. Similarly, as for multimodal MRI images of
each patient, their features were also concatenated together and
formed the joint features for training a multimodal glioma
prediction model. In the present work, we used the images
from four MRI modalities. Hence, the dimension of the joint
features is 5,512 (1,378 × 4).

Considering that redundant and irrelevant features in high-
dimensional features usually influence learning accuracy (35, 36),
the least absolute shrinkage and selection operator (Lasso)
regression algorithm was performed to reduce feature
dimension by retaining high discriminative features (5, 27).
Based on the selected features, the random forest (RF)
classification model, which is frequently used in the field of
supervised machine learning (5, 11, 12, 30, 37), was built for our
task of glioma diagnosis. The Lasso and RF algorithms were
implemented using the scikit-learn library (version 0.23.1).

Performance Metrics
The performance of our multi-class predictive models was
assessed according to the commonly used accuracy, sensitivity,
specificity, positive predictive value (PPV), negative predictive
value (NPV), and the area under the curve (AUC) of the receiver
operating characteristic (ROC). The goal of the CPM-RadPath
challenge is to assess automated brain tumor classification
algorithms using three metrics, namely, F1_score, Cohen’s
Kappa (Kappa), and balanced accuracy (Balanced_Acc), which
are sensitive to the imbalanced distribution of sample classes.
Among the above metrics, F1_score and Balanced_Acc are
defined as accuracy and sensitivity in multi-class metrics,
respectively. The formulas for calculating the performance
metrics of accuracy, sensitivity, specificity, PPV, NPV, and
3https://pyradiomics.readthedocs.io/en/latest/index.html
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Kappa are given by Equations 2–7, respectively:

Accuracy =
o
n

i=1
TPi

Num
(2)

Sensitivity =
o
n

i=1
TPi=(TPi + FNi)

n
(3)

Specificity =
o
n

i=1
TNi=(TNi + FPi)

n
(4)

PPV =
o
n

i=1
TPi=(TPi + FPi)

n
(5)

NPV =
o
n

i=1
TNi=(TNi + FNi)

n
(6)

Kappa =
p0 − pe
1 − pe

(7)

In Equations 2–6, Num is the number of samples, TP the true
positives, TN the true negatives, FP the false positives, FN the
false negatives, and n the number of sample categories. In
Equation 7, p0 denotes the sum of the number of samples for
each correct classification divided by the total number of
samples, and pe the expected agreement when both annotators
assign labels randomly (6). According to the accuracy metric, the
best classifier was chosen as our predictive model for the task of
glioma subtype classification.

Statistical Analysis
Age being the only available clinical factor in the CPM-RadPath
challenge dataset (6), we converted it from days to years for
simplicity before analysis. The differences in age and glioma
subtypes between the training and testing sets were assessed
using the Mann–Whitney rank-sum test. The statistical
quantifications of the performance metrics were demonstrated
with 95% CI, when applicable. All statistical analyses were carried
out with the Scipy module (version 1.3.1), and p-value <0.05
indicated a significant difference.
RESULTS

Among these retrospective patients (age ranges 17 to 85 years),
the mean ± SD of age was approximately 53.8 ± 14.8. In each
fold, the number of subtypes “G”, “A”, and “O” was about 60.2%,
24.4%, and 15.4%, respectively. From the p-value results of the
Mann–Whitney rank-sum test, we found that there was no
significant difference in pathological subtypes (0.439, 0.423,
and 0.48) among each fold.
Frontiers in Oncology | www.frontiersin.org 6
Unimodal Prediction Models
After carefully tuning the parameters of unimodal models with
our MMIDFNet method, we obtained the best pre-trained
prediction models for each single modality in the training stage
in turn. The ROC curves of each pre-trained unimodal model for
each fold are plotted in Figure 3. We found that the prediction
performance for each modality among different validation folds
was not significantly different, which validates that the dataset
selection has no significant influence on the prediction
performance of our method.

In addition, the performance of unimodal prediction models
using radiomics and our proposed MMIDFNet method on three
validation folds is summarized in Table 1. We noticed that the
split of the training and validation sets indeed influenced the
prediction performance of both radiomics and our models, but
not significantly. In general, our proposed MMIDFNet method
generated better results than the radiomics method, with the
highest averaged evaluation indices, except for the modalities of
T1 and T2, in which the AUC, or sensitivity, or PPV was a little
lower than that of radiomics. Moreover, we observed that with
either our MMIDFNet method or radiomics method, using
different unimodal MRI images achieved different classification
performances. As for the radiomics method, among the
unimodal prediction models on each fold, using the T1ce
modality achieved the best-averaged accuracy of 0.815. The
averaged AUC, sensitivity, specificity, PPV, and NPV were
0.868, 0.704, 0.882, 0.796, and 0.912, respectively. Meanwhile,
for our MMIDFNet method, using the T1ce MRI modality
achieved the best-averaged accuracy of 0.833. The averaged
AUC, sensitivity, specificity, PPV, and NPV were 0.892, 0.708,
0.894, 0.817, and 0.924, respectively. This demonstrates that T1ce
images may be beneficial to the glioma subtype classification.
Multimodal Prediction Models
Using our proposed MMIDFNet method, through repeatedly
adjusting the weights of each unimodal prediction model in
inferring stage, we obtained the best multimodal prediction
accuracy. After tuning the parameters of our radiomics model
iteratively, we also obtained the best prediction using the fused
features of multimodal images. In this paper, the multimodal
prediction methods obtained with radiomics and MMIDFNet
were named as radiomics model and decision fusion model,
respectively. Specifically, considering our designed network also
supports multi-channel input in the training stage, through
inputting four modalities into four-channel input of our
MMIDFNet simultaneously, we trained and obtained another
multimodal prediction model (named as data fusion model)
based on data fusion strategy for comparing the predictive
performance between data fusion strategy and decision fusion
strategy in our MMIDFNet method. Here, the data fusion strategy
means that the multiple modal images were concatenated as input.
The ROC curves of the radiomics model, data fusion model, and
decision fusion model using multimodal MRI images on each
validation fold are illustrated in Figure 4. We found that for the
glioma subtypes “G”, and “A”, the prediction performance of all
the methods was not greatly influenced by the splitting of the
February 2022 | Volume 12 | Article 819673
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training and validation sets. However, for the glioma subtype “O”,
the data splitting strategy had significant effects on the predicted
AUC. In addition, the overall prediction of our decision fusion
model for a multi-class predictive task is more balanced than the
other two multimodal models.

To further compare the prediction performance of different
fusion strategies, Table 2 summarizes the 3-fold cross-validation
performance of each method on the multimodal dataset. We
found that the overall performance of our proposed fusion
method was much better than radiomics and data fusion
strategy, with the averaged accuracy increased by 4.9% and
3.8%, averaged AUC increased by 3.7% and 2.2%, averaged
sensitivity increased by 9.7% and 5.6%, averaged specificity
Frontiers in Oncology | www.frontiersin.org 7
increased by 3.4% and 1.5%, averaged PPV increased by 6.8%
and 8.8%, averaged NPV increased by 1.9% and 2.2%, averaged
Kappa increased by 12.2% and 8.0%, respectively. According to
Table 2, the averaged evaluation indices were also demonstrated
with bar plots in Figure 5 for better illustration.

Comparing Table 2 with Table 1, we observed that the overall
performance of multimodal models was superior to that of any
model trained with unimodal MRI images, whether for the
radiomics or our MMIDFNet method. Meanwhile, through using
the multimodal model with multimodal MRI images, the difference
between sensitivity and specificity was significantly reduced.

To further evaluate the effectiveness of our proposed
method, we compared our method with state-of-the-art
A

B

D

C

FIGURE 3 | The receiver operating characteristic (ROC) curves of unimodal prediction models on three validation folds using our MMIDFNet method. (A) T1
modality. (B) T2 modality. (C) T1ce modality. (D) Flair modality.
February 2022 | Volume 12 | Article 819673
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methods. The results are provided in Table 3. We observe that
our decision fusion model achieves the highest averaged
F1_score (0.878), Balanced_Acc (0.772), and Kappa (0.773)
compared with the other methods. The F1_score of our
method exceeds the methods of Pei at al (4)., Xue et al. (24),
Pei et al. (25), and Yin et al. (26) at 5.9% (0.878 vs. 0.829), 13.9%
(0.878 vs. 0.771), 13.9% (0.878 vs. 0.771), and 2.5% (0.878 vs.
0.857), respectively.
DISCUSSION

To further improve the performance of glioma subtype
classification using MRI images only, we proposed a multimodal
MRI image decision fusion-based network for glioma classification.
Inourmethod, during the training stage,weused the images of each
MRI modality to train the network to obtain its best accuracy and
obtained four pre-trained unimodal models. During the inferring
Frontiers in Oncology | www.frontiersin.org 8
stage, considering that different unimodal models have different
predictive performance for three glioma subtypes, we assigned the
weights for each unimodal model according to their classification
capabilities to fully exploit their complementary predictive
information of multi-class classification. Based on the decision
fusion strategy, we assembled the four unimodal models together
by using a linear weighted module and formed our multimodal
prediction model for glioma subtype classification. The final
predicted probabilities of the multimodal model were obtained by
calculating the linear weighted sum of the predicted probabilities of
the four pre-trained unimodal models. Thus, we improved the
overall prediction performance of our multimodal prediction
model by integrating the local predictive decision of each
unimodal prediction model.

Afindingof this study is that thedecision fusionmodelusingour
MMIDFNet method outperformed the radiomics model based on
radiomics in predicting glioma subtypes with multimodal MRI
images (accuracy: 0.878 vs. 0.837). This is consistent with the
TABLE 1 | Three-fold cross-validation performance of unimodal prediction models using radiomics and our proposed MMIDFNet.

Methods Modality Fold ACC AUC SEN SPE PPV NPV

Radiomics T1 1 0.730 0.734 0.546 0.792 0.807 0.865
2 0.689 0.755 0.522 0.765 0.748 0.844
3 0.699 0.737 0.610 0.792 0.682 0.812

Average 0.706 0.742 0.559 0.783 0.746 0.840
95% CI [0.672, 0.740] [0.724, 0.760] [0.487, 0.632] [0.758, 0.808] [0.646, 0.846] [0.798, 0.883]

T2 1 0.703 0.775 0.554 0.787 0.657 0.824
2 0.743 0.827 0.596 0.816 0.722 0.875
3 0.712 0.712 0.560 0.820 0.615 0.843

Average 0.719 0.771 0.570 0.808 0.665 0.847
95% CI [0.686, 0.753] [0.679, 0.863] [0.534, 0.606] [0.779, 0.836] [0.578, 0.751] [0.806, 0.889]

T1ce 1 0.838 0.908 0.706 0.890 0.867 0.928
2 0.784 0.841 0.650 0.854 0.770 0.905
3 0.822 0.856 0.756 0.903 0.752 0.902

Average 0.815 0.868 0.704 0.882 0.796 0.912
95% CI [0.770, 0.859] [0.812, 0.925] [0.619, 0.789] [0.842, 0.923] [0.697, 0.895] [0.889, 0.934]

Flair 1 0.730 0.788 0.570 0.792 0.763 0.881
2 0.685 0.718 0.557 0.787 0.625 0.813
3 0.743 0.740 0.585 0.810 0.756 0.888

Average 0.719 0.749 0.571 0.796 0.715 0.861
95% CI [0.671, 0.768] [0.691, 0.806] [0.548, 0.593] [0.777, 0.816] [0.590, 0.839] [0.794, 0.927]

MMIDFNet T1 1 0.757 0.724 0.572 0.821 0.813 0.894
2 0.689 0.696 0.509 0.767 0.663 0.890
3 0.712 0.780 0.516 0.777 0.701 0.873

Average 0.719 0.733 0.532 0.788 0.726 0.886
95% CI [0.664, 0.775] [0.665, 0.802] [0.477, 0.588] [0.742, 0.834] [0.601, 0.850] [0.868, 0.904]

T2 1 0.743 0.835 0.542 0.794 0.742 0.907
2 0.730 0.749 0.560 0.820 0.687 0.854
3 0.726 0.788 0.591 0.822 0.642 0.853

Average 0.733 0.791 0.564 0.812 0.690 0.871
95% CI [0.719, 0.747] [0.722, 0.860] [0.525, 0.604] [0.787, 0.837] [0.610, 0.770] [0.822, 0.921]

T1ce 1 0.838 0.907 0.764 0.885 0.842 0.909
2 0.824 0.885 0.667 0.897 0.749 0.934
3 0.836 0.883 0.694 0.900 0.859 0.929

Average 0.833 0.892 0.708 0.894 0.817 0.924
95% CI [0.821, 0.845] [0.870, 0.913] [0.628, 0.788] [0.881, 0.907] [0.722, 0.911] [0.903, 0.945]

Flair 1 0.770 0.782 0.669 0.855 0.755 0.866
2 0.703 0.750 0.537 0.767 0.813 0.896
3 0.753 0.752 0.640 0.852 0.673 0.869

Average 0.742 0.761 0.615 0.825 0.747 0.877
95% CI [0.686, 0.798] [0.733, 0.790] [0.504, 0.726] [0.745, 0.905] [0.634, 0.860] [0.851, 0.903]
February 2
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FIGURE 4 | The receiver operating characteristic (ROC) curves of multimodal prediction models on three validation folds in our study. (A) Radiomics model. (B) Data
fusion model. (C) Decision fusion model.
TABLE 2 | Three-fold cross-validation performance of multimodal prediction models using radiomics, data fusion strategy, and our proposed MMIDFNet methods.

Models Fold ACC AUC SEN SPE PPV NPV Kappa

Radiomics 1 0.851 0.874 0.702 0.885 0.905 0.945 0.699
2 0.824 0.875 0.705 0.897 0.793 0.922 0.672
3 0.836 0.862 0.706 0.914 0.724 0.927 0.695

Average 0.837 0.870 0.704 0.899 0.807 0.931 0.689
95% CI [0.815,0.859] [0.859,0.882] [0.701,

0.708]
[0.875,0.922] [0.661,0.954] [0.912,0.951] [0.665,0.712]

Data
fusion

1 0.865 0.898 0.732 0.913 0.890 0.943 0.740
2 0.838 0.879 0.744 0.926 0.741 0.922 0.713
3 0.836 0.871 0.717 0.908 0.745 0.921 0.695

Average 0.846 0.883 0.731 0.916 0.792 0.929 0.716
95% CI [0.820,0.872] [0.860,0.905] [0.709,

0.753]
[0.901,0.931] [0.656,0.928] [0.909,0.949] [0.680,0.752]

Decision fusion 1 0.892 0.902 0.781 0.919 0.924 0.959 0.789
2 0.865 0.909 0.741 0.926 0.821 0.949 0.749
3 0.877 0.896 0.795 0.946 0.842 0.939 0.780

Average 0.878 0.902 0.772 0.930 0.862 0.949 0.773
95% CI [0.856,0.900] [0.892,0.913] [0.727,

0.817]
[0.908,0.953] [0.775,0.949] [0.933,0.965] [0.739,0.806]
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findings of recent studies (38, 39). Moreover, as for unimodal
models, our proposed MMIDFNet method also generated overall
better results than our radiomics method. As described above, the
radiomics-based methods comprised three tightly coupled stages:
feature extraction, feature selection, and classification model
building. Any small variations in each of the stages may affect the
final prediction accuracy (39). Furthermore, compared to
radiomics-based methods, deep learning-based methods are more
flexible and superior in feature extraction since the hierarchy of
features canbe learnedautomatically fromlow level tohigh level ina
layer-by-layer manner in the training phase (40).

It should be noted that the performance variability of brain
tumor classification based on deep learning methods depends on
the designed network architecture and trained hyper-parameters
(41). Through the comparisons, we found that our MMIDFNet
method performed better than the other four recent state-of-the-
art methods based on the deep learning method (4, 24–26). This
is mainly due to the adopted tumor segmentation algorithm,
classification network, and image fusion strategy.

The region of a tumor lesion may have different image
contrast properties in different imaging modalities (42). In
contrast to other MRI modality images, the tumor boundary in
the T1ce sequence is more significantly different from normal
tissue, which facilitates automatic tumor segmentation. Besides,
the T1ce sequence can better provide the condition of
Frontiers in Oncology | www.frontiersin.org 10
intratumoral so as to distinguish tumors from non-neoplastic
lesions. Note that in our experimental results, either with the
radiomics method or with our MMIDFNet method, the
classification performance using T1ce modality images was
significantly better than that using the other three modalities.
These results are consistent with previous observations (25) and
indicate that T1ce modality images should not be neglected in
studies of glioma classification using multimodal MRI.

As for the glioma classification with multimodal MRI, how to
mine rich feature representations across multimodal MRI images
is the key factor in improving classification performance. Recent
studies showed that image fusion can be operated at three levels:
data, feature, and decision (27). Actually, as for our three
multimodal prediction models, the radiomics model adopted
the strategy of feature-level fusion, the data fusion model used
the strategy of data-level fusion, and the decision fusion model
employed the strategy of decision-level fusion. Our comparison
results showed that, whatever the level of fusion, the accuracy of
our multimodal models outperforms any models trained using
unimodal MRI images, which indicates that each MRI modality
can provide complementary features. In our radiomics method,
through concatenating the four unimodal MRI features together,
the accuracy of the RF classification model was raised to 0.837.
Besides, as for our MMIDFNet method, the accuracy of the data
fusion model (0.846) is 3.2% lower than that of the decision
TABLE 3 | Performance comparison of other state-of-the-art studies with ours.

Metrics Pei et al. (4) Xue et al. (24) Pei et al. (25) Yin et al. (26) Radiomics Data fusion Decision fusion

F1_score
95% CI

0.829 0.771 0.771 0.857 0.837
[0.815, 0.859]

0.846
[0.820, 0.872]

0.878
[0.856, 0.900]

Balanced_Acc
95% CI

0.749 NA 0.698 0.820 0.704
[0.701, 0.708]

0.731
[0.709, 0.753]

0.772
[0.727, 0.817]

Kappa
95% CI

0.715 NA 0.627 0.767 0.689
[0.665, 0.712]

0.716
[0.680, 0.752]

0.773
[0.739, 0.806]
Februa
ry 2022 | Volume 12
CI, confidence interval; NA, not available; Bold Value, best value of the metric.
FIGURE 5 | Comparison of three-fold cross-validation performance of the three multimodal prediction models.
| Article 819673

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Guo et al. Multimodal MRI Image Decision Fusion
fusion model (0.878) via 3-fold cross-validation. This is mainly
caused by the limitations of the data-level fusion strategy that
does not fully take advantage of the features underlying each
modality data and does not deal with how to fuse the features
from the multimodal MRI images (33, 43, 44). However, in our
decision fusion model, we used the weighting manner to
ensemble the unimodal models in inferr ing stage.
Theoretically, the fraction of each modality should be
positively related to its contribution. From Table 1, we noticed
that T1ce was the most useful modality for the prediction,
followed by Flair, T2, and T1. In our fusion model, the weights
for T1ce, Flair, T2, and T1 modalities are 2, 1, 0.7, and 0.3,
respectively, which conform to the theoretical analysis and
validate that our decision fusion model can fully explore the
complementary information of different imaging modalities.

Brain tumor segmentation in MRI is of crucial importance for
the subsequent diagnosis of brain tumors (45). Our efficient
MMIDFNet method as well as radiomics method for glioma
classification however relies on tumor segmentation performance.
Any small variations in this stage may affect the final prediction
performance and stability of the final prediction models. What
cannot be ignored is that we employed a pre-trained tumor
segmentation model from the BraTS challenge for tumor
segmentation, while we did not use the ground truth delineated
by experienced radiologists to segment the tumor regions from
original MRI images. Although the segmentation result is not as
accurate as the ground truth, we minimized the adverse effects
caused by inaccurate segmentation by adopting the central clipping
manner to segment out the whole tumor regions.

Although encouraging, our method has several limitations.
First, as a retrospective study, the sample size of the dataset used
in the present study was limited, which has an adverse effect on
the robustness of our designed model. Therefore, the few-shot
learning method may be a better choice to handle the problem.
Second, we used only MRI modalities in the present study
without considering other types of data, especially pathological
whole-slide images. To further improve the performance of
glioma subtype classification, in the future, we could try to
combine MRI, pathology images, molecular genetic
information, and other clinical data to conduct a multi-omics
clinical study. Third, the number of subtype “G” in our training
set was about 60.2%, and this resulted in the class imbalance
issue. To handle this issue, we used the focal loss function
through balancing the loss of different subtypes, which indeed
Frontiers in Oncology | www.frontiersin.org 11
alleviated the issue. However, this scheme might not be optimal
because it ignores the differences in data distribution. Therefore,
to deal with this common problem in medical images
classification, more effective measures for forming more
balanced data will be considered in our future work.

In conclusion, we studied the preoperative glioma subtype
classification by developing a multimodal MRI image decision
fusion-based network based on a deep learning technique.
Through designing a linear weighted module to assemble the
unimodal models trained with unimodal MRI images together,
our mult imodal predict ion model ful ly mined the
complementary information of multimodal MRI images.
Extensive experimental results showed that the proposed
MMIDFNet method was superior to recent state-of-the-art
methods, which suggests its potential use in clinical practice
for glioma subtype classification based on only MRI images.
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