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Background: rs9357347 located at the triggering receptor expressed on myeloid cells
(TREM) gene cluster could increase TREM2 and TREM-like transcript 1 (TREML1)
brain gene expression, which is considered to play a protective role against
Alzheimer’s disease (AD).

Objectives: To investigate the role of rs9357347 in AD pathogenesis by exploring the
effects of rs9357347 on AD specific biomarkers.

Methods: This study analyzed the association of rs9357347 with AD-related
cerebrospinal fluid (CSF) and neuroimaging markers from 201 cognitively normal (CN)
older adults, 349 elders with mild cognitive impairment (MCI), and 172 elders with AD
dementia from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). We next analyzed
the association in 259 amyloid-β positive (Aβ+) elders and 117 amyloid-β negative (Aβ−)
elders (Aβ+: CSF Aβ1−42 ≤ 192 pg/ml; Aβ−: CSF Aβ1−42 > 192 pg/ml). Associations
were tested using multiple linear regression models at baseline. Furthermore, multiple
mixed-effects models were used in a longitudinal study which lasted 4 years.

Results: At baseline, we found that rs9357347 had association with CSF Aβ1−42 in
CN group (β = 0.357, P = 0.009). In AD group, rs9357347 was associated with total
tau (T-tau) level (β = −0.436, P = 0.007). Moreover, the strong influence exerted by
rs9357347 on T-tau was also seen in Aβ+ group (β = −0.202, P = 0.036). In the
longitudinal study, rs9357347 was also found to be associated with Aβ1−42 in CN
group (β = 0.329, P = 0.023). In AD group, the mutation of rs9357347 was associated
with slower accumulation of T-tau (β = −0.472, P = 0.002) and tau phosphorylated at
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threonine 181 [P-tau 181 (β = −0.330, P = 0.019)]. Furthermore, the obvious influence
exerted by rs9357347 on T-tau was also seen in Aβ+ group (β = −0.241, P = 0.013).

Conclusion: This study suggested that rs9357347 reduced the risk of AD by
modulating both amyloid-β pathology and neuronal degeneration.

Keywords: Alzheimer’s disease, TREM2 gene, TREML1, rs9357347, genetic mechanism, cerebrospinal fluid,
amyloid-β pathology, neuronal degeneration

INTRODUCTION

Alzheimer’s disease (AD) is a complex polygenetic disease
characterized by the presence of extracellular deposits of the
amyloid-β1−42 (Aβ1−42) and intracellular twisted strands of
the tau protein (Alzheimer’s Association, 2011). In the genetic
studies, the triggering receptor expressed on myeloid cells
(TREM) gene cluster on chromosome 6p21.11 has been identified
as significantly associated gene region with AD (Karch et al.,
2014). Among the TREM genes, a rare variant rs75932628
(encoding p. Arg47His) in TREM2 was reported to be associated
with the highest risk of developing AD in Caucasians (Colonna,
2003; Piccio et al., 2007).

Recently, Carrasquillo et al. (2017) re-analyzed whole genome
and exome sequencing data to test which common AD-related
variants within the TREM gene cluster influence AD through
gene expression. rs9357347, located downstream from TREML2
and upstream from TREM2, was found to be associated with AD
risk (Carrasquillo et al., 2017). And the locus was demonstrated to
influence TREML1 and TREM2 expression in the temporal cortex
(Ford and McVicar, 2009). Meanwhile, they found that only
TREM2 and TREML1 had reliable expression in the brain region.
Thus, they point out that rs9357347CC exerts protective effects on
AD through increasing TREML1 and TREM2 brain expression
levels. However, the specific pathogenic effect rs9357347 exerts
on AD remains unclear. Therefore, the current study was to
test associations of rs9357347 with AD-related cerebrospinal
fluid (CSF) and neuroimaging markers in the population from
Alzheimer’s Disease Neuroimaging Initiative (ADNI).

MATERIALS AND METHODS

Study Design and Participants
Data used in this study were obtained from the ADNI database
led by Principal Investigator Michael W. Weiner, MD, which
is a public-private partnership, launched in 2003. The main
goal of ADNI has been to test whether clinical and cognitive
assessment, positron emission tomography (PET), CSF, serial
magnetic resonance imaging (MRI), and other biological markers
can be combined to evaluate the progression of mild cognitive
impairment (MCI) and early AD. Written informed consent
was obtained from all participants or their guardians before
test samples being drawn. The institutional review boards
of all sites participating in the ADNI provided review and
approval of the ADNI data collection protocol. For more details,
see www.adni-info.org.

Our ADNI cohort consisted of available baseline and
longitudinal AD-related marker samples from all cognitively
normal (CN) elders, patients with MCI, and patients with AD
dementia. Inclusion or exclusion criteria are described in detail
on pages 20–22 of the online ADNI protocol. Briefly, all subjects
were aged from 55 to 90 years old, kept contact with their study
partners 10 h per week or more, had completed at least six
grades of education or had a good employment history, spoke
English or Spanish fluently, and were removed of any significant
neurological disease other than AD (Petersen et al., 2010). Any
history of head trauma or brain lesions, any serious neurological
disease other than probable AD, and any psychoactive medication
use that could otherwise account for the deterioration in memory
and related symptoms must be excluded (Jagust et al., 2009;
Weigand et al., 2011).

We used two classification criteria for the 722 ADNI samples
to study the association of rs9357347 allele with AD dementia.
One is clinical classification (AD, MCI, CN groups) which
includes 201 CN older adults, 349 elders with MCI, and
172 elders with AD dementia. And another is pathological
classification classifying the subjects into two groups according to
previously established cutoff. It has been shown that individuals
with CSF Aβ1−42 levels less than 192 pg/ml in the ADNI
cohort have evidence of Aβ1−42 deposition in the brain, as
detected by PET-PIB (Fagan et al., 2007; Mattsson et al., 2009).
Individuals with CSF Aβ1−42 levels below these thresholds (CSF
Aβ1−42 ≤ 192 pg/ml) could be classified as Aβ-positive (Aβ+),
otherwise (CSF Aβ1−42 > 192 pg/ml) they will be classified as
Aβ-negative (Aβ−) (Olsson et al., 2005; Jack et al., 2008; Shaw
et al., 2009). Thus, 259 Aβ+ elders and 117 Aβ− elders were
selected from ADNI database.

CSF Biomarkers
The CSF data used in this study were obtained from ADNI
dataset. CSF sampled by lumbar puncture was gathered
into collection tubes, and then transferred to polypropylene
conveying tubes. After collection, the samples were frozen
on dry ice within 60 min and transported immediately to
the ADNI Biomarker Core laboratory at the University of
Pennsylvania Medical Center. Preparation of aliquots (0.5 ml)
from these samples was done after unfreezing (60 min) at room
temperature and gentle mixing (Weigand et al., 2011). The
aliquots were stored in bar code-labeled polypropylene vials
at −80◦C (Shaw et al., 2009). The multiplex platform (xMAP;
Luminex Corporation) with a kit (INNO-BIA AlzBio3; Fujirebio
Europe) was used for simultaneous measurement of the CSF
protein biomarkers such as Aβ1−42, total tau (T-tau), and tau
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phosphorylated at threonine 181 (P-tau 181). More details for
CSF acquisition and measurement have been reported previously
(Olsson et al., 2005).

Brain Structures on MRI
The volumes of brain structures in MRI used in our study were
from the UCSF data in ADNI dataset1. Firstly, we downloaded
preprocessed MRI data from Laboratory of Neuroimaging
(LONI) IDA2 with 1.5T or 3T data available. Then cerebral image
analysis and segmentation were performed with the Free Surfer
version 5.1 including corrected for motion, averaged, normalized
for intensity. The technical details of these procedures are
described in prior publications (Jack et al., 2008). Here, we
selected the most associated brain regions with AD, such as
hippocampus, ventricle and middle temporal as our regions
of interest (ROI).

Glucose Metabolism on FDG-PET
The information related to glucose metabolism was from the UC
Berkeley and Lawrence Berkeley National Laboratory (Landau
et al., 2011). The brief routine processes were as follows. First of
all, PET data were downloaded from LONI website3. Then the
mean counts from the meta ROIs (left and right inferior/middle
temporal gyrus, left and right angular gyri, and bilateral posterior
cingulate gyrus) for each subject’s FDG scans at each time point
were extracted and the intensity values were calculated with
SPM5 subroutines. Finally, mean FDG uptake was extracted
for each of the five ROIs and normalized by dividing it by
pons/vermis reference region mean (Landau et al., 2011). Total
FDG uptake was calculated as a mean of the five individual
Meta ROIs4.

Statistical Analysis
Associations between diagnosis and demographic, clinical
factors were tested at baseline. We examined differences
in continuous variables (education years, age, volume,
etc.) using Kruskal–Wallis test. We tested differences in
Categorical data (gender, APOE ε4 status) using chi-square
test. The correlations between rs9357347 and various
endophenotypes (CSF proteins, MRI and FDG-PET) were
estimated using linear regression models at baseline.
Furthermore, association between rs9357347 and the above
phenotypes in the longitudinal study were tested using linear
mixed-effects models. Of note, we chosen the 4-year follow-
up data for all three existing genotypes to make analysis.
We used mixed linear models that specified a random
subject-specific intercept and a random subject-specific
slope. All outcome variables in linear regression models and
linear mixed-effects models were standardized to z scores
to facilitate comparisons between genotypes. Difference
with a P-value < 0.05 was considered to be statistically
significant. All regression analyses were corrected for age,

1https://ida.loni.usc.edu/pages/access/studyData.jsp
2https://ida.loni.usc.edu
3http://loni.usc.edu/
4www.adni-info.org

gender, APOE ε4 genotype and educational level, and the
regression analysis of brain structure volume was also corrected
for intracranial volume. All statistical analyses were performed
by R3.2.05.

RESULTS

Baseline Characteristics of Study
Participants
The study population was composed of 201 CN elders, 349 elders
with MCI, and 172 elders with AD. Demographic and clinical
characteristics at the baseline were summarized in the Table 1. As
expected, the frequency of the APOE ε4 allele in AD group was
significantly higher than those in MCI and CN group. Among
the three groups, the diagnosis was found to be correlated with
gender, education level, volume of brain structure, and FDG.
The diagnosis did not differ by age. Individuals in AD and
MCI cohorts exhibited typical CSF biomarker phenotype of AD
with elevated mean levels of T-tau and P-tau181 and lower level
of Aβ1−42.

Impacts of rs9357347 on CSF Markers
At baseline, we analyzed the correlations between rs9357347
and concentration of CSF proteins in three clinical groups (CN,
MCI, and AD) and two pathological groups (Aβ+, Aβ−). In
CN group, the significant correlation was seen with CSF Aβ1−42
(β = 0.36, P = 0.009) (Figure 1A). In AD group, rs9357347 was
found to be correlated with CSF T-tau (β = −0.44, P = 0.007)
(Figure 1B). Meanwhile, we discovered possible relation between
rs9357347 and CSF P-tau 181 in AD group (β =−0.31, P = 0.051)
(Figure 1C). As for the pathological group, we also found the
obvious association between rs9357347 and CSF T-tau in Aβ+

group (β =−0.20, P = 0.036) (Figure 1D).
In longitudinal study, the findings were similar to the results

at baseline after adjusting for age, gender, education level, APOE
ε4. In CN group, CSF Aβ1−42 was found to be correlated with
the locus (β = 0.33, P = 0.023) (Figure 1E). Furthermore, in AD
group, rs9357347 was found to exert a strong effect on CSF T-tau
(β = −0.47, P = 0.002) (Figure 1F) and P-tau 181 (β = −0.33,
P = 0.019) (Figure 1G), while we failed to discover similar
correlation in MCI and CN groups. And when the samples
were stratified by pathological status, the C allele of rs9357347
was found to decrease the CSF T-tau (β = −0.24, P = 0.013)
(Figure 1H) in Aβ+ group.

Impacts of rs9357347 on MRI Structure
and Glucose Metabolism
Association of rs9357347 with AD-related neuroimaging
measures and FDG-PET imaging were investigated at baseline
and longitudinally. Neither AD-related brain structures (right
and left hippocampus, middle temporal gyrus and ventricle)
nor cerebral metabolism rate of glucose (CMRgl) on FDG-PET
imaging was found to have obvious association with rs9357347.

5http://www.r-project.org/
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TABLE 1 | The characteristics of the subjects in clinical group at baseline.

Characteristics CN (N = 201) MCI (N = 349) AD (N = 172) P value

Age (years) 75.80(4.84) 74.76(7.34) 75.42(7.40) 0.56

Gender (male/female) 107/94 229/120 91/81 <0.01

Education (years) 16.08(2.82) 15.64(3.08) 14.64(3.17) <0.01

ApoE ε4 (0/1/2) 147/50/4 156/151/42 57/84/31 <0.01

Aβ (pg/ml) 206.33(54.35) 162.86(52.31) 143.39(38.09) <0.01

T-tau (pg/ml) 69.85(30.25) 103.04(58.31) 121.07(56.80) <0.01

P-tau (pg/ml) 25.39(14.80) 36.17(19.26) 41.92(20.27) <0.01

FDG 1.29(0.12) 1.20(0.12) 1.09(0.13) <0.01

Hippocampus (mm3) 7279.21(888.23) 6381.58(1074.03) 5596.41(1063.70) <0.01

Middle temporal (mm3) 19921.81(2790.99) 18589.17(2912.60) 16827.31(3131.44) <0.01

Ventrical (mm3) 35088.02(19446.31) 44700.22(23944.76) 49504.77(25596.41) <0.01

CN, cognition normal; MCI, mild cognitive impairment; AD, Alzheimer’s disease; Aβ, β-amyloid; T-tau, total tau; P-tau, tau phosphorylated at threonine; FDG, F18-
fluorodeoxyglucose. N indicates the number of subjects from each group with at least 1 follow-up measure available. Data are mean (standard error). p values for
continuous variables are from Kruskal–Wallis test. p values for categorical data are from chi-square test.

FIGURE 1 | The correlation between rs9357347 and CSF markers. (A–D) The relation between CSF protein and rs9357347 allele at baseline. (A) The statistical
relation between CSF Aβ1-42 and rs9357347 allele in CN group; (B) rs9357347 was associated with the level of T-tau in AD group; (C) rs9357347 was closely
associated with P-tau in AD group; (D) rs9357347 was associated with the level of T-tau in Aβ-abnormal (CSF Aβ1-42 ≤ 192 ng/L) group; (E–H) The relation between
CSF protein and rs9357347 allele longitudinally (4 years’ follow-up). (E) The statistical relation between CSF Aβ1-42 and rs9357347 allele in CN group; (F) rs9357347
was associated with the level of T-tau in AD group; (G) rs9357347 was associated with P-tau 181 in AD group; (H) rs9357347 was associated with the level of T-tau
in Aβ-abnormal group; The model at baseline was multiple linear regression model adjusted for age, gender, educational level, and APOE ε4 genotype. The model in
longitudinal study was multiple mixed-effects model adjusted for age, gender, educational level, and APOEε4 genotype. Aβ+, Aβ-abnormal; Aβ–, Aβ-normal.

DISCUSSION

In this study, we aimed to characterize the pathogenic effect
rs9357347 exerted on AD based on the premise that rs9357347, a
candidate regulatory variant at the TREM gene cluster, associates
with decreased AD risk and increased TREML1 and TREM2
brain gene expression (Carrasquillo et al., 2017). We found

statistically significant associations with both Aβ1−42 and tau in
CSF (at baseline and longitudinally). Specifically, we reported
that rs9357347 was mainly associated with CSF Aβ1−42 in CN
participants; in AD participants, the mutation was detected to
be negatively associated with CSF T-tau, which is consistent
with the result in Aβ+ group; the association between the locus
and CSF P-tau 181 was also found in AD group longitudinally.
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To sum up, our results were in line with the hypothetical
model that relates disease stage to AD biomarkers, in which
CSF Aβ1−42 biomarkers become abnormal first and then the
neurodegenerative biomarkers (Hardy and Selkoe, 2002; Dennis
and Selkoe, 2016). This suggests that there is an association of
rs9357347 with brain amyloidosis and tau pathology of AD. This
finding may supply clues to the protective role of rs9357347
against AD risk.

Previous studies have proposed a mechanism by which
genetic variation in TREM2 alters amyloid pathology. First of
all, TREM2 is a cell surface receptor of the immunoglobulin
superfamily, which is expressed nearly exclusively on microglia
within the central nervous system (CNS) (Zheng et al., 2016).
Second, in CNS, TREM2 signaling is intimately linked with
the adapter protein, DAP12 (also known as TYRO protein
tyrosine kinase binding protein, TYROBP) (Li and Zhang,
2018). TREM2 deficiency is associated with decreased bacterial
clearance and increased pro-inflammatory cytokine production,
thus suggesting the anti-inflammatory and protective functions
of TREM2 (Zheng et al., 2016). The number of myeloid cells
around amyloid plaques was decreased in TREM2 hemizygous
mutations showed that a loss of TREM2 function results
in reduced Aβ1−42 uptake (Yuan et al., 2016). Further, a
previous study found that microglia became more active to
remove amyloid plaques after TREM2 overexpression, and
the density of amyloid plaques in the brain reduced in
middle-aged APP/ PS1 mice (7–8 months old) (Jiang et al.,
2014). Condello et al. (2018) postulated that the microglia
around the amyloid surface limits fibril outgrowth and plaque-
associated toxicity.

Many of studies suggested that TREM2 participates
in AD pathogenesis through intraneuronal deposition of
phosphorylated tau besides Aβ1−42 deposition and clearance
(Jay et al., 2015; Jiang et al., 2015, 2018). Tau pathology in
the CNS, current is involved in a series of neurodegenerative
disorders including AD (Medina and Avila, 2014). Therefore,
regulation of tau pathology may be an impactful approach
to delaying the AD development. Mutations in TREM2
have been suggested to be correlated with tau pathology
in AD. Lill et al. (2015) reported that a variant of TREM2
(rs75932628) significantly increased the accumulation of
CSF T-tau in a European population, which suggested that
TREM2’s role in AD may involve neuronal degeneration.
additionally, the overexpression of TREM2 has been found to
significantly enhance hyperphosphorylation of tau proteins
(Lill et al., 2015). Consequently, TREM2 overexpression
significantly improves neuronal loss and may play a role in
the phosphorylation of tau protein, thereby improving the
incidence of AD. Of note, inflammatory stimuli in the brain
have also been proved to be associated with accelerating tau
phosphorylation (Jiang et al., 2016). Since tau phosphorylation
would be accelerated resulting from reduced TREM2 levels
suggesting that TREM2 act as an anti-inflammatory factor. In
the light of our result, we can hypothesize that the upregulation
of TREM2 driven by the rs9357347-C allele serves as a
compensatory response to Aβ1−42 and tau and subsequently
protects against AD progression.

Currently, TREML1 (also named as TLT-1) has been identified
as a myeloid receptor expressed exclusively in the α-granules
of megakaryocytes and platelets (Washington et al., 2004).
TREML1 was proved to antagonize proinflammatory activation
of TREM1 by competing with its ligand (Derive et al., 2012).
Besides, soluble TREML1 has also been shown to play an anti-
inflammatory role. Meanwhile, TREML1 levels in the brain have
reported to have association with decreased AD risk in humans
(Carrasquillo et al., 2017) suggesting that upregulated expression
of TREML1 may be protective against AD. Nevertheless, as
we all know, no variant in TREML1 is currently exerted to
associated with AD (Derive et al., 2012). For that reason, our
results that rs9357347 exerted a significant effect on AD by
modulating CSF biomarkers including Aβ1−42, T-tau, and P-tau
181 has thrown light on the hypothesis about the mechanism
through which TREML1 modifies AD risk, which still needs
further investigation.

Our findings were consistent with the results of Carrasquillo
et al. (2017) that rs9357347 has functional influence on AD and
may indicated the role that rs9357347 played on protection from
AD. The study demonstrated that the locus was associated with
the level of Aβ and tau. Thus far, it has been identified that
both Aβ and tau pathology could lead to neuronal dysfunction
and neurodegeneration (Jack et al., 2010; Wang et al., 2015).
Many studies suggested that TREM2’s role in AD may involve
tau dysfunction and Aβdeposition (Lill et al., 2015; Zheng
et al., 2016). All the above evidence, along with our findings,
supported that rs9357347 mediated AD risk by modulating the
alteration of the amyloid-β pathology and neuronal degeneration
biomarkers. Although our results showed evidence that Aβ1−42
and tau response were in part mediated through rs9357347,
there remained a possibility that tau effects may be also
derived from an imbalance between Aβ1−42 production and
clearance (Hardy and Selkoe, 2002; Selkoe and Hardy, 2016).
A detailed analysis of the potential significance of secondary
changes is indeed interesting, so future studies are needed to
robustly identify the locus for the associations with Aβ1−42
and tau pathology.

CONCLUSION

In summary, our findings confirmed that the rs9357347CC

exerted a protective effect on AD by decreasing the Aβ1−42
accumulation and tau burden. These findings further
supported the hypothesis that TREM2 and TREML1 may
modulate amyloid-β pathology and neuronal degeneration to
influence the risk of AD.
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