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AbstrACt
Introduction The Centers for Disease Control and 
Prevention (CDC) spend significant time and resources 
to track influenza vaccination coverage each influenza 
season using national surveys. Emerging data from social 
media provide an alternative solution to surveillance at 
both national and local levels of influenza vaccination 
coverage in near real time.
Objectives This study aimed to characterise and 
analyse the vaccinated population from temporal, 
demographical and geographical perspectives using 
automatic classification of vaccination-related Twitter 
data.
Methods In this cross-sectional study, we continuously 
collected tweets containing both influenza-related terms 
and vaccine-related terms covering four consecutive 
influenza seasons from 2013 to 2017. We created a 
machine learning classifier to identify relevant tweets, 
then evaluated the approach by comparing to data from 
the CDC’s FluVaxView. We limited our analysis to tweets 
geolocated within the USA.
results We assessed 1 124 839 tweets. We found strong 
correlations of 0.799 between monthly Twitter estimates 
and CDC, with correlations as high as 0.950 in individual 
influenza seasons. We also found that our approach 
obtained geographical correlations of 0.387 at the US state 
level and 0.467 at the regional level. Finally, we found a 
higher level of influenza vaccine tweets among female 
users than male users, also consistent with the results of 
CDC surveys on vaccine uptake.
Conclusion Significant correlations between Twitter data 
and CDC data show the potential of using social media for 
vaccination surveillance. Temporal variability is captured 
better than geographical and demographical variability. 
We discuss potential paths forward for leveraging this 
approach.

IntrOduCtIOn
The Advisory Council for Immunisation 
Practices at the Centers for Disease Control 
and Prevention (CDC) recommends annual 
influenza vaccination for all healthy adults.1 

Furthermore, CDC urges individuals to get 
vaccinated early in the influenza season, from 
October to January.2 Yet, it can be difficult 
for researchers and practitioners working to 
improve influenza vaccine uptake to get accu-
rate information in real time. Existing influ-
enza immunisation surveillance techniques 
have known limitations: traditional survey-
based methods are time-consuming and 
expensive, and newer reimbursement-based 
systems fail to accurately capture a represen-
tative sample of population.3 

Two national surveillance systems enable 
public health professionals to access infor-
mation on influenza vaccine uptake in the 
USA. The most accessible of these systems 
is the CDC’s FluVaxView, which aggregates 
uptake data from several national surveys.4 
The CDC data provide accurate estimates 
of vaccine uptake, although with some time 
lag. The earliest reports are only available 
after influenza seasons typically peak, and 
final estimates are generally published at 
the start of the following influenza season in 

strengths and limitations of this study

 ► This study shows how to measure influenza vac-
cination uptake through Twitter, which has advan-
tages and disadvantages compared with traditional 
survey methods.

 ► The signal from Twitter is available in real time and 
has potential to be localised to specific geographical 
locations.

 ► While Twitter can be considered ‘big data’, the sam-
ple size is more limited when narrowed to specific 
populations.

 ► Certain vulnerable populations, including children 
and older adults, are under-represented in Twitter 
data.
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September or October. Additionally, the panel surveys 
that inform the reports are expensive, take months to 
administer and process, and may undersample popu-
lations without a landline phone, particularly minority 
populations, young adults and adults living in urban 
areas.5 6 A second system,7 provided by the National 
Vaccine Programme Office, uses an online tool to ‘live-
track’ influenza vaccination insurance claims from Medi-
care beneficiaries. While this system reduces time lag 
between vaccination and reporting, it only captures the 
population enrolled in Medicare, adults over age 65 and 
those under 65 living with disabilities.7 Social media data 
have been used in new tools for infectious disease surveil-
lance, particularly for seasonal and pandemic influ-
enza.8–10Using data from social media platforms (like 
Twitter or Facebook), search engines (like Google) and 
other internet-based resources (like blogs), researchers 
have been able to track the spread of disease in real time 
with relatively high accuracy.9 A recent meta-analysis of 
social media influenza surveillance efforts found that 
in a comparison to national health statistics (primarily 
from the CDC), correlation between social media data 
and national statistics ranged from 0.55 to 0.95,11 12 and 
the majority of projects were able to predict outbreaks 
more quickly than traditional surveillance methods.10 Of 
these studies, the most accurate systems have harnessed 
natural language processing methods to identify relevant 
tweets. However, few of these tools have been fully inte-
grated into public health practice.

With the development of new tools and techniques, 
social media data have the potential to similarly inform 
the practice of influenza immunisation surveillance. 
However, to the best of our knowledge, no studies have 
attempted to use social media data to track influenza 
vaccine intentions and uptake at the national level. To 
date, efforts to track influenza vaccination through social 
media have been much less frequent than efforts to track 
disease. Researchers are more likely to focus on the use 
of social media as a health communication tool than to 
explore the potential for immunisation surveillance.13 
Some studies have been able to use social media data to 
track vaccine sentiment and general attitudes towards 
vaccines.14–16 Others have focused on the spread of 
vaccine sentiment across online social networks.17 18 Some 
vaccine-specific studies have also attempted to use social 
media to identify geographical differences in vaccine 
uptake.19 20 The possibility of efficiently tracking influ-
enza immunisation in real time is promising, but the 
true value of any new data source is limited without vali-
dation against known metrics.14 21 22 To successfully use 
social media data in immunisation surveillance efforts, an 
important first step is to validate observed trends against 
national survey data. In this study, we sought to validate 
observed patterns from Twitter, using tweets expressing 
either intention to seek immunisation or receipt of influ-
enza immunisation, against influenza immunisation data 
from the CDC for four consecutive influenza seasons 
from 2013 to 2017.

MethOds
Patient and public involvement
This study did not involve patients.

data
Twitter data
We continuously collected tweets containing the terms 
‘flu’ or ‘influenza’ since 2012 using the Twitter streaming 
Application Programming Interface, as part of data 
described in our team’s prior work on Twitter-based 
health surveillance.23 For this study, we filtered influen-
za-related tweets containing at least one vaccine-related 
term (‘shot(s)’, ‘vaccine(s)’ and ‘vaccination’). We then 
inferred the US state for tweets using the Carmen geolo-
cation system,24 and the gender of each Twitter user of 
the data set using the Demographer tool.25 The Carmen 
tool infers locations of tweets by three main sources, coor-
dinates of tweets, places name of tweets and locations in 
user profiles, and most often represents the home loca-
tion of the user rather than their location while tweeting. 
The Demographer tool infers binary genders of Twitter 
users by the names of their profiles. We removed retweets, 
non-English tweets and tweets not located in the USA. 
We obtained 1 124 839 tweets from 742 802 Twitter users 
covering 4 consecutive influenza seasons from 2013 to 
2017. More details can be found in the  online supple-
mentary files (A1 and A2).

In addition to tweets about influenza vaccination, we 
also collected a random sample of tweets from all of 
Twitter. This was used to adjust the vaccine counts by 
time, location and demographics, as described below. 
The random sample includes approximately 4 million 
tweets per day since 2011.

CDC data
We used CDC data on influenza vaccination of the four 
influenza seasons for validating our approaches. The CDC 
data were downloaded from the CDC’s FluVaxView system.4 
These data include vaccination coverage by month, states 
and geographical regions as defined by the US Department 
of Health and Human Services (HHS). The CDC’s esti-
mates are based on several national surveys: the Behavioural 
Risk Factor Surveillance System (which targets adults), the 
National Health Interview Survey and the National Immuni-
sation Surveys (which focuses on children). In this study, we 
use the CDC data for adults (≥18 years old) across all racial/
ethnic groups. The CDC reports the ‘sex’ of the respon-
dents, although the underlying surveys ask for ‘gender’ 
rather than sex,26 27 making this variable comparable to our 
definition of gender in Twitter.

Automated classification
In our study, we used natural language processing tech-
niques to preprocess and encode tweets into feature 
vectors, then used the vectors to build machine learning 
classifiers to automatically categorise Twitter messages 
that express vaccination behaviour. Tweets were classified 
into yes or no labels in response to the question, ‘Does 
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this message indicate that someone received, or intended 
to receive, a influenza vaccine?’ Specifically, we randomly 
sampled 10 000 tweets from our collected data from 2012 
to 2016 and then used a crowdsourcing platform to anno-
tate the 10 000 tweets,28 using quality control measures to 
ensure accurate annotations. The classifiers were trained 
by the annotated tweets.

The best-performing classification model was a convolu-
tional neural network, which had a precision (the propor-
tion of tweets classified as vaccine intention/receipt that 
were correctly classified) of 89.4% and recall (the propor-
tion of vaccine intention/receipt tweets that were iden-
tified by the classifier) of 80.0%, measured using nested 
fivefold cross-validation. This classifier was applied to 
the full data set of 1 124  839 tweets, of which 366 698 
were classified as expressing that someone received or 
intended to receive an influenza vaccine. More details 
of preprocessing and encoding tweets, and building and 
selecting machine learning models, can be found in 
the online supplementary file (A.2) as well as in our prior 
preliminary work using simpler models.29

trend extraction and validation
To evaluate the reliability of the Twitter classifica-
tion model as a source for vaccination surveillance, we 
compared the Twitter data to CDC data along three 
dimensions: time (by month), location (by US state and 
region) and demographics (by gender). Specifically, 
CDC FluVaxView provides the monthly percentage of 
American adults who received an influenza vaccination 
in a given month in each state, as well as the percentage 
of Americans who report vaccination in different demo-
graphic groups each influenza season.

To extract trends over time, we computed the number 
of vaccine intention/receipt tweets in each month per 
season, excluding June (the CDC does not report data for 
June). We only included tweets geolocated to the USA. To 
adjust for variations in Twitter over time, we divided the 
monthly counts by the number of tweets in the same month 
from the large random sample of tweets.8 In addition to 
monthly rates for direct comparison to CDC, we also calcu-
lated weekly tweet rates, providing estimates at a finer time 
granularity than reported by the CDC. For monthly time 
series data, we applied an autoregressive integrated moving 
average (ARIMA) model and linear regression to estimate 
the CDC data from the Twitter data.30

To extract trends by location, we computed the number of 
intention/receipt tweets in each of the 10 HHS regions and 
each of the 50 US states. We created per-capita estimates by 
dividing each count by the number of tweets from the same 
region or state from the random sample of tweets.

To extract trends by gender, we computed the number 
of intention/receipt tweets identified as male or female, 
divided by the corresponding counts from the random 
sample. We computed this proportion within each US 
state before aggregating the counts from all states, to 
additionally adjust for gender variation across location. 
We provided detailed validation steps and additional 
experiments in online supplementary file A.3.

Confidence intervals
We present 95% CIs for all results. There are two sources 
of variability we must account for when constructing CIs. 
One source is the set of points included in the correla-
tion. The other is the set of tweets used to estimate the 
level of vaccine intention in each group. When estimating 
values within fine-grained groups, such as specific US 
states, the number of tweets can be small, leading to high 
variability in the estimates that propagates to the estimate 
of the correlation.

To address these issues, we construct CIs using boot-
strap resampling.31 We perform sampling at two levels. 
First, we sample the set of tweets used to calculate the 
estimate in each group (eg, the tweets in a specific month 
or location). We then sample the set of points that are 
included in the calculation of the correlation (eg, the set 
of months). The CIs are constructed from 100 bootstrap 
samples.

results
Activity by time
Table 1 shows the correlation between the classified tweets 
and CDC data from the ARIMA results along with 95% 
CIs. Figure 1 shows the values from both data sources over 

Table 1 Pearson correlations (95% CI) by month in each influenza season

All seasons 2013–2014 2014–2015 2015–2016 2016–2017

Monthly 0.799
(0.797 to 0.801)

0.644
(0.639 to 0.647)

0.950
(0.948 to 0.951)

0.909
(0.905 to 0.913)

0.910
(0.909 to 0.912)

Figure 1 Monthly levels of influenza vaccination activity as 
measured by the Centers for Disease Control and Prevention  
(CDC) versus Twitter.
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time, standardised with Z-scores. While the CDC data are 
only available by month, we show Twitter counts by week 
(Sunday to Saturday) to illustrate the finer temporal 
granularity that is possible. In both data sets, there are 
seasonal peaks every October, when influenza vaccines 
are distributed in the USA. While the overall shapes are 
very similar, the Twitter data sometimes show rises later in 
the influenza season that do not correspond to a similar 
rise in the CDC data, especially in the 2013–2014 season, 
which results in the lowest correlation.

Activity by location
The prevalence of tweets mentioning vaccine inten-
tion/receipt in each location is shown in figure 2, where 
darker colour indicates more frequent vaccine mentions. 
We observe that states in the northwest, especially Wash-
ington and Oregon, have higher rates than southeastern 
states, such as Florida and Alabama. There is a moderate 
correlation between the geographical patterns in the 
Twitter data compared with the CDC data, with a higher 
correlation at the HHS region level than at the state 
level (table 2). The strength of the correlations varies by 
season, with much stronger correlations in the first two 
seasons than the latter two seasons.

Activity by gender
Female users are much more likely to tweet about vaccine 
intention/receipt than male users on Twitter. The female-
to-male ratios in each of the four seasons are (with 95% 
CIs), respectively, 1.97 (1.96 to 1.98), 1.73 (1.72 to 1.74), 
1.59 (1.58 to 1.59) and 1.47 (1.46 to 1.48). This ratio is 
higher than in the CDC data (1.18, 1.17, 1.19 and 1.20). 
However, the two data sources are in relative agreement: 
the vaccination rate is higher among females than males. 

For example, in the 2016–2017 influenza seasons, the 
CDC reported that among American adults, 47.0% of 
women were vaccinated for influenza, compared with 
39.3% of men.

We visualised the gender weekly trends and gender 
ratio of vaccine coverage across locations in figure 3. The 
plot of gender weekly trends shows the volume of vaccine 
intention/receipt tweets over time. The gender ratio has 
also decreased steadily over time in the Twitter data, while 
it has stayed fairly constant in the CDC data. The plot of 
gender ratio shows the female-to-male ratio of vaccine 
intention/receipt tweets within each US state, with darker 
colour indicating a higher ratio. For example, the figure 
shows that West Virginia has more females mentioning 
influenza vaccine behaviour than males. We provided 
additional analyses in the  online supplementary file A.4.

dIsCussIOn
By using natural language processing techniques, Twitter 
data can be effectively analysed to identify meaningful 
information about influenza vaccination intentions and 
behaviours at the population level. Our key finding is 
the strong correlation between monthly Twitter-based 
estimates of vaccination uptake and official CDC uptake 
estimates. Additionally, exploratory analysis suggests that 
natural language processing tools can be developed to 
further investigate significant patterns in self-reported 
vaccine uptake by time, location and demographics.

Traditionally, surveillance efforts have focused on 
monthly or yearly data. Twitter data allow for greater 
flexibility and specificity when assessing temporal trends 
in vaccination. For example, this study shows that it is 

Figure 2 Levels of influenza vaccination activity per US state as measured by the Centers for Disease Control and Prevention  
(CDC) versus Twitter.

Table 2 Pearson correlations (95% CI) by geography in each season

All seasons 2013–2014 2014–2015 2015–2016 2016–2017

State 0.387
(0.362 to 0.394)

0.300
(0.261 to 0.308)

0.214
(0.193 to 0.243)

0.051
(0.015 to 0.057)

0.025
(0.002 to 0.040)

HHS region 0.467
(0.445 to 0.483)

0.690
(0.650 to 0.714)

0.573
(0.539 to 0.600)

0.137
(0.090 to 0.179)

0.244
(0.213 to 0.272)
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possible to extract weekly data in addition to monthly 
estimates. Although we are unable to compare our weekly 
counts to a validated national metric, we observed high 
week-to-week variability in general influenza vaccine 
tweets before applying a classifier to filter out irrelevant 
tweets, but a relatively consistent and predictable pattern 
in week-to-week tweets indicating vaccine intention and 
receipt, suggesting that the classifiers are reducing noise 
at this granularity.

It is possible to capture geographical variability in 
Twitter data using the Carmen tool. Our results suggest 
some similarities with the CDC FluVaxView maps, but the 
associations are not strong enough to make definitive 
conclusions based on geography. There may be local level 
trends that contribute to these observed patterns. While 
the value of this information is limited, it does demon-
strate the potential for more detailed geographical anal-
ysis in the future, especially as the number of Twitter users 
continues to climb.

Demographical classifiers are still under development. 
We were able to use the Demographer tool to identify 
the gender of the person tweeting. Our results suggest 
that there are significantly more tweets indicating inten-
tion to vaccinate coming from females. CDC data suggest 
that this may be accurate, with significantly more females 
reporting vaccination than males according to FluVax-
View. However, the gender gap in Twitter narrowed over 
the course of the four seasons in our study period, despite 
staying constant according to the CDC. Other important 
demographic attributes, like age, are challenging to clas-
sify and therefore not considered in this study.32 Further 
refinement of demographic classifiers is necessary.

There are limitations to working with social media data. 
While social media is considered ‘big data’, we never-
theless ran into challenges with sample size. While the 
full data set is indeed large, with over 1 million tweets, 
only 33.8% of those tweets can be resolved to the USA, 
and each experiment further filters down the data into 
smaller groups. For example, if tweets are counted by 
month within each US state, then the data need to be split 
into 600 partitions (12 months times 50 states) within 
each year. This has an observable effect of the validity of 
the results: the correlations between Twitter and CDC 

are very strong at the national level, but weaker at the 
regional level and weaker still at the state level. Sample 
size of tweets may also explain why the geographical 
correlations between Twitter and CDC (table 2) were 
strong in 2013–2014 and 2014–2015 than in 2015–2016 
and 2016–2017: the first two seasons contain 25.8% more 
geolocated tweets than the latter two seasons.

Errors in the natural language classifiers also limit 
overall accuracy of the approach. We investigated why 
the correlation with CDC was substantially lower in the 
2013–2014 season compared with others, and while there 
is no single conclusive explanation, we observed that the 
classifiers misidentified influenza-related tweets as indi-
cating vaccine intentions during the peak of the influ-
enza season in January 2014, such as tweets expressing 
regret about not being vaccinated. This type of error was 
common during this month, resulting in an spike in clas-
sified tweets that did not correspond with a true rise in 
vaccine uptake.

These data limitations affect all social media focused 
research. However, among studies that use natural 
language processes to study social media data, this is one 
of the first studies to track vaccination uptake. Our focus 
on messages that explicitly indicated intention or receipt 
of vaccination was unique. Existing research has focused 
on vaccine attitudes or sentiments alone, or substitutes 
other measures as a proxy for behaviour.33 For example, 
Salanthé and Khandelwal’s assessment of vaccine-related 
Tweets during the H1N1 influenza pandemic found 
strong correlation between vaccine sentiment expressed 
in tweets and CDC vaccine uptake rates.17 Another study 
by Dunn et al mapped exposure to negative information 
about human papillomavirus (HPV) vaccines on Twitter 
to state-level vaccine uptake rates.20 A more recent study 
from Tangherlini et al focused on instances of parents 
opting-out of immunisations by identifying narratives 
describing vaccine exemptions on ‘Mommy blogs’.34

Our results suggest that self-report data from 
Twitter can enrich the practice of influenza immuni-
sation surveillance and inform influenza vaccination 
campaigns. To date, the majority of social media surveil-
lance research has been conducted without the involve-
ment of local, state or governmental agencies.10 Indeed, 

Figure 3 Levels of influenza vaccination activity of male versus female users in Twitter across time (left) and location (right).
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most efforts to include public health practitioners in 
social media research have focused on health commu-
nications efforts.35 36 By using an adaptable machine 
learning technique, research questions can be tailored 
to suit the needs of specific projects or organisations. 
For example, while we focused on estimating vaccina-
tion coverage from FluVaxView, future work could use 
this data in a study design that is focused on supporting 
decision making.37 It may also be possible to use social 
media to track the impact and effectiveness of vaccines 
in a community, as early work suggests.38

Development of demographical classifiers for factors 
such as age and race/ethnicity is an important next step. 
One advantage of using Twitter is the ability to capture 
behaviours from a broader range of adults, especially 
from groups that may be difficult to reach using tradi-
tional surveys, including young adults and members 
of minority groups such as African Americans and 
Hispanics.30 31 While all groups fail to reach the Healthy 
People 2020 recommendation of 70% uptake, these same 
populations (young adults and racial/ethnic minorities) 
are also the least likely to be immunised against seasonal 
influenza.39–41

Incorporating self-report social media data may allow 
researchers and practitioners to respond to emerging 
health issues in new and innovative ways, but the prog-
ress depends on the ability to integrate novel methods 
into existing frameworks and to validate new data streams 
against reliable metrics. True success will depend on the 
use of novel techniques to measure positive changes in 
population health.42

Author affiliations
1Department of Information Science, University of Colorado, Boulder, Colorado, USA
2Department of Engineering Management and Systems Engineering, George 
Washington University, Washington, District of Columbia, USA
3Center for Health Equity, School of Public Health, University of Maryland, College 
Park, Maryland, USA
4Department of Computer Science, Johns Hopkins University, Baltimore, Maryland, 
USA
5Department of Family Science, School of Public Health, University of Maryland, 
College Park, Maryland, USA
6Department of Computer Science, University of Colorado, Boulder, Colorado, USA

Acknowledgements An early version of this research was presented at the AAAI 
Joint Workshop on Health Intelligence (W3PHIAI) in February 2017. 

Contributors XH, MCS, DAB, MD, SCQ and MJP contributed to the design of the 
study. XH, JC, MD and MJP contributed to data collection. XH, MCS, JC, DAB and 
MJP performed data analysis. XH, AMJ, DAB, SCQ and MJP interpreted the results. 
All authors contributed to the editing of this manuscript.

Funding Preparation of this manuscript was supported in part by the National 
Institute of General Medical Sciences under award number R01GM114771 to DAB 
and SCQ and by the National Science Foundation under award number IIS-1657338 
to XH and MJP. 

Competing interests MD and MJP hold equity in Sickweather Inc. MD has 
received consulting fees from Bloomberg LP, and holds equity in Good Analytics 
Inc. These organisations did not have any role in the study design, data collection 
and analysis, decision to publish or preparation of the manuscript. All other authors 
declare no competing interests. 

Patient consent for publication Not required.

ethics approval This work was conducted under Johns Hopkins University 
Homewood IRB No. 2011123: 'Mining Information from Social Media', which 
qualified for an exemption under category 4.

Provenance and peer review Not commissioned; externally peer reviewed.

data sharing statement All Twitter data used in this study are available in the 
following repository: https:// figshare. com/ articles/ Flu_ Vaccine_ Tweets/ 6213878 
This repository contains the annotations for training the classifiers, as well as the 
classifier inferences on the full data set. This also contains the extracted metadata, 
including demographics and location. In accordance with the Twitter terms of 
service, raw tweets are not shared, but identifiers are shared which can be used to 
download the tweets. 

Open access This is an open access article distributed in accordance with the 
Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which 
permits others to distribute, remix, adapt, build upon this work non-commercially, 
and license their derivative works on different terms, provided the original work is 
properly cited, appropriate credit is given, any changes made indicated, and the use 
is non-commercial. See: http:// creativecommons. org/ licenses/ by- nc/ 4. 0/.

reFerenCes
 1. Grohskopf LA, Sokolow LZ, Broder KR, et al. Prevention and control 

of seasonal influenza with vaccines: recommendations of the 
advisory committee on immunization practices-United States, 2017-
18 influenza season. Am J Transplant 2017;17:2970–82.

 2. CDC. Morbidity and Mortality Weekly Report (MMWR). 2017. https://
www. cdc. gov/ mmwr/ volumes/ 66/ rr/ rr6602a1. htm (Accessed 8 Mar 
2018).

 3. Santibanez T. Flu vaccination coverage, United States, 2016-
17 influenza season. 2017. https://www. cdc. gov/ flu/ fluvaxview/ 
coverage- 1617estimates. htm (Accessed 9 Mar 2018).

 4. Centers for Disease Control and Prevention. Influenza Vaccination 
Coverage | FluVaxView | Seasonal Influenza | CDC. 2017. https://
www. cdc. gov/ flu/ fluvaxview/ index. htm (Accessed 9 Mar 2018).

 5. Keeter S. The impact of cell phone noncoverage bias on polling in 
the 2004 presidential election. Public Opin Q 2006;70:88–98.

 6. Iachan R, Pierannunzi C, Healey K, et al. National weighting of data 
from the Behavioral Risk Factor Surveillance System (BRFSS). BMC 
Med Res Methodol 2016;16:155.

 7. US Department of Health and Human Services. Flu vaccination 
trends. 2017. https://www. hhs. gov/ nvpo/ resources/ flu/ index. html

 8. Broniatowski DA, Paul MJ, Dredze M. National and local influenza 
surveillance through Twitter: an analysis of the 2012-2013 influenza 
epidemic. PLoS One 2013;8:e83672.

 9. Velasco E, Agheneza T, Denecke K, et al. Social media and internet-
based data in global systems for public health surveillance: a 
systematic review. Milbank Q 2014;92:7–33.

 10. Charles-Smith LE, Reynolds TL, Cameron MA, et al. Using social 
media for actionable disease surveillance and outbreak management: 
a systematic literature review. PLoS One 2015;10:e0139701.

 11. Corley CD, Cook DJ, Mikler AR, et al. Text and structural data mining 
of influenza mentions in Web and social media. Int J Environ Res 
Public Health 2010;7:596–615.

 12. Collier N, Son NT, Nguyen NM. OMG U got flu? Analysis of 
shared health messages for bio-surveillance. J Biomed Semantics 
2011;2:S9.

 13. Odone A, Ferrari A, Spagnoli F, et al. Effectiveness of interventions 
that apply new media to improve vaccine uptake and vaccine 
coverage. Hum Vaccin Immunother 2015;11:72–82.

 14. Dredze M, Broniatowski DA, Hilyard KM. Zika vaccine 
misconceptions: a social media analysis. Vaccine 2016;34:3441–2.

 15. Powell GA, Zinszer K, Verma A, et al. Media content about vaccines 
in the United States and Canada, 2012-2014: an analysis using data 
from the Vaccine Sentimeter. Vaccine 2016;34:6229–35.

 16. Kang GJ, Ewing-Nelson SR, Mackey L, et al. Semantic network 
analysis of vaccine sentiment in online social media. Vaccine 
2017;35:3621–38.

 17. Salathé M, Khandelwal S. Assessing vaccination sentiments with 
online social media: implications for infectious disease dynamics and 
control. PLoS Comput Biol 2011;7:e1002199.

 18. Salathé M, Vu DQ, Khandelwal S, et al. The dynamics of health 
behavior sentiments on a large online social network. EPJ Data Sci 
2013;2:4.

 19. Nelson EJ, Hughes J, Oakes JM, et al. Estimation of geographic 
variation in human papillomavirus vaccine uptake in men and 
women: an online survey using facebook recruitment. J Med Internet 
Res 2014;16:e198.

https://figshare.com/articles/Flu_Vaccine_Tweets/6213878
http://creativecommons.org/licenses/by-nc/4.0/
http://dx.doi.org/10.1111/ajt.14511
https://www.cdc.gov/mmwr/volumes/66/rr/rr6602a1.htm
https://www.cdc.gov/mmwr/volumes/66/rr/rr6602a1.htm
https://www.cdc.gov/flu/fluvaxview/coverage-1617estimates.htm
https://www.cdc.gov/flu/fluvaxview/coverage-1617estimates.htm
https://www.cdc.gov/flu/fluvaxview/index.htm
https://www.cdc.gov/flu/fluvaxview/index.htm
http://dx.doi.org/10.1093/poq/nfj008
http://dx.doi.org/10.1186/s12874-016-0255-7
http://dx.doi.org/10.1186/s12874-016-0255-7
https://www.hhs.gov/nvpo/resources/flu/index.html
http://dx.doi.org/10.1371/journal.pone.0083672
http://dx.doi.org/10.1111/1468-0009.12038
http://dx.doi.org/10.1371/journal.pone.0139701
http://dx.doi.org/10.3390/ijerph7020596
http://dx.doi.org/10.3390/ijerph7020596
http://dx.doi.org/10.1186/2041-1480-2-S5-S9
http://dx.doi.org/10.4161/hv.34313
http://dx.doi.org/10.1016/j.vaccine.2016.05.008
http://dx.doi.org/10.1016/j.vaccine.2016.10.067
http://dx.doi.org/10.1016/j.vaccine.2017.05.052
http://dx.doi.org/10.1371/journal.pcbi.1002199
http://dx.doi.org/10.1140/epjds16
http://dx.doi.org/10.2196/jmir.3506
http://dx.doi.org/10.2196/jmir.3506


7Huang X, et al. BMJ Open 2018;9:e024018. doi:10.1136/bmjopen-2018-024018

Open access

 20. Dunn AG, Surian D, Leask J, et al. Mapping information exposure on 
social media to explain differences in HPV vaccine coverage in the 
United States. Vaccine 2017;35:3033–40.

 21. Tufekci Z. Big questions for social media big data: 
representativeness, validity and other methodological 
pitfalls.  ICWSM 2014;14:505–14.

 22. Cohen R, Ruths D. Classifying political orientation on Twitter: It’s not 
easy!.  ICWSM 2013.

 23. Paul MJ, Dredze M. Discovering health topics in social media using 
topic models. PLoS One 2014;9:e103408.

 24. Dredze M, Paul MJ, Bergsma S, et al. “Carmen: a twitter 
geolocation system with applications to public health,”. AAAI 
workshop on expanding the boundaries of health informatics using 
AI 2013;23:45.

 25. Knowles R, Carroll J, Dredze M. Demographer: extremely simple 
name demographics. Proceedings of the First Workshop on NLP and 
Computational Social Science 2016:108–13.

 26. National Center for Immunization and Respiratory Diseases. National 
Immunization Surveys (NIS), 2018.

 27. National Center for Chronic Disease Prevention and Health Promotion. 
Behavioral risk factor surveillance system questionaires, 2018.

 28. Callison-Burch C, Dredze M, 2010. Creating speech and language 
data with Amazon’s Mechanical Turk. Proceedings of the NAACL 
HLT 2010 Workshop on Creating Speech and Language Data with 
Amazon’s Mechanical Turk. 1–12.

 29. Huang X. Examining patterns of influenza vaccination in social 
media. AAAI Joint Workshop on Health Intelligence 2017:542–6.

 30. Franke J, Härdle WK, Hafner CM. ARIMA time series models. 
Statistics of financial markets: an introduction. Berlin, Heidelberg: 
Springer Berlin Heidelberg, 2011:255–82.

 31. Efron B, Tibshirani R. [Bootstrap methods for standard errors, 
confidence intervals, and other measures of statistical accuracy]: 
Rejoinder. Statistical Science 1986;1:77.

 32. Flekova L, Carpenter J, Giorgi S, et al. D. Preo\ctiuc-Pietro, 
“Analyzing biases in human perception of user age and gender from 

text,. Proceedings of the 54th Annual Meeting of the Association for 
Computational Linguistics 2016;1:843–54.

 33. Du J, Xu J, Song HY, et al. Leveraging machine learning-based 
approaches to assess human papillomavirus vaccination sentiment 
trends with Twitter data. BMC Med Inform Decis Mak 2017;17:69.

 34. Tangherlini TR, Roychowdhury V, Glenn B, et al. “Mommy Blogs” and 
the vaccination exemption narrative: results from a machine-learning 
approach for story aggregation on parenting social media sites. JMIR 
Public Health Surveill 2016;2:e166.

 35. Zhou X, Coiera E, Tsafnat G, et al. Using social connection 
information to improve opinion mining: Identifying negative sentiment 
about HPV vaccines on Twitter. Stud Health Technol Inform 
2015;216:761–5.

 36. McGregor KA, Whicker ME. Natural language processing approaches 
to understand HPV vaccination sentiment. Journal of Adolescent 
Health 2018;62:S27–S28.

 37. Alberti KP, Guthmann JP, Fermon F, et al. Use of Lot Quality 
Assurance Sampling (LQAS) to estimate vaccination coverage 
helps guide future vaccination efforts. Trans R Soc Trop Med Hyg 
2008;102:251–4.

 38. Wagner M, Lampos V, Yom-Tov E, et al. Estimating the population 
impact of a new pediatric influenza vaccination program in england 
using social media content. J Med Internet Res  
2017;19:e416.

 39. Krogstad JM. Social media preferences vary by race and ethnicity. 
2015. http://www. pewresearch. org/ fact- tank/ 2015/ 02/ 03/ social- 
media- preferences- vary- by- race- and- ethnicity/

 40. CDC. Flu vaccination coverage, United States, 2016-17 Influenza 
Season. 2017. https://www. cdc. gov/ flu/ fluvaxview/ coverage- 
1617estimates. htm# age- group- adults (Accessed 8 Mar 2018).

 41. HealthyPeople. Immunization and infectious diseases. https://www. 
healthypeople. gov/ 2020/ topics- objectives/ topic/ immunization- and- 
infectious- diseases (Accessed 9 Mar 2018).

 42. Mooney SJ, Westreich DJ, El-Sayed AM. Epidemiology in the era of 
big data. Epidemiology 2015;26:390–4.

http://dx.doi.org/10.1016/j.vaccine.2017.04.060
http://dx.doi.org/10.1371/journal.pone.0103408
http://dx.doi.org/10.1214/ss/1177013817
http://dx.doi.org/10.1186/s12911-017-0469-6
http://dx.doi.org/10.2196/publichealth.6586
http://dx.doi.org/10.2196/publichealth.6586
http://www.ncbi.nlm.nih.gov/pubmed/26262154
http://dx.doi.org/10.1016/j.jadohealth.2017.11.055
http://dx.doi.org/10.1016/j.jadohealth.2017.11.055
http://dx.doi.org/10.1016/j.trstmh.2007.10.015
http://dx.doi.org/10.2196/jmir.8184
http://www.pewresearch.org/fact-tank/2015/02/03/social-media-preferences-vary-by-race-and-ethnicity/
http://www.pewresearch.org/fact-tank/2015/02/03/social-media-preferences-vary-by-race-and-ethnicity/
https://www.cdc.gov/flu/fluvaxview/coverage-1617estimates.htm#age-group-adults
https://www.cdc.gov/flu/fluvaxview/coverage-1617estimates.htm#age-group-adults
https://www.healthypeople.gov/2020/topics-objectives/topic/immunization-and-infectious-diseases
https://www.healthypeople.gov/2020/topics-objectives/topic/immunization-and-infectious-diseases
https://www.healthypeople.gov/2020/topics-objectives/topic/immunization-and-infectious-diseases

	Can online self-reports assist in real-time identification of influenza vaccination uptake? A cross-sectional study of influenza vaccine-related tweets in the USA, 2013–2017
	Abstract
	Introduction
	Methods
	Patient and public involvement
	Data
	Twitter data
	CDC data

	Automated classification
	Trend extraction and validation
	Confidence intervals

	Results
	Activity by time
	Activity by location
	Activity by gender

	Discussion
	References


