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Current intraocular pressure (IOP) measurement using air puff could be erroneous without applying proper corrections. Although
noncontact tonometry is not considered to be accurate, it is still popularly used by eye clinics. It is thus necessary to extract the
correct information from their results. This study proposes a practical approach to correctly measure IOP in vivo. By embedding a
new model-based correction to the Corvis® ST, we can extract the corneal Young’s modulus from the patient data. This Young’s
modulus can be used to correct the IOP readings. The tests were applied to 536 right eyes of 536 healthy subjects (228 male and
308 female) between March of 2012 and April of 2016. The tests were applied to patients at the Department of Ophthalmology,
National Taiwan University Hospital and the Hung-Chuo Eye Clinics. The statistical analysis showed that the value for the
Young’s modulus was independent of all the other parameters collected from the Corvis ST, including the corneal thickness
and the intraocular pressure. Therefore, it is important to independently measure the Young’s modulus instead of depending
on the correlation with the other parameters. This study adds the methodology of measuring corneal stiffness in vivo for
ophthalmologists’ reference in diagnosis.

1. Introduction

The biomechanical properties of the cornea are associated
with the development of corneal diseases such as keratoco-
nus, ectasia after refractive surgery, and possible glaucoma
progression [1–4]. Hence, there has been a recent surge of
interest in assessing corneal biomechanical properties due
to potential clinical implications [5–7]. Moreover, the biome-
chanical properties of the cornea have been proposed to
directly affect intraocular pressure (IOP) measurements,
especially for normal tension glaucoma [8, 9], and are
becoming recognized as necessary for the calibration of IOP
in different moduli of tonometers [10–13]. Modern in vivo
instruments such as the Ocular Response Analyzer (ORA;

Reichert Ophthalmic Instruments, Buffalo, NY, USA) and
Corvis® ST (Oculus, Wetzlar, Germany) not only provide
their own biomechanical parameters and indices of the
cornea [14, 15] but also provide the corrected IOP based on
these parameters [16, 17]. The indices are useful for measur-
ing corneal biomechanical properties. For example, the ORA
provides the corneal hysteresis (CH) and the corneal
resistance factor (CRF) [18] and the Corvis ST provides the
deformation amplitude (DA) and the first applanation (A1)
time [19]. However, the corneal biomechanical parameters
derived from these instruments are not independent
parameters, and they are also affected by the corneal thick-
ness, IOP, and corneal geometry. In many cases, these
parameters cannot differentiate the subclinical ectatic
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corneas from normal corneas [20]. Furthermore, these
indicators cannot be translated into the commonly used
mechanical properties such as the Young’s modulus in
particular [21]. The Young’s modulus is an accepted bio-
mechanical property [22] that may be used for predicting
postrefractive surgery ectasia [23, 24], detecting early kerato-
conus [6, 25], and reshaping orthokeratology [23, 26, 27]. It
is highly desirable to find means to extract the Young’s
modulus, which is independent of the corneal thickness
and other parameters, from in vivo measurements for
clinical implementation.

The Young’s modulus is known to be an important
parameter in clinical practices and researches [6, 28–30],
and there have been many methods trying to measure
the Young’s modulus. Buzard and Torres et al. established
the corneal biomechanical models correlating the force
and displacement measurement from the tonometer
in vivo [31, 32]. Despite the efforts, the problem remains
that most of the experimental measurements were per-
formed on cadaver eyes. The clinically applicable proce-
dures were still lacking. Furthermore, the Young’s moduli
reported in the literature were within the range of 0.1–
10MPa from in vitro tests (listed in Table S1 available
online at https://doi.org/10.1155/2017/5410143). Impor-
tantly, the Young’s modulus derived from an in vivo mea-
surement might be potentially different from that from an
in vitro measurement.

The current research used the Scheimpflug images
captured by the high-speed camera (4330 frames/sec) in
the Corvis ST to extract the corneal Young’s modulus
in vivo. The Scheimpflug images illustrated corneal defor-
mation. Using image processing techniques, it is possible
to extract the dynamic behavior of the cornea by the air
puff [33]. Our model refers to several previous studies.
For example, Kling et al. fit finite element analysis results
with the Corvis ST and then used an inverse model to
find the biomechanical parameters [34]. We also note that
most of the previous approaches either used time sequences
with optimal fitting or complex numerical approaches, both
of which are time-consuming and are inherently offline
calculations. Readers are referred to Garcia-Porta et al.
for a review of the corneal biomechanical properties mea-
surement techniques [35].

Our study aims to establish an analytical solution for a
more realistic model that enables the extraction of the

Young’s modulus in vivo. By using Taber’s shell model,
which describes the static deformation of a fluid-filled
shell subject to a concentrated load, we were able to con-
sider the large corneal deflection under air puff [36, 37].
We developed an image processing tool that automatically
extracted the necessary geometrical information from the
high-speed images. We then developed a novel formula
for the calculation of the corneal Young’s modulus using
the information extracted from the corneal deformation.
This data could be a useful information for the ophthal-
mologist’s reference in their diagnosis. The proposed for-
mula could be easily incorporated into the present day
digital tonometer and deduce in vivo the corneal biome-
chanical parameters.

2. Materials and Methods

2.1. Mathematical Model: The Modified Taber’s Model. We
propose a modified Taber’s model [36] to describe the rela-
tionship between the applied force and the corneal deflection.
Briefly, three equilibrium factors, including the external
applied force, the internal fluid pressure, and the shell stiff-
ness force, are considered as the fluid-filled spherical shell
undergoes large deformations. The following assumptions
are proposed for the closed-form solution: (1) the cornea is
assumed to be a portion of the hemisphere and is composed
of a homogeneous, isotropic, uniform thickness, elastic mate-
rial with all geometric and material properties taken as con-
stants; (2) an incompressible fluid fills the inside of the
cornea; a vertical load P is applied at the apex; (3) the edge
of the corneal hemisphere is clamped respective to the lim-
bus; and (4) the dynamic corneal deflection at the moment
of applanation could be regarded as the static model (as the
principle used in the Corvis ST).

The fluid-filled cornea modeling process proceeds in
three consecutive steps: the dimple, the pressure stretching,
and the bending. First, the shell is pressed down from its cen-
ter and then forms a dimple, which is cut along the general
meridional angle α and the radius of the hemispherical cor-
nea is R as shown in Figure 1(a).

In this figure, the shell can be divided into two parts: the
upper shell that is convex upward and the lower shell that
remains concave downward. We assume a uniform bending
moment around the edge, which divides the upper and lower
shells. The bending moment bends down the upper shell to
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Figure 1: Deflection components for fluid-filled cornea: (a) dimple deflection, (b) stretching, and (c) bending.
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form the dimple. The traversal distance at the center of the
dimple is thus

Δ1 = 2R 1 − cos α , 1

and the inverting dimple bends down across a volume of

ΔV1 =
−πRΔ2

1 6 − Δ1 /R
12

2

Second, the fluid pressured p uniformly increases the
strain throughout the lower and upper shells and causes the
radial displacements wi and wo, respectively, as shown in
Figure 1(b). The meridional and hoop strains are given by

εϕ = εθ =
wi =

wi

R
upper shell,

wo =
wo

R
lower shell

3

The strain energy induced by the fluid pressure can be
explained by

US =
πEtR2

1 − ν2
ε2ϕ + ε2θ + 2νεϕεθ sin ϕ d ϕ, 4

where E is the Young’s modulus, t is the shell thickness (cor-
neal center thickness, CCT), ν is the Poisson’s ratio, and ϕ is
the meridional angle depending on the angles in the upper
shell (0<ϕ<α) or the lower shell (α <ϕ<π/2). The strain
energy includes two parts: the stretching of the lower shell
and the compression of the upper shell. Substituting (3) into
(4), the integration yields

US =
2πEtR2

1 − v
w2
i 1 − cos α +w2

o cos α 5

The fluid pressure causes the lower shell to swell and thus
further drags down the upper shell by a distance of

Δ2 = R wi 1 − cos α −wo cos α 6

This subtracted volume by the downward movement, Δ2,
of the upper shell becomes

ΔV2 = −Δ2

2π

0

α

0
R2 sin ϕ d ϕ dθ = −2πR2Δ2 1 − cos α 7

In addition, the volume displaced by the inner shell is
transferred to the expanding of the outer shell and adds to
the volume.

ΔV3 =wo

2π

0

π−α

π
2

R2 sin ϕ d ϕdθ = 2πR3wo cos α 8

Third, the bending moments at the dimple edge and the
clamped edge must be accounted for to satisfy the continuity
condition in the narrow zones near the edges (as shown in
Figure 1(c)). The bending strain energy for each edge is inde-
pendent, and it is due to the applied edge loads.

UB = 2πR sin ϕe

χ

0
Mϕdχ +

h

0
Hdh

e

9

In (9),Mϕ is the meridional moment, H is the horizontal
force, χ is the rotation angle, and h is the horizontal displace-
ment. ϕe is the meridional edge angle, where ϕe = α for the
edge of inner shell, ϕe = π − α for the top edge of the outer
shell, and ϕe = π/2 for the lower edge of the outer shell. Ran-
jan’s thin shell model [38] has provided this derivation for
the details of moderating the edge forces Mϕ and H in terms
of edge displacements χ and h. After substituting the bound-
ary conditions at these edges, the strain energy from bending
is obtained:

UB = 2πEtc2λ
sin α

α
2 α3 + λ2α y23 + y24 + 2λ2αy3y4

− λα2Δw + 2λ2αΔw2 + 2λ2αy3y4

− λα2Δw + 2λ2αΔw2 −
α cot α
10

2 2 α3 + 3λ2αy23 + 4λ2αy3y4

− λα2Δw − λ3Δw y23 + 2y24 +
Δw2

6

+ λ3 sin α
2w2

o

2
+
λw3

o cot α
15

,

10

in which λ = R/c, c = t/ 12 1 − ν2 , Δw = wo −wi, and y3
and y4 are the normalized rotational angle and normalized
horizontal displacement. The additional displacement
induced by the bending edges can now be deduced as

Δ4 = R −2y4 cos α +
α

2 2 sin α
2y3 −

λ

α
y4Δw −

λ

4 2
w2
o ,

11

and the volume change produced by Δ3 is

ΔV4 = −2πR2Δ3 1 − cos α 12

From the above derivations, we are in a position to calcu-
late the overall displacement. On the other hand, the work of
the external force P inducing the total displacement change is

UP = −P Δ1 + Δ2 + Δ4 , 13

and the work of the fluid pressure p inducing the volume
change is

Upr = −p ΔV1 + ΔV2 + ΔV3 + ΔV4 14

Then, the total potential energy of the system is written as

Π =US +UB +UP +Upr 15

After substituting the potential energy into (15), we also
calculate the equilibrium by applying
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∂Π
∂wi

=
∂Π
∂wo

=
∂Π
∂p

=
∂Π
∂y3

=
∂Π
∂y4

= 0 16

Equation (16) consists of five nonlinear algebraic equa-
tions with five unknowns: wi, wo, p, y3, and y4. Thus, the
force-deflection relation of the eyeball could be written into
a matrix identity.

A · Z = BL + BNL, 17

where the solution vector is

Z = wi wo p y3 y4
T , 18

with p = pR2/Et2 being the normalized fluid pressure. The
matrix A is

The vector BL represents the linear term

BL =

−
α

λ
+

P
2π

t
λc

1 − cos α
sin α

α

λ
−

P
2π

t
λc

cot α

1 − cos α 2

0

−
P
2π

t
λc

cot α

, 20

and the vector BNL represents the nonlinear term

BNL

=

λ cot α
10

α2

λ2
+ y23 + 2y24 +

1
2
Δw2 +

t
c

y4
2 2 sin2 α

P∗

−
λ cot α
10

α2

λ2
+ y23 + 2y24 +

1
2
Δw2 −

t
c

y4
2 2 sin2 α

P∗

−
P
2π

t
λc

cot α −
λ cot α

5
w2
o

−
1 − cos α 3

3
+

α

2 2
1 − cos α
sin α

2y3 −
λ

α
y4Δw

λ cot α
10

6 2
α

λ
y3 + 2

α

λ
y4 − y3Δw +

t
λc

αP∗

2 2 sin2 α
cot α
5

αy3 − λΔwy4 −
t
c

ΔwP∗

4 2 sin2 α

,

21

with P∗ = P /2π − 1 − cos α p, and P = P/ Et2 being the
normalized applied force.

Equation (17) represents a clean closed-form solution to
the deformation of the spherical shell under the action of a
point force. Unfortunately, (18)~(21) involve a few coupled
high-order terms, making it very hard to solve even with
numerical approximations. It is reasonable to set y3 and y4
to zero when considering clinical situations since t/R < 5%
and the deflection induced by the external force is much
larger than the deflections induced both by the internal pres-
sure and the bending moment (i.e., Δ2, Δ3 ≪ Δ1). Thus, (20)
and (21) are reduced to

B = BL + BNL

=

−
α

λ
+
λ cot α
10

α2

λ2
+
1
2
Δw2 +

P
2π

t
λc

1 − cos α
sinα

α

λ
−
λcot α
10

α2

λ2
+
1
2
Δw2 −

P
2π

t
λc

cot α −
λ cot α

5
w2
o

1 − cos α 2 −
1 − cos α 3

3
t
λc

α

2 2 sin2 α
P
2π

− 1 − cos α p

−
P
2π

t
λc

cot α

22

Setting the fourth and fifth elements of Z, namely y3 and
y4, to zero leads to

P = 2π 1 − cos α p 23

2.2. The Simplified Model. Equation (23) describes the
equilibrium condition between the external loading and the
internal fluid pressure for the case of small deformations.
This means that the ratio between the two forces becomes

A =

1
2
+

2λ
1 − ν

1 − cos α
sin α

−
1
2

−
1
2

3
2
+

2λ
1 − ν

cot α

− 1 − cos α
0
0

cos α 2 − cos α
0
0

t
λc

1 − cos α 2

sin α
0 0

−
t
λc

2 − cos α cot α 0 0

0
0

−
t
λc

1 − cos α cot α

0
2
1

2 cos α 1 − cos α
1
2

19

4 Journal of Ophthalmology



P/ 2πR2p = 1 − cosα. Substituting (23) into (22) to replace P,
and then substituting (20) into (15) to replace BL and BNL,
we have the modified relationship

1
2
+

2λ
1 − ν

1 − cos α
sin α

−
1
2

−
1
2

3
2
+

2λ
1 − ν

cot α

wi

wo

=
−
α

λ
+
λ cot α
10

α2

λ2
+
1
2
Δw2

α

λ
−
λ cot α
10

α2

λ2
+
1
2
Δw2 +

t
λc

cos2 α
sin α

p

24

From Figure 1, the vertical displacement is defined by

Δ
R
= Δ1 + Δ2 + Δ4 = 2 +wi 1 − cos α

− wo cos α −
1

4 2
w2
o

25

Equations (24) and (25) now provide a simplified rela-
tionship between the vertical deflection of the eyeball Δ (or
wi and wo) and the external pressure P (the applied force).
Notice that the biomechanical properties such as Young’s
modulus and the Poisson’s ratio are embedded within the
coefficients. It is possible to deduce the desirable property if
enough measurement data are available. In other words, it
is possible to deduce the Young’s modulus out of the mea-
sured geometrical deformations and the measured internal
fluid pressure, which is IOP here. The calculation time for
these equations is less than 10 seconds using a regular per-
sonal computer. It would be a simple matter to attach this
function to a conventional tonometer.

2.3. The Numerical Method. Based on the proposed model in
(24) and (25), the parameters required from the Corvis ST for
the calculation are the IOP value p, the corneal radius R, the
maximal corneal deflection Δ, the dimple edge angle α, and
material thicknesses t. In this study, we assumed a static case
at the moment when the maximal deflection is achieved
during the air puffing process. Although the actual deflection
of the cornea is a dynamic procession, we treat the brief

moment as frozen and neglect the inertial force term mx in
the motion equation (mx + kx = P, in which the velocity term
is zero at maximum deflection). It was further assumed that
the maximal deflection occurs at the moment when the
maximum air puff pressure is reached. In other words, there
is no time delay in the dynamic deformation.

Figure 2 shows a Scheimpflug image obtained from the
test. An image processing tool developed from the MATLAB
toolbox helps to automatically identify the cornea as well as
the relative dimensions required. Through the series of
pictures, the image processing tool automatically identifies
the corneal deformation, δ, under air puff together with the
corresponding meridional angle, α.

The corneal radius R can be calculated from R2 =
X2 + Y2 /2Y , and the meridional angle α is given by α =
sin−1 X/R . Note that the low-resolution high-speed
Scheimpflug imaging-based deduction may introduce addi-
tional uncertainties. In this experiment, the pixel size is
0.017mm which imposes a resolution limit of 0.034mm
(7% of the corneal thickness). That 7% error could contribute
to a major disadvantage of the proposed method. In addition,
there are still some parameters that has to be determined
beforehand. For example, the Poisson’s ratio ν of the cornea
is set to be 0.49; the maximum pressure of the air puff is set to
60mmHg; and the area of the cord of the maximal deflection
is set to A = πR2sin2 α . A ratio of (2/3)2A is used to repre-
sent the nonuniform pressure distribution over the air puff
area [34]. As mentioned in the last section, the Young’s mod-
ulus is not explicit and is embedded within the normalized
force p = pR2/Et2, which could be obtained from (22) and
(23). Since (22) is not a linear equation, it is necessary to
use a minimization procedure to search for the optimum
solutions of the two unknowns, wi and wo. The search is car-
ried out to minimize the error between the corneal displace-
ment Δ calculated from the mathematical model in (23) and
the corneal deflection δ by the Corvis ST measurement. In
practice, the minimization of error = |Δ− δ| is executed by
applying the numerical SQP method (Sequential Quadratic
Programming) [39]. With the knowledge of wi and wo, it is
now straightforward to substitute for the corneal Young’s
modulus. The procedure is illustrated in Figure 3.

2.4. Validation and Statistical Analysis. We retrospectively
enrolled the images from 536 right eyes of 536 healthy
subjects (228 male and 308 female) at the Department of
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Figure 2: Images collected from the Corvis ST and the geometric relationship marked (a) before cornea deflection and (b) at the moment of
maximum deflection.
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Ophthalmology, National Taiwan University Hospital, and
Hung-Chuo Eye Clinics between March of 2012 and April
of 2016. The research was approved by the Ethical Review
Board of the National Taiwan University. The content of
the research followed the tenets of the Declaration of
Helsinki. The measurement was performed as previously
described [40–42]. Briefly, the recording started with the cor-
nea at the natural convex shape. The air puff would push the
cornea in through the first applanation until it reaches a max-
imum convex inward, referred to as the highest concavity
(HC). There would then be a slight oscillation before the
cornea bounced back through the second applanation and
restored to its natural shape. A1T marked the time it took
to reach the first applanation. A1L and A1V were the corre-
sponding length (diameter) of the flattened cornea and the
velocity of the movement. Likewise, A2T marked the time
stamp for the second applanation, and A2L and A2V repre-
sented the diameter and the velocity of the cornea at the sec-
ond applanation. During the measurement, the movement of
the cornea was compensated by the movement of the whole
eye; however, only the movement of the cornea was recorded.
The CCT in the measure was taken off the Scheimpflug image
and the lowest value was recorded.

To avoid multicollinearity, the correlations between any
two variables were analyzed for the right eyes of all subjects
by Pearson correlation to study the effect of corneal parame-
ters on the IOP. The more significant variables such as the
age, sex, and CCT were considered. The effects of the param-
eters and the Young’s modulus on the measured IOP were
analyzed by multivariate linear regression, allowing us to
consider data from the correlation coefficients. The

multivariate linear regression is based on cases with no miss-
ing values for any variables used, and the syntax is in missing
listwise, outs ranova, and stepwise (age, CCT, and Young’s
modulus) modes. The accuracy of our models was confirmed
by the goodness-of-fit statistic pseudo R2 with a least-square
method. The residual sum of squares was estimated as the
unexplained proportion of IOP variation.

R2 = 1 −
residual sum of squares

total variation
= the explained proportion by themodel

26

All statistical analyses were performed using SAS 9.3
(Cary, NC, USA).

3. Results

There were 11 corneal parameters obtained from the Corvis
ST, and the Young’s moduli of both eyes were analyzed and
listed in Tables 1 and 2. Most of the parameters measured
from the Corvis ST were not significantly different between
the two eyes except the peak distance (PD) (P < 001). The
mean Young’s moduli of the right eyes (0.207MPa; 95% CI,
0.054–0.359MPa) and the left eyes (0.205MPa; 95% CI,
0.070–0.339MPa) were also very close. All of these parame-
ters including the Young’s modulus were not significantly
different among these three age groups: 0–14, 15–64, and
older than 64 years old (one-way ANOVA, P > 05) as shown
in Table 1. However, the Young’s modulus gradually
decreased in the elderly group. Table 2 showed the correla-
tion coefficients among the 11 corneal parameters obtained
from the Corvis ST and the Young’s modulus. We found that
the Young’s modulus was weakly correlated with the other
parameters and the IOP. In contrast, a highly negative corre-
lation coefficient between A1T and IOP was noted. We also
found that there were moderately negative or positive corre-
lations between the IOP and the A1V, A2V, DA, A2T, and
PD as expected (numbers in the parenthesis are the coeffi-
cients). Interestingly, the CCT was weakly correlated with
the IOP and the Young’s modulus. We further used univari-
ate analysis to demonstrate weak correlations between the
Young’s modulus and age, IOP, CCT, DA, A1T, and spheri-
cal equivalence (in Figure S1a–f).

Table 3 shows the effect of these factors on the IOP in a
multivariate linear regression model. The significant predic-
tors were CCT (P < 0001), age (P = 0001), and the Young’s
modulus (P < 0001). A goodness-of-fit R2 correlation coeffi-
cient was 0.1338 for CCT, 0.0104 for the Young’s modulus,
and 0.02517 for age. As a result, we could derive the prediction
model as follows:

IOP mmHg = −8 106 + 0 034 age, years + 0 036 CCT, μm

+ 8 922 Young′smodulus, MPa

27
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Figure 3: Flowchart for corneal Young’s modulus estimation.
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4. Discussion

In this paper, we propose a simplified closed-form solution
for a quick estimation of the corneal biomechanical proper-
ties during IOP measurement by using the Corvis ST. The
model is based upon the nonlinear static fluid-filled hemi-
spherical shell model subjected to a concentrated load. The
proposed model is easy to implement and can directly
provide the Young’s modulus as opposed to the various
parameters defined by the ORA or the Corvis ST. A database
of the Young’s moduli and the damping ratios of 536
subjects’ eyeballs was established by fitting the model into

Table 1: Corvis’ parameters and the proposed Young’s modulus from right eyes of 536 subjects in the three different age groups.

Age (years) 0–14 15–64 > 64
Mean (95% CI) Mean (95% CI) Mean (95% CI)

Number 13 498 25

IOP (mmHg) 15.19 (8.72, 21.67) 14.73 (7.73, 21.72) 17.66 (9.16, 26.16)

A1L (mm) 1.78 (1.63, 1.93) 1.77 (1.54, 2.00) 1.81 (1.70, 1.93)

A1V (m/s) 0.14 (0.09, 0.18) 0.15 (0.10, 0.19) 0.12 (0.07, 0.17)

A2L (mm) 1.73 (1.10, 2.37) 1.72 (1.07, 2.37) 1.81 (1.39, 2.22)

A2V (m/s) −0.35 (−0.51, −0.18) −0.37 (−0.55, −0.20) −0.32 (−0.45, −0.19)
PD (mm) 3.91 (1.23, 6.5) 3.79 (1.22, 6.36) 3.56 (1.02, 6.09)

Radius (mm) 7.11 (5.01, 9.20) 7.17 (4.72, 9.63) 7.63 (5.05, 10.21)

DA (mm) 1.02 (0.75, 1.29) 1.07 (0.83, 1.31) 1.03 (0.81, 1.25)

CCT (μm) 537.54 (482.52, 592.56) 543.10 (469.31, 616.90) 561.68 (484.96, 638.40)

A1T (msec) 7.45 (6.63, 8.27) 7.38 (6.53, 8.23) 7.76 (6.73, 8.79)

A2T (msec) 21.76 (20.60, 22.93) 21.77 (20.77, 22.77) 21.21 (20.26, 22.16)

E (MPa) 0.243 (0.089, 0.397) 0.208 (0.053, 0.363) 0.187 (0.104, 0.269)

A1T and A2T: applanation times; A1L and A2L: applanation diameters; A1V and A2V: applanation velocities; PD: peak distance; DA: maximum deformation
amplitude; CCT: central corneal thickness; E: Young’s modulus.

Table 2: Pearson correlation coefficients between different parameters of the Corvis ST measurement and the proposed Young’s modulus.

IOP A1L A1V A2L A2V Radius DA CCT A1T A2T PD E

IOP 1

A1L .219∗∗ 1

A1V −.590∗∗ −.072 1

A2L .190∗∗ .229∗∗ −.169∗∗ 1

A2V .612∗∗ .153∗∗ −.493∗∗ .269∗∗ 1

Radius .297∗∗ .198∗∗ −.239∗∗ .194∗∗ .366∗∗ 1

DA −.778∗∗ −.162∗∗ .597∗∗ −.200∗∗ −.692∗∗ −.402∗∗ 1

CCT .366∗∗ .315∗∗ −.262∗∗ .280∗∗ .425∗∗ .353∗∗ −.318∗∗ 1

A1T .986∗∗ .216∗∗ −.600∗∗ .197∗∗ .617∗∗ .299∗∗ −.775∗∗ .371∗∗ 1

A2T −.794∗∗ −.190∗∗ .604∗∗ −.097∗ −.551∗∗ −.295∗∗ .735∗∗ −.307∗∗ −.808∗∗ 1

PD −.737∗∗ −.098∗ .487∗∗ −.164∗∗ −.677∗∗ −.212∗∗ .750∗∗ −.299∗∗ −.732∗∗ .630∗∗ 1

E .102∗ −.042 −.181∗∗ −.070 .054 −.250∗∗ −.097∗ −.165∗∗ .108∗ −.087∗ −.201∗∗ 1
∗∗Correlation is significant at the 0.01 level (2-tailed); ∗Correlation is significant at the 0.05 level (2-tailed). A1T and A2T: applanation times; A1L and A2L:
applanation diameters; A1V and A2V: applanation velocities; PD peak distance; DA: maximum deformation amplitude; CCT: central corneal thickness;
E: Young’s modulus.

Table 3: Association of parameters with measured IOP using a
multiple regression model.

Multiple linear regression
Variable Estimate S.E. P

Intercept −8.106 2.208 0.000

Age .034 .010 0.001

CCT .036 .004 0.000

Young’s modulus 8.922 1.894 0.000
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experiments. The average Young’s modulus found in our
study is 0.207MPa (95% CI, 0.054–0.359MPa), which is in
agreement with other current studies. Our approach
improved from the aforementioned methods in that we mea-
sured the actual corneal deformations, used the displace-
ments from the Scheimpflug images of the Corvis ST, and
presented in vivo values of the corneal Young’s moduli. The
Young’s modulus from the proposed method is independent
of the IOP, CCT, and other geometrical parameters. This is to
be expected because it represents the corneal mechanical
property. Because the factors involved in the calculation in
this method were all derived from clinical examinations,
and the corneal images were derived from the actual defor-
mations, we believe the implementation is clinically feasible
and is compatible with our daily practice.

The Young’s modulus is a material property that is not
supposed to be dependent on geometry or external forces.
The proposed model uses only the geometry of the deformed
cornea under the impinging air puff. With Scheimpflug
imaging, the automated process identifies the meridional
angle and derives all the necessary information from the
deformation induced by the impinging air puff applying on
the surface area of the cornea, which indents and deforms
the cornea. Subsequently, in the Corvis ST, DA and PD are
measurements of the deformation and are used to derive
the corresponding strain by normalizing the circumference
length or radius. Accordingly, it is reasonable to expect that
the Young’s modulus from the proposed method is indepen-
dent of the IOP, CCT, and other geometrical parameters.
However, the statistical analysis still showed a weak correla-
tion between the deduced Young’s modulus with the radius,
CCT, and PD, as shown in Table 2. Most importantly, the
deduced Young’s modulus is weakly and negatively corre-
lated with the CCT and indicates that a thin cornea leads to
slightly higher Young’s modulus. To explain this observation,
we reason that the stiffer layers, the Bowman’s layer, and the
Descemet’s membrane [43] contribute more to the overall
corneal Young’s modulus in a relatively thinner cornea.
Thus, a thinner cornea could show a slightly large Young’s
modulus. Moreover, the radius, CCT, and PD are measured
from Scheimpflug images by counting pixels within dozens
of micrometers, which may lead to poor resolution and, thus,
a larger error in the current experiment.

There was a wide range of Young’s moduli, 0.10–
110.32MPa, measured from ex vivo human corneas reported
in the literature. In comparison with the in vivo literatures,
there were few results possibly due to the difficulty in the
measurement technique. Hamilton et al. reported the
in vivo Young’s moduli, 0.29± 0.06MPa (95% CI, 0.17–
0.40MPa), by applying the Orssengo-Pye model integrated
with the CCT and the IOP measured from the Goldmann
applanation tonometer [44]. Lam et al. used a corneal inden-
tation device to measure the corneal stiffness and the tangent
elastic modulus, which was 0.755± 0.159MPa after being
normalized to a normal IOP of 15.5mmHg [45]. They
derived their results from five independent parameters:
CCT, Poisson’s ratio, radius, the geometry constant, and
the corneal stiffness. Unfortunately, their corneal stiffness
included structural stiffness and material stiffness and was

not an independent parameter. As a remedy, they introduced
other geometrical constants to modify their corneal stiffness.

Compared with other corneal biomechanical properties,
the Young’s modulus [46] is a well-known physical property
that provides a more direct measure for the ability of a sub-
stance to resist elastic deformation than the common indices
used clinically. As we know, the cornea is a viscoelastic mate-
rial [47] that returns to its original shape after the load such
as the applanation created by an air puff is removed. Vito
et al. and Lanza et al. stated that the corneal tissue behaves
as a nearly incompressible, linear elastic, homogeneous, iso-
tropic material undergoing a small deformation [48, 49].
Therefore, a constant Young’s modulus is expected in the
corneal tissue with linear elastic properties. In contrast, for
normal individuals, the CH has been shown to have a moder-
ate correlation with IOP and CCT [50, 51]. Lau and Pye
reported that both CH and CRF (ORA) were associated with
CCT (R2 = 0 252 and R2 = 0 290, resp.) [52]. Our tests, on the
other hand, showed that the explained proportion R2 is
0.0273 by the Young’s modulus and CCT, a strong indication
that the corneal Young’s modulus is independent of the
corneal volume or its thickness. Kotecha et al. described an
IOP-independent biomechanical property of the cornea
(corneal constant factor) using the ORA that is calculated
as [P1− (P2/1.27)] [53]. However, this factor increased
with thicker CCT and decreased with greater age: =
[(0.036×CCT)− (0.028× age)] + 1.06 (adjusted R2 = 0 34;
P < 0 0001 for CCT, P = 0 007 for age). Similarly, in a Chi-
nese population, corneal curvature and axial length were
reported to be influencing factors of CH and CRF [54].
Hon and Lam showed that the DA was negatively correlated
with CCT (r = −0 53, P < 0 001) but not with corneal curva-
tures (flattest curvature, r = 0 13, P = 0 46; steepest curva-
ture, r = 0 05, P = 0 75) [19]. They even concluded that a
thinner cornea was associated with a higher corneal deforma-
tion and that a measurement of DA could serve as an indica-
tor of corneal biomechanical properties. We reason that the
CH and the CRF are related to force balance involving the
stiffness of the corneal arch structure. The DA and A1T from
the Corvis ST are relative to the geometric displacement,
which contains corneal mass inertia. Therefore, these param-
eters would be affected by the other geometrical properties,
such as CCT, and were not independent parameters.

There are still some limitations in our model. Our model
is derived from the Taber model and applied for the corneal
force equilibrium, and it considers three deformation parts:
dimple deflection, stretching, and bending. The rough esti-
mation of dimple deflection and stretching reaches 90% of
the deformed energy of the whole system. Thus, the simpli-
fied model in this paper neglects bending to yield a simplified
solution for the force equilibrium of the cornea, but there are
three limitations to this approach. The first limitation is rela-
tive to the bending aspect. The angle between the upper shell
and the lower shell is 2α as shown in Figure 1, and this angle
is limited to be lower than π/3. For a normal cornea, the angle
at the first applanation is around π/6, and the angle at the
maximum deformation for the Corvis ST is less than π/4. If
this angle is larger than π/3, the neglected deformation
energy could be underestimated. The second limitation is
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that the thickness of the cornea is assumed to be uniform in
this model. The thickness of the deformed cornea is very sim-
ilar, and thus we assume the CCT as the average thickness of
the deformed area. The third limitation is that (22) is satisfied
under the small deformation assumption. Therefore, the
force balance between the internal pressure and the external
force is perfectly satisfied. Otherwise, the internal pressure
(or the IOP) would be underestimated. Taking a closer look
at the mechanical properties, the IOP and the Young’s mod-
ulus could still be affected by the intraocular pressure
stretching the cornea. The Young’s modulus is affected by
stress hardening. To account for this effect, Rayleigh intro-
duced the effective Young’s modulus, E’, in which a tension
term T was added to the Young’s modulus. According to
Rayleigh, E′ = E + T , in which T = pR/2t. Accordingly, if we
say the intraocular pressure P = 15mmHg, R = 0 7 cm, and
t = 550μm, the modification term T = 0 013MPa, account-
ing for 6.27% of the effective Young’s modulus (the effective
corneal Young’s modulus averaged, E′ = 0 207MPa). If we
consider the added term T in Figure S1b, we find the unad-
justed R2 is reduced from 0.0104 to 0.00435, and the IOP
affects the effective Young’s modulus by 7± 2%. To con-
clude, this shows that the Young’s modulus is even less
dependent on the IOP. It is also noted that table shows a
slight decrease in the Young’s modulus in the elderly age
group. A result that is in contrast with the increasing trend
reported in [55]. This is both the strength and limitation of
the proposed method. The cornea is an anisotropic material
with its fiber families orientated parallel to the corneal sur-
face [56]. This arrangement strengthens the tensile stiffness
rather than the bending stiffness. The cross-sectional area
of the fiber that increases with age [57] also resulted in
enhancing of the tensional stiffness. Elsheikh et al. [55] used
the intact cornea subjected to posterior inflation pressure to
test the tensional modulus of the corneal tissues. In addition,
the additional nonenzymatic cross-linking that occurs with
age also strengthens the stromal collagen fibrils. This study,
on the other hand, used the maximum deformation ampli-
tude’ (DA) from the air puff which included the stiffness
induced by the bending effect. The bending strength
depends not only on the fiber strength but also on the area
moment of inertia of the cornea which is a geometrical prop-
erty used in the calculation of the deflection. The area
moment of inertia contained the integration of the squared
distance over the area, I =∬x2dA. The interfibrillar distance
decreases with age [57] leading to fast decrease of the bend-
ing stiffness. As a result, the calculation showed that the
Young’s modulus decreases slightly with increasing age.

5. Conclusions

This paper proposed a simplified closed-form solution for a
quick estimation of the corneal biomechanical properties
during IOP measurement by using the Corvis ST. The aver-
age Young’s modulus of 536 subjects found in our study is
0.207MPa (95% CI, 0.054–0.359MPa), which is in agree-
ment with other current studies. The Young’s modulus in
this model was treated as an independent parameter to

represent the mechanical stiffness of the cornea. The Young’s
moduli were proven to be similar between the two eyes and
would decrease slightly in the elderly group. The statistics
also showed that the Young’s moduli correlated weakly with
age, IOP, CCT, DA, and A1T. The proposed method is based
on solid mathematical background. The fact that the method
directly treated the Young’s modulus as an independent
parameter and the result that it was only weakly correlated
with the rest of the tonometer parameters is in good agree-
ment with the common perception of a mechanical property.
This is a major advantage of the proposed method over the
other Scheimpflug imaging methods that often introduced
individually defined indices. On the other hand, the mea-
surement resolution in this experiment is limited by the
low-resolution high-speed camera. This resulted in a 7%
measurement uncertainty. To conclude, the proposed
approach enables independent measurement of the human
corneal mechanical properties in vivo and can help quantify
clinical indications.
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