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ABSTRACT 

Diabetic retinopathy is the lead among causes of blindness in North America. Glucose-induced endothelial injury is the 
most important cause of diabetic retinopathy and other vascular complications. Extracellular signal-regulated kinase 5 
(ERK5), also known as big mitogen-activated protein kinase 1 (BMK1), is a member of mitogen-activated protein kinases 
(MAPK) family. Physiologically, it is critical for cardiovascular development and maintenance of the endothelial cell 
integrity. Extracellular signal-regulated kinase 5 is protective for endothelial cells under stimulation and stress. 
Decreased activation of ERK5 results in increased endothelial cell death. Extracellular signal-regulated kinase 5 signaling 
may be subject to alteration by hyperglycemia, while signaling pathway including ERK5 may be subject to alteration 
during pathogenesis of diabetic complications. In this review, the role of ERK5 in diabetic macro- and microvascular 
complications with a focus on diabetic retinopathy are summarized and discussed. 
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INTRODUCTION 

Chronic complications are the leading cause of mortality 

and morbidity in all types of diabetes (1, 2). Vascular 

endothelium is a primary organ affected in chronic 

diabetic complications wherein it acts both the target 

organ and potential mediator (1, 3). Chronic 

complications typically develop after 10 to 20 years of 

diabetes, and include both macroangiopathy and 

microangiopathy. Macroangiopathy is an accelerated 

form of atherosclerosis, a pathological process initiated 

by injury of endothelial cells seen in diabetes. This 

increases the risk of myocardial infarction, stroke, 

intermittent claudication and the ischemic gangrene (4). 

Diabetes also causes microvascular complications such as 

diabetic retinopathy (DR) and nephropathy (5). Diabetic 

retinopathy is a severe complication of diabetes, 

manifesting primarily as vascular changes (structural and 

functional) in the retina. Diabetic retinopathy may result 

in vision loss, and it is the most common cause of 

blindness in North America in the age group 25–74 years 

(6). It has two phases, non-proliferative diabetic 

retinopathy (NPDR) and proliferative diabetic retinopathy 

(PDR) (7, 8). In NPDR phase, the vessels in the retina are 

weakened and leaky, forming microaneurysms and 

retinal hemorrhages, which leads to decreased vision. 

Proliferative diabetic retinopathy is an advanced stage in 

which new, but fragile, therefore delicate blood vessels 

develop on the surface of the retina or on the optic disk. 
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Consequently, they rupture easily what makes the cause 

to tractional retinal detachment and blindness (9). 

Several growth and vasoactive factors are implicated in 

the development of PDR (10). Vascular endothelial 

growth factor (VEGF) plays a significant role in mediating 

intraocular neovascularization in patients with DR (11). 

Inhibition of ocular VEGF by intravitreal injection of anti-

VEGF drug has emerged as a promising treatment for 

PDR (12, 13). 

Diabetic nephropathy is a progressive kidney disease 

caused by microangiopathy in the renal glomeruli. It is 

characterized by nephrotic syndrome and diffuse 

glomerulosclerosis (14) and is a common cause of dialysis 

in Western countries. 

 

HYPERGLYCEMIA IS DIRECTLY RELATED TO 

ENDOTHELIAL DYSFUNCTION IN DIABETES 

Diabetes-associated conditions such as hypertension, 

dyslipidemia and insulin resistance are correlated to 

impaired endothelial function (1, 2, 4). However, 

hyperglycemia is most commonly causally associated 

with endothelial dysfunction in chronic diabetic 

complications such as DR (1, 15). Evidences demonstrate 

impaired endothelial vasodilator function during either 

acute or chronic hyperglycemia both in human (16-18) 

and in animal diabetes (19, 20). In addition, 

hyperglycemia is known to increase endothelial 

permeability to macromolecules, delay cell replication, 

increase the secretion of sclerotic matrix proteins, 

increase adhesive properties for leukocytes and decrease 

the secretion of the pro-fibrinolytic agents, such as tissue 

plasminogen activator (tPA) (1). Both the Diabetes 

Control and Complications Trial (DCCT) and the United 

Kingdom Prospective Diabetes Study (UKPDS) have 

demonstrated correlations between poor glycemic 

control and increased incidences of microvascular 

complications in patients with diabetes (21, 22). Other 

clinical trials have also shown that macrovascular 

complications such as coronary (23) and peripheral 

artery disease (24) are related to glycemic levels. 

 

EXTRACELLULAR SIGNAL-REGULATED KINASE 5 (ERK5) 

Mitogen-activated protein kinase plays a crucial role in 

regulating many cell processes; including cell survival, 

proliferation and differentiation (25-27). There are four 

distinct subfamilies of MAPKs, namely, ERK1/2, ERK5, c-

Jun NH2-terminal protein kinases (JNKs), and p38 MAPKs 

(25-27). Extracellular signal-regulated kinase 5, also 

termed big MAP kinase 1 (BMK1), is the most recently 

discovered member of the MAPK family, cloned by two 

independent groups in 1995 (28, 29). Extracellular signal-

regulated kinase 5 is highly expressed in endothelial cells 

(30). Studies in knockout mice have shown that the ERK5 

pathway is essential for endothelial function and the 

maintenance of vascular integrity (31). 

 

STRUCTURE OF ERK5 

Human ERK5 is 816 amino acids protein of with a 

predicted molecular mass of 98 kDa. Extracellular signal-

regulated kinase 5 is encoded by MAPK7 gene, present in 

the majority of mammals (sharing 80-98% homology). It 

is more than twice the size of the other MAPKs due to its 

unique C-terminal. The N-terminal of MAPK’s catalytic 

domain share more than 50% homology with ERK1/2, 

which contains the Thr–Glu–Tyr (TEY) dual 

phosphorylation pattern in the activation loop (Fig. 1) 

(29). The C-terminal of ERK5 contains a nuclear 

localization signal (NLS) crucial for the nuclear 

localization of ERK5 upon stimulation; and two proline-

rich regions that may serve as binding sites for Src 

homology 3 (SH3) domain containing proteins (29,32,33) 

(Fig. 1). 

 

 

Figure 1. Structure and activation of ERK5. 

 

KINASE ACTIVATION OF ERK5 

Mitogen- activated protein kinases signaling cascade 

consists of three sequentially activated kinases: MEKK, 

MEK, and MAPK. These kinase module relay signals from 

extracellular agonists to cellular targets. The signaling 
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modules in the ERK5 pathway are composed of 

MEKK2/MEKK3, MEK5 and ERK5 (Fig. 2) (28, 29, 38, 39). 

MEKK2/MEKK3 phosphorylate MEK5 on Ser311 and 

Thr315, resulting in an increase in MEK5 activities (38). 

Extracellular-signal-regulated kinase 5 is activated by 

dual phosphorylation at Thr218/Tyr220 by an upstream 

kinase MEK5 (28, 29, 40). MEK5 preferentially 

phosphorylates ERK5 on Thr218, which might induce a 

conformational change and subsequent phosphorylation 

of Tyr220 (41). Active ERK5 can undergo auto-

phosphorylation on the C-terminal at a number of 

residues including Thr28, Ser421, Ser433, Ser496, Ser731, 

and Thr733, leading to an enhancement of ERK5 

transcriptional activity as described below. Activated 

ERK5 also phosphorylates MEK5 at residues 129, 137, 

142 and 149 which are located in the region that is 

thought to interact with ERK5 (41). PKCζ, an atypical 

protein kinase C, has been reported to interact with 

MEK5 in EGF-induced activation of ERK5 (42, 43). 

Interestingly, a recent study demonstrated that PKCζ is 

directly associated with ERK5. PKCζ mediates inhibitory 

phosphorylation of ERK5 by binding and phosphorylating 

serine 486, thus suppressing ERK5 function in TNFα-

mediated inflammatory process (44). 

 

 

Figure 2. Activators of ERK5 Pathway. 

 

The signaling modules in the ERK5 pathway are 

composed of MEKK2/MEKK3, MEK5, and ERK5. ERK5 is 

activated by a variety of stimuli. It can be activated by 

serum and a range of growth factors including EGF, FGF2, 

VEGF, and nerve growth factor (NGF). It can also be 

activated by cytokines such as leukemia inhibitory factor 

(LIF) and IL-6. Additionally, range of stress stimuli such as 

osmotic (58), fluid shear(30), or oxidative stresses; 

hypoxia (59) or ischemia (60) may activate ERK5. 

G-proteins are involved in the activation of ERK5 by 

growth factors (61). In addition, studies have shown that 

PKCζ mediates ERK5 activation by G protein-coupled 

receptors (GPCR) (42, 44, 62). It has been also reported 

that G protein acts as an adaptor protein in PKCζ-

mediated ERK5 activation by GPCR (62). 

 

TRANSCRIPTIONAL ACTIVATION OF ERK5 

The C-terminal region of ERK5 contains a transcriptional 

activation domain, which is required for maximal 

transcriptional activity of target molecules (32, 45, 46). 

Activated ERK5 phosphorylates itself at the C-terminal at 

a number of residues (41) and auto-phosphorylation of 

C-terminal region of ERK5 leads to enhanced 

transcriptional activity (45, 47). Once stimulated, 

phosphorylation of ERK5 results in the activation of the 

kinase activity. Extracellular-signal-regulated kinase 5 

phosphorylates both downstream target molecules and 

their C-terminal region (Fig. 1). Thus, auto-

phosphorylation of the C-terminal leads to a further 

increase in the transcription activity of target molecules 

(47). In addition, Morimoto et al. showed that the 

activated kinase activity of ERK5 is required for the C-

terminal mediated transcriptional activation of 

downstream targets. Mutation of phosphorylatable Thr 

and Ser residues to unphosphorylatable Ala significantly 

reduces the transcriptional activation effect of ERK5 (47). 

Interestingly, C-terminal also regulates the kinase 

activation of N-terminal. Deletion of C-terminal results in 

a dramatic increase in kinase activation of N-terminal 

(32). 

 

REGULATORS OF ERK5 SIGNALING 

Similar to other MAPKs, ERK5 is activated by a variety of 

stimuli (Fig. 2). Studies have revealed that it is activated 

by serum (48), a range of growth factors including 

epidermal growth factor (EGF) (49), fibroblast growth 

factor-2 (FGF-2) (50), VEGF (31), and by cytokines such as 

LIF (51) and interleukin 6 (IL-6) (52). Additionally, NGF, 

use the ERK5 pathway to mediate its effects on neuronal 

cells, ECs as well as other cell types (53-56). We found 
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that recombinant NGF stimulated ERK5 activation in the 

basal and high glucose conditions in ECs (57). 

 

SUBSTRATES OF ERK5 SIGNALING 

A number of molecules have been identified as 

substrates of the ERK5 pathway. The transcription factors 

of the myocyte enhancer factor 2 (MEF2) family are best-

characterized substrates of ERK5 (48, 63, 64). MEF2 is a 

four-membered family of transcription factors including 

MEF2A, MEF2B, MEF2C, and MEF2D. ERK5 

phosphorylates and activates MEF2A, MEF2C and 

MEF2D, but not MEF2B (48, 63). The C-terminal tail of 

ERK5 contains an MEF2-interacting region and a 

transcriptional activation domain essential for co-

activation of MEF2 (45). Activation of the MEF2 by the 

ERK5 is indispensable for EC survival and proliferation 

(48, 65). In addition, Krueppel-like factor 2 (KLF2) is 

identified as an ERK5 responsive gene and ERK5 drives 

KLF2 transcription by activating MEF2 (66). Krueppel-like 

factor 2 plays an important role in regulating 

inflammation, angiogenesis and maintaining the vascular 

quiescence (66-70). Studies in our lab suggest that MEF2 

and KLF2 may be mediators of ERK5 signaling in the 

regulation of vasoactive factors involved in chronic 

diabetic complications (36, 37, 57). It has been shown 

that KLF2 lentivirus transfection inhibits transforming 

growth factor beta 1 (TGFβ1) signaling (71). We found a 

significant inhibition of TGFβ1 signaling after CAMEK5 

transfection, and an increase of TGFβ1 mRNA after 

siERK5 transfection, suggesting that TGFβ1 signaling 

mediates the effect of ERK5 in high glucose conditions 

(57). 

Ets-domain transcription factor (Sap1a) as well as serum- 

and glucocorticoid-inducible kinase (SGK) have also been 

identified as the downstream targets of ERK5 and play an 

important role in cell proliferation induced by growth 

factors (31, 55). Moreover, the ERK5 signaling pathway 

stimulates the transcriptional activity of c-Fos and Fra-1 

(fos-related antigen 1) and members of the AP-1 

(activator protein 1) family (46). Other downstream 

substrates of ERK5 include Cx43 (connexin 43 - a gap 

junction protein) (72), BAD (Bcl2 associated death 

promoted - a pro-apoptotic member of Bcl-2 family) (73), 

C-Myc proto-oncogene (74) and CREB (cAMP response 

element binding protein) (54). 

ERK5 IN ENDOTHELIAL CELLS 

Extracellular-signal-regulated kinase 5 is highly expressed 

in the ECs and is essential for maintaining endothelial 

function and blood vessel integrity (31). Extracellular-

signal-regulated kinase 5-deletion is lethal as seen in 

ERK5-/- mice who die around embryonic day 10 due to 

cardiovascular defects (59, 75, 76). Similar phenotypic 

abnormalities are observed in the MEKK3−/−, MEK5−/− 

and MEF2−/− embryos, suggesting that the 

MEKK3/MEK5/ERK5/MEF2 cascade is critical to the 

cardiovascular development (77-79). Additional studies 

employing targeted deletion of ERK5 gene in mice have 

shown that ERK5 is essential in EC physiology, but not in 

the cardiac development (80). Endothelial cells specific 

ERK5 ablation generates the same heart defects as those 

observed in global ERK5 knockout mutants, whereas 

cardiomyocyte specific ERK5 deletion mice are normal 

(80). These results indicate that ERK5 is critical for 

endothelial cell function and that the abnormal heart 

development in the mice lacking ERK5 is a consequence 

of endothelial cell dysfunction (80). Additionally, ERK5 is 

required to maintain vascular integrity in adult mice. 

Adult mice display hemorrhages in multiple organs and 

die within 2–4 weeks after deletion of ERK5 (80). In 

addition to these in vivo studies, ERK5 has been shown to 

be essential for endothelial cells survival in vitro (73, 80). 

Deletion of ERK5 induces profound endothelial cell 

apoptosis. Introduction of exogenous ERK5 can prevent 

endothelial cells from cell death (80). Similarly, activation 

of ERK5 by constitutively active MEK5 (CAMEK5) 

significantly improved cell viability and decreased 

apoptosis induced by growth factor deprivation (73). In 

addition, CAMEK5 inhibited growth factor deprivation-

induced apoptosis, whereas dominant negative ERK5 

(DNERK5) stimulated apoptosis in endothelial cells (73). 

ERK5 pathway also mediates the shear stress-induced 

antiapoptotic effect in endothelial cells (30, 73). 

Inhibition of ERK5 activity by overexpression of dominant 

negative ERK5 reduces endothelial-protective effect of 

shear stress (73). Analysis of antiapoptotic mechanisms 

of ERK5 showed that MEF2C, a direct substrate of ERK5 

mediates endothelial cell survival signal (80). 

 

ERK5 IN DIABETIC RETINOPATHY 
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Our study has demonstrated the existence of the initial 

ERK5 activation in ECs because of glucose administration, 

followed by decreased activation upon prolonged 

glucose exposure. Decreased ERK5 signaling may 

contribute to increased vasoactive factors and 

extracellular matrix accumulation (36, 37, 57). In keeping 

with our data, a previous study showed glucose-induced 

initial ERK5 activation in pulmonary artery ECs (81). 

Endothelin-1 (ET-1) is a potent vasoconstriction factor 

whose role has been implicated in the pathogenesis of 

DR (82-84). Blockade ET increases retinal blood flow and 

prevents DR (82, 83). Decreased ERK5 activation and 

increased ET-1 expression were observed in ECs treated 

with high glucose (36). We also observed similar changes 

in retinal tissues of diabetic rats (36). Activation of ERK5 

by CAMEK5 upregulated KLF2 and suppressed both basal 

and glucose-induced ET-1 expression in ECs. In contrast, 

ERK5 siRNA transfection resulted in decreased ERK5, 

KLF2 and increased ET-1 expression (36). 

Vascular endothelial growth factor is a major contributor 

of retinal neovascularization in DR (85, 86). Elevated 

VEGF mRNA and protein expression have been confirmed 

in the patient with DR (87-89). Extracellular-signal-

regulated kinase 5 has been shown to take part in the 

regulation of VEGF. Vascular endothelial growth factor 

expression is upregulated in ERK5 knockout mice (59, 66, 

90, 91). Further in vitro studies showed that ERK5 

repressed VEGF expression by negatively regulating 

hypoxia inducible factor-1α (HIF1α) in bovine lung 

microvascular ECs (92). Hypoxia inducible factor-1α is a 

strong mediator of angiogenesis in hypoxia by regulating 

VEGF (93, 94). High glucose induces a state of pseudo-

hypoxia in diabetic complications (95, 96). It is, therefore, 

possible that decreased ERK5 signaling may promote 

glucose-induced VEGF production and angiogenesis via 

HIF1α. A recent study has further shown that constitutive 

activation of ERK5 signaling strongly inhibited EC 

migration, whereas ERK5 siRNA transfection increases 

migration (97). Similarly, our experiments showed that 

ERK5 siRNA enhances tube formation and VEGF 

expression in the ECs. Constitutively activation of ERK5 

by CAMEK5 reduced both basal and glucose-induced 

VEGF expression (37). In addition, we observed 

decreased ERK5 signaling and increased VEGF expression 

in the retina of diabetic rats (37). 

Fibronectin (FN) is an important component of the 

extracellular matrix, which plays a significant role in EC 

adhesion, migration, growth and proliferation (98, 99). 

FN overproduction is a characteristic feature of DR. 

Studies in our lab, and others have shown that the 

synthesis of FN is upregulated in diabetes and ECs 

treated with glucose (100-103). We have found a 

significant decrease of FN mRNA and protein following 

CAMEK5 transduction in basal and high glucose 

conditions (57). In contrast, ERK5 siRNA transfection and 

DNMEK5 transduction lead to an increase of FN 

synthesis. Moreover, our study has demonstrated that 

TGFβ1 signaling mediates the effect of ERK5 on FN. 

Furthermore, we have observed that FN expression in 

retinal tissues of diabetic rats is increased while ERK5 

activation is decreased (57). These data suggested that 

decreased ERK5 signaling is important in glucose-induced 

FN overproduction and DR. A diagrammatic 

representation of such mechanisms is outlined in Fig. 3. 

 

 

Figure 3. A diagrammatic representation of the main conclusions of this 

study, outlining possible role of ERK5 in DR. 
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Hyperglycemia decreased activation of ERK5, which lead 

to upregulation of ET-1, VEGF, FN expression, and 

function, subsequently possibly contributing to DR. NGF 

mediated hyperglycemia-induced ERK5 alteration. ERK5 

exerted its effect on endothelial cells via MEF2/KLF2 and 

TGFβ1. 

 

ERK5 IN OTHER DIABETIC VASCULAR COMPLICATIONS 

Macroangiopathy in diabetes is mainly due to an 

accelerated form of atherosclerosis (4). Steady and 

laminar blood flow is known to be atheroprotective and 

has been shown to be a strong activator of ERK5 (30). 

Also, ERK5 activation has been demonstrated to be 

atheroprotective. Increased plaque formation is 

observed in inducible EC-specific ERK5 knockout mice 

(104). In addition, inhibition of ERK5 activity by dominant 

negative ERK5 reduces the endothelial cell-protective 

effect of shear stress (73), indicating that the ERK5 

mediates the shear stress-induced antiapoptotic effect in 

endothelial cells. This may be mediated by 

phosphorylation of BAD (73). Sohn et al. revealed that 

KLF2 mediates endothelial-protective effect of ERK5 (66). 

KLF2 is a critical transcriptional regulator for the 

vasoprotective effect of shear stress (67,105). In 

addition, laminar flow-induced ERK5 activation has been 

shown to confer an atheroprotective effect by inducing 

peroxisome proliferator-activated receptor gamma 

(PPARγ) (106) and inhibiting tumor necrosis factor α 

(TNFα) mediated adhesion molecule expression in 

endothelial cells (107). 

However, SUMOylation inhibits a protective effect of 

ERK5 in diabetes (108), as small ubiquitin-like modifier 

(SUMO) covalently attaches to certain residues of specific 

target proteins and negatively regulates transcription 

factors (109,110). Increased ERK5 SUMOylation in 

diabetes inhibits shear stress-mediated ERK5’s 

transcription activity. Subsequently decreased KLF2 and 

endothelial nitric oxide synthase (eNOS) expression lead 

to endothelial dysfunction and accelerated 

atherosclerosis in diabetes (108). Extracellular-signal-

regulated kinase 5 activity is also suppressed by p90 

ribosomal S6 kinase (p90RSK) which is found to be 

increased in diabetic mouse vessels. p90 ribosomal S6 

kinase -mediated reduction of ERK5 activity increased 

adhesion molecule1 and reduced eNOS expression, 

which contribute to atherosclerosis in diabetes (104). 

Some studies have been performed to investigate further 

the role of ERK5 on diabetic nephropathy. A recent study 

on renal epithelial cells showed that the overexpression 

of ERK5 provided protection against renal ischemia-

reperfusion injury (111). However, studies in mesangial 

cells have contradictory results. It has been reported that 

ERK5 activation stimulates mesangial cell proliferation 

and extracellular matrix accumulation (112,113). 

Similarly, ERK5 increases mesangial cell viability and 

collagen matrix accumulation in glomerulonephritis 

(114). The differences between mesangial cells and renal 

epithelial cells indicate that ERK5 signaling may regulate 

extracellular matrix production in a cell type-specific 

manner. 

 

CONCLUSION 

Chronic vascular complications are leading causes of 

morbidity and mortality in diabetes. Extracellular-signal-

regulated kinase 5signaling plays a significant role in 

maintaining vascular integrity. A number of studies 

demonstrated that ERK5 is protective against endothelial 

injury in high glucose concentrations, and it exerts its 

effects by acting on multiple factors that are involved in 

regulating endothelial function. Hence, ERK5 may be a 

potential target for prevention and treatment of DR and 

other chronic diabetic complications. 
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