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ABSTRACT Urinary microbiome composition has been found to associate with health
status and to change with age. Lactobacillus gasseri is one of the most frequently
found lactic acid bacteria in the vaginal and urinary tracts of women. Here, we report
a draft genome sequence of a urinary L. gasseri strain isolated from a healthy post-
menopausal woman.

Many lactobacilli—lactic acid-forming bacteria—have long been considered human
commensals; they are found in abundance in the oral, vaginal, and gastrointestinal

tracts of healthy individuals (1–3). Recent studies indicate the presence of these bacteria
in the lower urinary tract (the urethra and bladder) (4–6) and note a possible connection
between urinary health and the presence of lactobacillus species (2, 4, 7, 8). In particular,
Lactobacillus gasseri is one of the four most abundant lactobacilli found in the vaginal
and urinary tracts of women. It also was found to be associated with urinary incontinence
in one study but not in another (9, 10). No genetic determinants of L. gasseri from different
tracts have been identified so far.

In a previously published study by Vaughan and colleagues (2), Lactobacillus strain 5006-2
was isolated using Enhanced Quantitative Urine Culture (6) from the catheterized urine of an
asymptomatic postmenopausal 66-year-old female patient. Using mass spectrometry (MALDI-
TOF), the strain was typed as a group Lactobacillus gasseri/acidophilus. The strain was cultured
on blood tryptic soy plates and grew robustly in liquid Man Rogosa Sharpe (MRS) broth at
35°C without agitation. The stock strain was preserved in 14% (wt/vol) glycerol stock at
280°C. To obtain more details, we sequenced the whole genome of the isolate. For that pur-
pose, genomic DNA was isolated using the Qiagen UltraClean kit and sequenced using an
Illumina platform (NextSeq; 150-bp paired-end reads) at the Sequencing and Genomic
Technologies Core Facility of the Duke University Center for Genomic and Computational
Biology. The sequencing produced a total of 15.8 million reads. The raw paired-end read
sequences were trimmed of adapter and low-quality sequences using the Trim Galore v0.4.4
toolkit (11) with default settings, which employs Cutadapt v1.16 (12). The quality of the raw
reads was assessed using FastQC v0.11.7 (13), and the genomes were assembled using
Unicycler v0.4.4 (14). To evaluate the assembly statistics and completeness, QUAST v4.5 (15)
and BUSCO v3.0.2 (16) were used to search for conserved single-copy orthologs using the
most precise species-appropriate database available—lactobacillales_odb9. The strain was
identified as Lactobacillus gasseri. To ensure the absence of contamination in the final assem-
bly, command line blastn (BLAST1 v2.7.1) (17) was run in MegaBLAST mode against the nu-
cleotide (nt) database. The L. gasseri 5006-2 assembly is an approximately 1.79-Mbp genome
with a GC content of 34.9%. The assembly consists of 21 contigs with maximum and mini-
mum lengths of 955,358 bp and 124 bp, respectively, and an N50 value of 955,358 bp. Only
the 16 contigs larger than 200 bp were deposited at GenBank.
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The draft genome was uploaded and annotated using the automated Prokaryotic
Genome Annotation Pipeline (PGAP) v5.1 (18). To determine whether L. gasseri 5006-2 can
produce bacteriocins, we used BAGEL4 (19), which identified a putative cluster for helveticin
J (20) homolog production. No CRISPR/Cas loci were detected in the assemblies using
CRISPRCasFinder (21). BLAST searches for the new lactobacilli genome identified three
closely related strains: L. gasseri strains ATCC 33323 (22), DSM 14869 (23), and 4M13 (24).
While the source of human ATCC 33323 type isolate is unclear, the DSM 14869 strain was
isolated from the vagina, and 4M13 was isolated from infant feces.

No plasmids were identified in L. gasseri 5006-2 using PlasmidFinder 2.1 (25), possibly
due to the poor knowledge of lactobacilli plasmids in general and in urinary isolates in particu-
lar (26, 27). An examination of assembly graphs using BANDAGE v0.8.1 (28) and the BLAST
search results showed the presence of at least one plasmid approximately 40 kB long with a
copy number of ;2.2 to 2.4. The BLAST results showed similarity with plasmids pEB01-1 and
pEB01-2 (GenBank accession numbers CP008839.1 and CP008840.1) found in the above-
mentioned strain DSM 14869, as well as several unpublished plasmids from other L. gasseri
isolates (CP044414.1, CP087762.1, and CP072658.1). The plasmid-related contigs encode
plasmid replication protein A, toxin/antitoxin pairs, recombination enzymes, and transporters.

Data availability. The draft genome assembly for L. gasseri strain 5006-2 has been
deposited at GenBank under the accession number JAGEKM000000000.1 and the raw
sequencing data at the Sequence Read Archive under the accession number SRR13983850.
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