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ABSTRACT
Objective  The validity of risk-adjustment methods based 
on administrative data has been questioned because 
hospital referral regions with higher diagnosis frequencies 
report lower case-fatality rates, implying that diagnoses do 
not track the underlying health risk. The objective of this 
study is to test the hypothesis that regional variation of 
diagnostic frequency in inpatient records is not associated 
with different coding practices but a reflection of the 
underlying health risks.
Design  We applied two stratification methods to Medicare 
Analysis and Provider Review data from 2009 through 
2014: (1) the number of chronic conditions; and, (2) 
quartiles of Risk Stratification Index (RSI)-defined risk. 
After sorting hospital referral regions into quintiles of 
diagnostic frequency, we examined all-cause mortality.
Setting  Medicare Analysis and Provider Review 
administrative database.
Participants  18 126 301 hospitalised Medicare fee-for-
service beneficiaries aged 65 or older who had at least 
one hospital-based procedure between 2009 and 2014.
Exposure  Coding frequency and baseline regional 
population risk factors by hospital referral region.
Primary and secondary outcome(s) and 
measure(s)  One year all-cause mortality in patients 
having the same number of chronic conditions or within 
the same RSI score quartile across US health referral 
regions, grouped by diagnostic frequency.
Results  No consistent relationship between diagnostic 
frequency and mortality in the risk stratum defined by 
number of chronic conditions was detected. In the strata 
defined by RSI quartile, there was no decrease in mortality 
as a function of diagnostic frequency. Instead, adjusted 
mortality was positively correlated with socioeconomic risk 
factors.
Conclusions  Using present-on-admission codes only, 
diagnostic frequency among inpatients with at least one 
hospital-based procedure appears to be consequent to 
differences in baseline population health status, rather 
than diagnostic coding practices. In this population, 
claims-based risk-adjustment using RSI appears 

to be useful for assessing hospital outcomes and 
performance.

INTRODUCTION
Suitable risk-adjustment methods are neces-
sary to fairly compare healthcare providers 
and systems.1–7 Risk-adjustment systems based 
on administrative diagnostic codes are attrac-
tive because they are easy to use and the 
necessary data are readily available. However, 
significant regional variation exists for diag-
nostic code frequency.8–11 This puts the usage 
of diagnostic codes in question if the regional 
variation is due to differences in coding prac-
tices rather than true variation of underlying 
health status, and some investigators have 
expressed such concerns.8–12

In particular, Welch et al conducted a study 
to examine the relationship of regional 
variation of diagnostic code frequency to 
mortality. They analysed the relationship 

Strengths and limitations of this study

►► Our study uses inpatient, present-on-admission 
data to analyse diagnostic behaviour, which is ro-
bust and reliable.

►► We compared different indicators of baseline health 
levels, including the number of chronic conditions, 
Risk Stratification Index and socioeconomic vari-
ables, rendering the conclusions well supported.

►► The analysis was done for two separate years, which 
strengthens the validity of the results.

►► Our analysis was restricted to the Medicare fee-for-
service population.

►► The census track data and Medicare data are from 
different years, potentially leading to some inaccu-
rate estimates.
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between case-fatality and regional diagnostic frequency 
in subgroups of population that have the same level of 
health risks, characterised by having the same number 
of nine major chronic conditions. The regional division 
used in the study was the hospital referral regions (HRRs), 
which were developed by the Dartmouth Atlas of Health-
care to depict the regional healthcare markets in the 
USA, defined based on where Medicare patients are most 
frequently referred for tertiary care. This study showed 
that the case-fatality was paradoxically lower in HRRs with 
higher diagnostic frequencies, for people with the same 
number of chronic conditions, implying that diagnostic 
codes carried less information about underlying health 
status in high-coding regions.11

While the results from that study suggested that diag-
nostic coding behaviour might undermine the reliability 
of claims-based risk-adjustment, there are some limita-
tions that might weaken such a conclusion. First, Welch 
et al did not separate between inpatient and outpatient 
records. Inpatient coding is more standardised and 
uniform than outpatient coding,13 suggesting that inpa-
tient populations might be less susceptible to regional 
coding variation. Second, using nine chronic conditions 
as an indicator of patients’ underlying risk might be an 
over-simplification that might be susceptible to random 
variation; a more comprehensive and continuous risk-
assessment method might therefore yield different 
results.

In recent years, more advanced risk-adjustment 
methods have been developed that can more accurately 
quantify risk across large data sets. We tested the hypoth-
esis that inpatient regional diagnostic frequency varia-
tion is not the consequence of diagnostic practice, but 
rather a reasonable reflection of regional baseline health. 
Specifically, we analysed geographic variation in the diag-
nostic frequency of chronic conditions and their relation-
ship with mortality in a large national inpatient sample. 
We restrict our analysis to present-on-admission (POA) 
diagnostic codes, which are more robust and reliable. We 
adopted the method used by Welch et al using the number 
of chronic conditions as a crude measurement of health 
risk,14 and then compared it with a more comprehensive 
method—the Risk Stratification Index (RSI), a robust 
claims-based risk-assessment method. RSI was originally 
developed from a national Medicare sample of 35 million 
hospitalisations from 2001 to 2006, and was later validated 
and calibrated on 53 101 922 additional patients from the 
2007–2012 Medicare data set.15 It builds logistic and Cox 
regression models to predict patients’ health outcomes 
such as mortality and duration of hospitalisation, using 
input variables including patients’ age, gender, proce-
dural and diagnostic codes. The model achieved high 
accuracy and the output of the model can be used to 
reflect a patient’s health risk. Finally, we assessed popula-
tion variation in socioeconomic characteristics associated 
with health status and compared them to observed diag-
nostic frequencies.

METHODS
We used the 2009–2014 Medicare Analysis and Provider 
Review (MEDPAR) data set of Medicare beneficiaries, 
focusing on patients exceeding 65 years old who had at 
least one procedure. Only the initial admission across 
each year was considered for each patient. Diagnostic 
frequency was assessed within nine major chronic condi-
tions based on the work of Iezzoni:14 cancer with poor 
prognosis, chronic obstructive pulmonary disease, coro-
nary artery disease, congestive heart failure, peripheral 
artery disease, severe liver disease, diabetes with end-
organ disease, chronic renal failure and dementia. The 
diagnostic codes corresponding to each chronic condi-
tion are provided in online supplemental table S1. Note 
that these codes have been processed following the proce-
dure of Sessler et al4 to include only representative ICD-9 
codes that meet certain frequency criteria.

We tallied the number of chronic conditions for each 
initial admission during 2009–2014. We then computed 
the average diagnostic frequencies for 306 HRRs from 
2009 and 2014. The average number of diagnosis codes 
within each stratum of chronic conditions in each year 
for all initial admission records was calculated for the 
entire study cohort, as well as within each HRR. Trends by 
year for each HRR were plotted to reflect annual variance 
and regional patterns.11

HRRs were divided into five groups based on the quin-
tile values of the average diagnostic frequency of the 
entire study cohort. In order to assess the regional vari-
ation in diagnostic behaviour, we adopted the approach 
of Welch,11 but restricted to inpatient, POA records. We 
calculated age-adjusted and sex-adjusted all-cause mortal-
ities in 2009 and 2014 in every quintile of HRRs. The 
mortalities are compared across quintiles of HRRs for 
the entire sample population, as well as for subgroups 
of population with 0, 1, 2 and 3 chronic conditions, as a 
crude division of populations with similar levels of health 
risks.

We then repeated the analysis using the RSI method. 
Age-adjusted and sex-adjusted all-cause mortality was 
calculated for every quintile of HRR’s for the entire 
sample population as well as four subgroups divided 
based on validated and calibrated RSI quartiles of risk for 
1-year mortality, averaged for the population inside each 
subgroup.

In order to explore the potential reasons for diagnostic 
frequency variation in different HRRs, we analysed the 
regional patterns of some socioeconomic variables. These 
socioeconomic variables were extracted from a 2011/2012 
census track database, including percentages of smoking, 
obesity, education more than college, African/Black-
American status, family household marriage status and 
median income. The smoking and obesity data were only 
available at the county level, while the data for other vari-
ables were obtained at zip code level. The average of each 
variable in each patient’s home location was taken at the 
HRR level, and trend analysis is performed to elucidate 
the pattern of regional variation.

https://dx.doi.org/10.1136/bmjopen-2021-054632
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Statistical analysis
We used various approaches to understand the relation-
ship between diagnostic frequency and health outcomes. 
To test the association of mortality with diagnostic 
frequency for the entire population, we first sorted all 
HRRs in the USA into quintiles by diagnostic frequency 
(will abbreviate as ‘HRR quintiles’) and then computed 
the age-adjusted and sex-adjusted all-cause mortality for 
each HRR quintile group. This grouping method for 
HRRs is the same approach as used by Welch et al.9 To 
investigate whether the geographical variation in diag-
nostic frequency was due to different diagnostic labelling 
behaviours, we then also calculated age-adjusted and sex-
adjusted all-cause mortality for the patients at approx-
imately the same health level (classified by number of 
chronic conditions or by RSI risk estimate) in each HRR 
quintile.

Health status was stratified into four groups by the 
number of chronic conditions (0–3) and by quartiles 
of RSI-defined risk. We calculated age-adjusted and sex-
adjusted all-cause mortality across the HRR quintiles 
within each stratum. Finally, we used various socioeco-
nomic variables at the county level as population health 
indicators and examined their variation across HRR quin-
tiles in comparison to the trend of variation for diagnostic 
frequency/RSI/mortality. Trends were tested by linear 
regressions using two-sided p values. P values less than 
0.05 were considered statistically significant. The statis-
tical analyses were performed using IBM SPSS Statistics 
V.22 and R V.3.2.3.

Patient and public involvement statement
Patient information was collected and stored in the US 
Centers for Medicare and Medicaid database. Patients 
and public were not directly involved in the design, 
conduct, reporting or dissemination of the research. Data 
are available from the US government.

RESULTS
The means and SD of the age and number of chronic 
conditions for the entire population (2009–2014) are 
76.8±8.2 and 1.31±1.18, respectively. 44.9% of the study 
population are male and 55.1% are female. The values for 
specific years are shown in online supplemental table S2. 
The age distribution is relatively stable across the years. 
The diagnostic frequency is stable for years 2009 and 
2010, but then there was a ≈30% increase in 2011 with 
the number of reported chronic conditions thereafter 
remaining stable again. Regional variation in diagnostic 
frequencies across the USA was observed (figure 1).

Primary outcome
All-cause mortality for 2009 is shown in figure  2. For 
the entire population, the average diagnostic frequency 
was 1.09 (SD=0.989). There was a statistically signifi-
cant but small increase in mortality from the lowest to 
the highest diagnostic frequency quintile: 0.149, 0.155, 
0.160, 0.157 and 0.167 (p<0.001). In 2009, the propor-
tion of people with 0, 1, 2 and 3 chronic conditions was 
32.1%, 37.3%, 21.4% and 7.5% respectively. The average 
mortality in each HRR quintile restricted to each of 
these groups of population are shown in figure 2 (upper 
figure). The mean±SD of mortality in these groups are 
0.084±0.020 (zero condition), 0.164±0.022 (one condi-
tion), 0.211±0.024 (two conditions) and 0.242±0.034 
(three conditions), respectively. It is unsurprising that 
mortality increases by large steps with increasing number 
of chronic conditions. For beneficiaries with 0 chronic 
conditions, there was a slight increasing trend of mortality 
with increasing coding frequency (p<0.001, slope=0.068 
mortality/diagnostic code. Unless otherwise mentioned, 
the unit for slopes in this paper is mortality per diagnostic 
code). For beneficiaries with 1, 2 or 3 chronic conditions, 
there was no monotonous trend for mortality ranging 
from the first to the fifth diagnostic frequency quintiles 

Figure 1  Regional map for mean diagnostic frequency (across years 2009–2014).

https://dx.doi.org/10.1136/bmjopen-2021-054632


4 Li L, et al. BMJ Open 2021;11:e054632. doi:10.1136/bmjopen-2021-054632

Open access�

by observation. The similar analysis stratifying the popu-
lation into RSI risk quartiles instead of chronic condi-
tions is shown in figure 2 (lower figure). The mean±SD 
of mortality in these groups are 0.013±0.004 (first quar-
tile), 0.054±0.010 (second quartile), 0.161±0.018 (third 
quartile) and 0.410±0.027 (fourth quartile), respectively. 
Among the four RSI risk groups in 2009, there was a 
significant increasing trend within diagnostic frequency 
quintiles for all groups, but the slopes for the trends are 
much smaller than the slope for the entire population.

The results for 2014 are shown in figure 3. The average 
diagnostic frequency for the entire 2014 population was 
1.42 (SD=1.26), with 27.8%, 30.8%, 21.8% and 12.6% of 
people having 0, 1, 2 and 3 chronic conditions, respec-
tively. The mean±SD of mortality in these groups are 
0.054±0.013 (zero condition), 0.146±0.019 (one condi-
tion), 0.215±0.024 (two conditions) and 0.270±0.031 
(three conditions), respectively. For the entire popu-
lation, there was a significant trend for increasing 
mortality from the lowest diagnostic frequency quin-
tile to the highest diagnostic frequency quintile (0.147, 
0.164, 0.166, 0.164 and 0.174, respectively, p<0.001). 
For beneficiaries with no chronic conditions, there was 

an increasing trend of mortality with increasing coding 
frequency, but for beneficiaries with 1, 2 or 3 chronic 
conditions, there was no monotonous trend for mortality 
ranging from the first to the fifth diagnostic frequency 
quintiles by observation (figure 3). In 2014, similar trends 
to 2009 were observed, as mortality increased with HRR 
quintile higher in diagnostic frequency for all four RSI 
risk groups, but with slopes that were much lower than 
that of the overall population (figure 3). The mean±SD of 
mortality in these groups are 0.013±0.004 (first quartile), 
0.054±0.009 (second quartile), 0.162±0.020 (third quar-
tile) and 0.436±0.030 (fourth quartile), respectively.

The average levels of the socioeconomic variables for 
the population within each HRR are shown in figure 4, 
stratified by HRR quintiles. We found that obesity and 
smoking prevalence was greater in regions with higher 
diagnostic frequency quintile (slope=0.089 obesity rate/
diagnostic code and 0.063 smoking rate/diagnostic 
code). Significant trends of increased percentage of black 
population (slope=0.211 black population percentage/
diagnostic code) and population lacking higher educa-
tion (slope=0.112 low education percentage/diagnostic 
code), low median income (slope = −$9000/diagnostic 

Figure 2  All-cause mortality in 2009 across the number of coded chronic conditions (upper figure) and quartiles of RSI 
risk (lower figure) stratified into quintiles of HRRs by diagnosis frequency (quintile 1: ≤1.01, n=578 093; quintile 2: 1.01–1.08, 
n=572 789; quintile 3: 1.08–1.12, n=619 828; quintile 4: 1.12–1.15, n=585 870; quintile 5: >1.15, n=596 094). Slopes are obtained 
from linear regression of mortality and diagnostic frequency, with the unit of mortality/diagnostic code. *P<0.05. HRRs, hospital 
referral regions; RSI, Risk Stratification Index.
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code) and low family households (slope=−0.069 family 
household percentage/diagnostic code) were also seen 
across quintiles of ascending diagnostic frequency. Base-
line population health risk was thus likely to be worse in 
HRRs with higher diagnostic frequencies.

To further test the relationship between mortality and 
socioeconomic factors, we ran a multivariate regression 
between adjusted mortality in 2014 and the socioeco-
nomic variables mentioned above. As shown in table 1, 
most of the socioeconomic variables are statistically signifi-
cantly associated with mortality. We further added RSI as 
an additional covariate and the associations for most of 
the socioeconomic variables either become insignificant, 
or have a much smaller effect (the absolute value of the 
slope becomes much smaller). This indicates that RSI has 
adequately incorporated many aspects of socioeconomic 
status, and can be used as a valid risk-adjustment method.

DISCUSSION
We observed regional variation of diagnostic frequen-
cies, as have many others. Some studies suggest that 

the variation can be explained by variation in patients’ 
baseline health. Reschovsky, for example, concluded 
that 85% of the regional differences can be explained by 
variation in patient’s baseline health after adjusting for 
possible bias in the use of claims-based health indicators.9 
Others, though, argue that clinical diagnostic labelling 
behavioural patterns contribute most to regional vari-
ance.8 11 12 For example, one study suggested that regional 
variation was not explained by disease prevalence in 
specialty outpatient settings.12 Another by Welch et al 
reported that case-fatality is lower in HRRs with higher 
diagnosis frequencies, implying the possibility of over-
coding in high-coding regions.11 The difference in our 
study findings compared with Welch et al might be due to 
the different study population, and as such our findings 
properly apply only to the use of POA codes of inpatients 
that have at least one hospital procedure.

In our study, as might be expected, mortality increased 
as a function of the numbers of chronic conditions, and 
of higher RSI scores. Across diagnostic frequency quin-
tiles, mortality for the whole population increased with 

Figure 3  All-cause mortality in 2014 across the number of coded chronic conditions (upper figure) and quartiles of RSI 
risk (lower figure) stratified into quintiles of HRRs by diagnosis frequency (quintile 1: ≤1.32, n=558 186; quintile 2: 1.32–1.40, 
n=640 168; quintile 3: 1.40–1.45, n=574 205; quintile 4: 1.45–1.51, n=593 417; quintile 5: >1.51, n=604 398). Slopes are obtained 
from linear regression of mortality and diagnostic frequency, with the unit of mortality/diagnostic code. *P<0.05. HRRs, hospital 
referral regions; RSI, Risk Stratification Index.
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increasing number of diagnoses. But for people with 
1, 2 or 3 chronic conditions, we found either no statis-
tically significant trend for mortality across quintiles of 
diagnostic frequency, or the trends were inconsistent for 
different years (eg, people with three chronic conditions 
show a negative trend in 2009, while a positive trend in 
2014). In addition, the slopes of the trends were also 
generally small, with the largest magnitude being 0.049 
mortality percentage per diagnostic code increase in 
coding frequency. Since the range of diagnostic frequency 

is around 0.2, the trend represents less than 1% differ-
ence in mortality between the HRR with the highest and 
lowest diagnostic frequency, which is a relatively small 
variation. It is also worth noting that for people with 
zero chronic conditions, a consistent positive trend was 
observed both in 2009 and 2014. A possible interpretation 
is that for people with chronic conditions, their health 
risks were mainly dictated by these chronic conditions, 
and therefore people with the same number of chronic 
conditions showed similar mortality. For people without 
these chronic conditions, differences in other aspects of 
health could be reflected in mortality, so mortality was 
higher in regions with higher diagnostic frequency which 
indicates higher populational health risks. Based on this 
result, it would be worth examining the characteristics of 
the zero chronic condition group in more detail in addi-
tional studies, for example, whether they mainly comprise 
a very specific population (eg, inpatients admitted solely 
for elective procedures).

For people with similar health risks characterised by 
RSI, there is a slight increasing trend of mortality with 
regional diagnostic frequency. The slopes of the trends, 
again, are really small. Mortality was therefore similar for 
inpatients with comparable baseline health (defined by 
having the same number of chronic conditions or being 
in the same RSI quartile) irrespective of the average diag-
nostic frequency in their region. Regional diagnostic 
frequencies among inpatients therefore do not appear 
to be consequences of over-coding, but are instead more 
likely a consequence of higher baseline health risk. Our 
analysis of socioeconomic and behavioural risk factors 
further supports this since substantive differences in 

Figure 4  Social determinants (obesity, smoking, race, education†, median income, Latino and family household‡) stratified 
into quintiles of HRRs by diagnosis frequency. *P<0.05; †High education: percentage of people who have college education or 
above; ‡Family household: percentage of households that are married family. HRRs, hospital referral regions.

Table 1  Linear regression of adjusted mortality in relation 
to socioeconomic variables

Model without RSI Model with RSI

Slope P value Slope P value

RSI – – 4.00E−01 <0.001

Obesity 1.76E-04 0.747 −6.17E−04 0.146

Smoking 2.28E-03 <0.001 9.42E−04 0.0143

Black* 4.84E-02 <0.001 2.30E−02 0.0271

Not college† 1.39E-01 <0.001 4.57E−02 0.1047

Income‡ 9.46E-07 <0.001 −1.57E−07 0.368

Latino 4.89E-02 <0.001 8.56E−03 0.2359

Not family§ 2.24E-02 0.514 −1.40E−01 <0.001

Two models are present, one without RSI as a covariate and one 
with RSI.
*The percentage of black people.
†The percentage of people with lower than college education.
‡Median income.
§The percentage of population who are not in a family household.
RSI, Risk Stratification Index.
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baseline health status are observed and can explain much 
of the observed geographical variations in mortality. These 
factors include known determinants of health outcomes 
such as smoking, low educational level, and poverty.

Comparing different measures of health risks, we 
further observed that mortality across HRR quintiles had 
smaller variations using RSI quartiles than when using the 
number of chronic conditions. We have found that inclu-
sion of diagnostic codes in the RSI algorithm enhances 
the information content and risk-adjustment compared 
with methods with fewer and more broad categorisations 
of patient condition.16 17 Therefore, it is not surprising 
to find smaller variation in mortality using RSI quartiles 
compared with a simple count of chronic conditions.

The difference between RSI and other hierarchical 
conditions based models is that the risk variables admitted 
into RSI models are created as nested hierarchies, where 
children with low frequency of use are collapsed into close 
parents—effectively preserving the same condition but 
with less specificity. To be precise, 2495 codes are consid-
ered for each RSI regression model based on frequencies 
and truncation, and these codes encapsulate approxi-
mately 60% of the possible 21 992 International Classifica-
tion of Disease V.9 diagnostic and procedure codes. And 
among the 60% of the possible codes that were retained, 
the distribution of their weights is well balanced and 
smooth.4 In this way, the RSI 1-year mortality algorithm 
selects approximately 800 RSI risk variables that hierar-
chically encapsulate the information carried by 2348 
codes. Thus, RSI has far greater resolution and stability 
than simply counting nine major disease codes, and it is 
therefore unsurprising that the method is more resistant 
to regional variations in coding frequency and performs 
better than tabulating the number of chronic conditions.

Our results contrast with those of Welch and colleagues 
whose work suggests that the prognostic significance of 
pooled inpatient and outpatient diagnostic codes varies 
in low-coding and high-coding regions. One likely expla-
nation is that inpatient coding systems are more robust 
and uniform across regions than outpatient coding. 
We also note that coding behaviour as reflected in the 
MEDPAR data set appears to have become more uniform 
in 2014 compared with 2009, suggesting a possible conver-
gence in regional coding practices over time even when 
confined to the inpatient population.

The ≈30% increase in diagnostic frequency after 
year 2011 is presumably consequent to an increase in 
the allowed number of codes from 9 to 25 that year. It 
is interesting to note that the increase in the diagnostic 
frequency at this time did not much affect regional diag-
nostic frequency rankings. However, since we observed 
some inconsistent trends for the same population across 
the years (eg, people with three chronic conditions), it 
would be desirable to further explore the effect of this 
coding policy change in future studies.

Our analysis was restricted to the Medicare fee-for-
service population, with a minimum age of 65 and at least 
one procedural code. While we chose these criteria to 

define a more uniform study cohort when assessing the 
performance of a new algorithm (ie, the RSI), it is neces-
sary to note that our results might not be generalisable to 
a different population, for example, the Medicare Advan-
tage population, or the commercially insured population 
of younger patients. That said, RSI algorithms have been 
validated across various adult inpatient surgical popula-
tions and appear to be broadly applicable.4 18–20 Another 
limitation of our findings is that US census track data and 
Medicare data are not from identical populations, which 
may lead to inaccuracies in income estimates. Also, hospi-
tals within a given region may have different coding prac-
tices which we would not have detected when considering 
entire referral regions. Finally, we restricted the analysis 
to POA codes to better reflect the short-term baseline 
risk of the patients. While there are POA exempt codes, 
these generally represent factors influencing health status 
that do not represent a current disease or injury or are 
always POA. As such, their contribution to short-term risk 
is likely smaller than the codes we included. We acknowl-
edge that results might change if POA exempt codes were 
available, and this is a limitation of our analysis.

In summary, our study found that mortality is similar 
for inpatients with comparable baseline health risk, and 
no monotonous or consistent trends were observed for 
mortality with diagnostic frequency for these inpatients. 
Regional diagnostic frequencies among inpatients thus 
do not appear to be consequent to over-coding, but 
instead truly reflect higher baseline health risk. The RSI 
reliably tracked mortality, independently of regional 
coding practices and thus represents a promising method 
for adjusting baseline patient risk and comparing hospi-
tals across various regions of the USA.
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