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15 Abstract

16 Background: Gestational diabetes mellitus (GDM) is characterized by disturbed glucose metabolism and activation
17 of low-grade inflammation. We studied whether metformin treatment has favorable or unfavorable effects on
18 inflammatory markers and insulin-like growth factor-binding protein 1 (IGFBP-1) in GDM patients compared with
19 insulin, and whether these markers associate with major maternal or fetal clinical outcomes.

20 Methods: This is a secondary analysis of a previous randomized controlled trial comparing metformin (n = 110) and
21 insulin (n = 107) treatment of GDM. Fasting serum samples were collected at the time of diagnosis (baseline, mean
22 30 gestational weeks [gw]) and at 36 gw. Inflammatory markers serum high-sensitivity CRP (hsCRP), interleukin-6 (IL-
23 6), matrix metalloproteinase-8 (MMP-8) and glycoprotein acetylation (GlycA) as well as three IGFBP-1
24 phosphoisoform concentrations were determined.

25 Results: In the metformin and insulin groups combined, hsCRP decreased (p = 0.01), whereas IL-6 (p = 0.002), GlycA
26 (p < 0.0001) and all IGFBP-1 phosphoisoforms (p < 0.0001) increased from baseline to 36 gw. GlycA (p = 0.02) and
27 non-phosphorylated IGFBP-1 (p = 0.008) increased more in patients treated with metformin than those treated with
28 insulin. Inflammatory markers did not clearly associate with pregnancy outcomes but non-phosphorylated IGFBP-1
29 was inversely associated with gestational weight gain.

30 Conclusions: Metformin had beneficial effects on maternal serum IGFBP-1 concentrations compared to insulin, as
31 increased IGFBP-1 related to lower total and late pregnancy maternal weight gain. GlycA increased more during
32 metformin treatment compared to insulin. The significance of this observation needs to be more profoundly
33 examined in further studies. There were no evident clinically relevant relations between inflammatory markers and
34 pregnancy outcome measures.
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35 Trial registration: The trial comparing metformin and insulin treatment was registered in ClinicalTrials.gov
36 (NCT01240785) November 3, 2010. Retrospectively registered.
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38 Background
39 Gestational diabetes mellitus (GDM) is a growing health
40 concern. It is associated with obesity and low-grade inflam-
41 mation and increases the risk for pregnancy complications,
42 such as macrosomia, preeclampsia, neonatal hypoglycemia
43 and hyperbilirubinemia and the need for neonatal intensive
44 care [1, 2]. In the long term GDM causes metabolic pertur-
45 bations – it increases the risk for obesity and metabolic syn-
46 drome in the offspring [3] and the risk for type 2 diabetes
47 (T2DM) in the mother [4]. Metformin treatment of GDM
48 reduces gestational weight gain (GWG), gestational hyper-
49 tension, the incidence of neonatal hypoglycemia and the
50 need for neonatal intensive care compared to insulin treat-
51 ment [5]. Although the benefits of metformin treatment
52 during the pregnancy have been well characterized, there
53 are concerns regarding the long term effects specially on
54 the offspring [6]. Furthermore we do not know whether
55 metformin has beneficial effects on low-grade inflammation
56 compared to insulin.
57 Elevated serum IL-6 and high-sensitivity C-reactive pro-
58 tein (hsCRP) are markers of inflammation and predict the
59 onset of T2DM [7]. Dysregulation of inflammation may
60 be involved also in the pathogenesis of GDM [8]: hsCRP
61 [9, 10], IL-6 [11] and glycoprotein acetylation (GlycA) [12]
62 are related to GDM, and hsCRP also predicts the persist-
63 ence of glucose intolerance postpartum [13]. Matrix
64 metalloproteinase 8 (MMP-8), a more recent inflamma-
65 tory marker, is related to intra-amniotic infection [14] and
66 cervical ripening [15], but MMP-8 activity seems also to
67 be increased in patients with GDM [16].
68 Besides inflammatory markers, a low serum concentra-
69 tion of insulin-like growth factor-binding protein 1
70 (IGFBP-1) is associated with GDM and an unfavorable
71 metabolic profile [17]. IGFBP-1, in particular, is thought
72 to play a significant role during pregnancy by regulating
73 plasma glucose levels and being related to fetal growth
74 [18]. Phosphorylation of IGFBP-1 increases its affinity to
75 insulin like growth factor 1 (IGF-1). In the normal state,
76 the highly phosphorylated isoform (high-pIGFBP-1) pre-
77 vails, but during pregnancy, a non-phosphorylated
78 IGFBP-1 (non-pIGFBP-1) is also detected. In cord blood,
79 both phosphoisoforms are decreased in GDM and in-
80 versely associated to birth weight [19].
81 Based on earlier studies, metformin may have anti-
82 inflammatory properties, as demonstrated by suppression of
83 IL-6 (in vitro) [20] and hsCRP [21]. While insulin inhibits
84 IGFBP-1 production [22], metformin appears to increase

85IGFBP-1 expression [23]. However, the possible effects of
86metformin on inflammatory markers in GDM pregnancy
87have not been studied in sufficiently large patient cohorts to
88give an unambiguous answer, and its effects on IGFBP-1 in
89GDM pregnancy have not been studied previously.
90The primary aim of this study was to compare the ef-
91fects of metformin and insulin treatment on the inflam-
92matory markers hsCRP, IL-6, MMP-8, GlycA and three
93IGFBP-1 phosphoisoforms. The secondary aim was to
94examine whether variation in these variables at baseline
95(mean 30 gestational weeks, gw) or at late pregnancy (36 gw)
96are associated with the maternal and the neonatal outcomes.
97We hypothesized that metformin has beneficial effects on
98the inflammatory markers and IGFBP-1 compared to insulin.

99Methods
100Study design
101The present study is a secondary analysis of a previous
102randomized trial [24], in which women with a singleton
103pregnancy and newly diagnosed GDM were treated ei-
104ther with metformin (n = 110) or insulin (n = 107) in an
105open-label randomized design. The original randomized
106trial was powered to prove non-inferiority of treatment
107to the primary outcome, which was birth weight. Since
108this was a secondary analysis, no power-analysis was
109made to calculate the sample size. However, an add-
110itional post-hoc power analysis is included as a supple-
111mentary file (Additional file 1). The patients were
112recruited at the Turku University Hospital on their first
113visit for management of GDM and they were random-
114ized by the physician using sealed envelopes. GDM diag-
115nosis was made based on the Finnish national guidelines
116and oral glucose tolerance test (OGTT) thresholds as
117described before [24]. Metformin treatment was started
118at a daily dose of 500 mg daily and increased up to 2000
119mg if needed (median 1500 mg). Additional insulin was
120given to 23 participants in the metformin group due to
121unsatisfactory glucose control with metformin only. For
122insulin treatment, NPH insulin and/or rapid-acting insu-
123lin lispro or insulin aspart were used. The trial was ap-
124proved by the Ethics Committee of the Southwest
125Hospital District of Finland, the Finnish National
126Agency of Medicines, and the European Union Drug
127Regulatory Agency (EUDRA) and registered retrospect-
128ively in ClinicalTrials.gov (NCT01240785, http://clinical-
129trials.gov/ct2/show/NCT01240785). All participants
130provided written informed consent. The detailed design
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131 and outcomes of the randomized trial have been re-
132 ported elsewhere [24].
133 For the present analysis Clinical data and serum sam-
134 ples from the previous randomized trial were available
135 from 109 and 107 patients of the metformin and insulin
136 groups, respectively. Those patients in the metformin
137 group who received additional insulin are included in
138 the metformin group unless otherwise specified.

139 Biochemical methods and clinical variables
140 Fasting blood samples were drawn at baseline after the
141 GDM diagnosis had been confirmed (mean 30 [20–34]
142 gw) and at 36 gw. Serum concentrations of hsCRP and IL-
143 6 were measured using ELISA [human C-reactive protein
144 (CRP) ELISA kit, R&D Systems, Minneapolis, USA;
145 interleukin-6 (IL-6) ELISA kit, R&D Systems, Minneap-
146 olis, USA]. MMP-8, non-pIGFBP-1, low-pIGFBP-1, high-
147 pIGFBP-1 were determined using ELISA and an immu-
148 noenzymometric assay, as described earlier [15, 25], and
149 GlycA according to a high-throughput proton (1H)
150 nuclear magnetic resonance spectroscopy protocol [26].
151 Glucose values of the 2 h 75 g OGTT were available at
152 the time of GDM diagnosis. C-peptide, HbA1c, age and
153 pre-pregnancy BMI were assessed as risk factors for GDM
154 and insulin resistance, to examine the relationship with
155 the risk factors, the inflammatory markers and IGFBP-1’s.
156 HbA1c was determined using high pressure liquid chro-
157 matography and fasting serum C-peptide by an electro-
158 chemiluminescence immunoassay. Both analytes were
159 measured at baseline and HbA1c also at 36 gw.
160 Associations between inflammatory markers, IGFBP-1
161 phosphoisoforms and the following clinical outcomes
162 were studied, A) maternal outcomes: GWG, preeclampsia
163 or gestational hypertension, gestation length, induction of
164 labor, incidence of cesarean section, and B) fetal out-
165 comes: birth weight, neonate admission to NICU and neo-
166 natal intravenous glucose given for any indication. Total
167 GWG was defined as the last measured weight at the ma-
168 ternity clinic minus self-reported weight before pregnancy,
169 and late GWG as the weight gain from the initiation of
170 antihyperglycemic medication. Birth weight was expressed
171 in grams and in SD units (deviation from the mean value
172 of the Finnish general population adjusted for gestation
173 duration [27]). Birth weight > 90th percentile was used as
174 an additional indicator of large for gestational age and a
175 birth weight below <10th percentile was used to calculate
176 the incidence of children of small for gestational age.

177 Statistical analyses
178 Categorical clinical data comparison between groups was
179 done with the χ2-test and Fisher’s exact test. Comparisons
180 of means or medians was done using the Mann-Whitney
181 U or t-test, depending on how the data was distributed.
182 Wilcoxon’s test or the t-test was used for testing

183metabolite changes from baseline to 36 gw. An ANCOVA
184analysis was used to adjust for any differences between the
185compared groups. The normality of distributions was ex-
186amined using the Shapiro-Wilk test when n < 100 and
187Kolmogorov-Smirnov’s test with Lilliefors’s correction for
188larger samples sizes. For correlations, Spearman’s rank
189correlation was used. For linear and logistic regression
190analyses, continuous variables were first centered and
191scaled, except for birth weight which already was
192expressed in terms of SD-units. Regression analyses were
193run both unadjusted and adjusted for treatment (metfor-
194min or insulin) and/or pre-pregnancy BMI, which was a
195priori thought to be the most clinically important con-
196founding factor. Group-specific regression coefficients are
197given if the pharmacological treatment interacted signifi-
198cantly (p < 0.05) with the association between the inde-
199pendent and outcome variable in the regression model.
200Confidence intervals (CI) for regression coefficients were
201acquired with the adjusted bootstrap percentile method.
202Results are reported with 95% CI; p < 0.05 was consid-
203ered statistically significant. Bonferroni adjustment was
204applied on the regression analyses. Statistical analyses
205were run on the R statistics software (version 3.3.2,
206http://cran.r-project.org). This study adheres to CON-
207SORT guidelines (http://www.consort-statement.org) for
208reporting clinical trials.

209Results
210The study population characteristics are given in Table T11.
211Metformin and insulin groups were similar in terms of
212OGTT values, HbA1c at both time points, C-peptide, age,
213pre-pregnancy BMI and GWG. There were no differences
214in birth weight or proportion of primipara. There were no
215differences between the metformin and insulin groups re-
216garding pregnancy outcomes, except for higher labor in-
217duction rates in the insulin group compared to the
218metformin group (54.2% vs. 37.6%, p = 0.014).

219Inflammatory markers and IGFBP-1’s at baseline and
220change from baseline to 36 gw
221Comparing metformin and insulin groups at baseline,
222there were no differences except for marginally lower low-
223pIGFBP-1 in the metformin group (21.0 vs. 24.0, p = 0.04).
224Within the metformin group, the inflammatory marker
225and IGFBP-1 concentrations did not differ when com-
226pared to those who required additional insulin treatment.
227Baseline and 36 gw values of the inflammatory markers
228and IGFBP-1’s are provided in detail in Additional file 2.
229Changes in inflammatory markers and IGFBP-1 phosphoi-
230soforms and comparison of changes are shown in Table T22.
231In the metformin and insulin groups combined, the hsCRP
232concentration decreased from baseline to 36 gw, whereas the
233IL-6, GlycA and IGFBP-1 concentrations increased. GlycA
234(p= 0.02) and non-pIGFBP-1 (p= 0.008) increased more in
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235 patients treated with metformin than with insulin but other-
236 wise there were no statistically significant differences in these
237 changes between the groups.

238 Correlations between inflammatory markers, age, pre-
239 pregnancy BMI and measures of glucose metabolism
240 Spearman’s correlations for inflammatory markers, IGFBP-
241 1’s, age and variables related to pre-pregnancy BMI and glu-
242 cose metabolism among the metformin and insulin treated
243 patients are represented in Fig.F1 1. At baseline, hsCRP and IL-
244 6 correlated positively and IGFBP-1 phosphoisoforms

245inversely with pre-pregnancy BMI and C-peptide. GlycA cor-
246related at baseline with HbA1c and C-peptide but not with
247pre-pregnancy BMI. MMP-8 measured at baseline correlated
248only weakly with pre-pregnancy BMI.

249Regression analyses between inflammatory markers,
250IGFBP-1’s and clinical outcomes in metformin and insulin
251treated patients
252Baseline
253Non-pIGFBP-1 at baseline was associated with lesser
254total and late GWG (Table T33 and Additional file 3). After

t1:1 Table 1 Clinical characteristics of the study population

t1:2 Variable Metformin n Insulin n p-value

t1:3 Patients characteristics

t1:4 Age (years) 31.9 ± 5.01 109 32.0 ± 5.47 107 0.89

t1:5 Smoking 9 (8.6) 105 17 (16.0) 106 0.099

t1:6 Primipara 42 (38.5) 109 49 (45.8) 107 0.28

t1:7 Pre-pregnancy BMI (kg/m2) 29.5 ± 5.91 109 28.9 ± 4.71 107 0.41

t1:8 Glucose metabolism

t1:9 HbA1c% at OGTT 5.48 ± 0.34 109 5.51 ± 0.34 107 0.49†

t1:10 HbA1c at OGTT (mmol/mol) 36.3 ± 3.69 36.7 ± 3.72

t1:11 HbA1c% at 36 gw 5.68 ± 0.33 101 5.69 ± 0.36 95 0.82

t1:12 HbA1c at 36 gw (mmol/mol) 38.5 ± 3.63 38.6 ± 3.89

t1:13 OGTT fasting (mmol/L) 5.52 ± 0.55 109 5.57 ± 0.42 107 0.44

t1:14 OGTT 1 h (mmol/L) 11.2 ± 1.49 109 11.2 ± 1.24 107 0.61†

t1:15 OGTT 2 h (mmol/L) 8.33 ± 1.76 108 7.91 ± 1.75 106 0.076

t1:16 C-peptide at baseline (nmol/L) 1.05 ± 0.33 103 1.05 ± 0.29 101 0.90†

t1:17 Pregnancy outcomes

t1:18 Gestational hypertension 2 (1.8) 109 4 (3.7) 107 0.44‡

t1:19 Preeclampsia 5 (4.6) 109 10 (9.3) 107 0.19‡

t1:20 Assisted vaginal delivery 9 (8.3) 109 8 (7.5) 107 0.83

t1:21 Cesarean section 15 (13.8) 109 18 (16.8) 107 0.53

t1:22 Induction of labor 41 (37.6) 109 58 (54.2) 107 0.014

t1:23 Gestational weight gain (kg) 7.97 ± 5.24 108 7.82 ± 5.27 107 0.83

t1:24 Weight gain in late gestation (kg) 1.79 ± 2.62 109 2.15 ± 2.97 107 0.35

t1:25 Gw at delivery 39.2 ± 1.40 109 39.4 ± 1.58 107 0.43

t1:26 Neonatal outcomes

t1:27 Birth weight (g) 3610 ± 490 109 3590 ± 450 107 0.78

t1:28 Birth weight (SD) 0.17 ± 1.05 105 0.15 ± 0.96 107 0.91

t1:29 Birth weight (centiles) 54.8 ± 28.9 105 54.3 ± 28.9 107

t1:30 Macrosomia 5 (4.6) 109 1 (0.9) 107 0.21‡

t1:31 Birth weight < 10th percentile 12 (11.4) 105 9 (8.4) 107 0.46

t1:32 Birth weight > 90th percentile 15 (14.3) 105 17 (15.9) 107 0.74

t1:33 Admission to NICU 33 (30.1) 108 39 (36.4) 107 0.36

t1:34 Newborn I.V. glucose 25 (23.1) 108 25 (23.6) 106 0.94

t1:35 Data is shown as mean ± SD or n (%). The p-value is given for the t-test or the Mann-Whitney U (indicated with †) and for categorical data for the χ2-test or
t1:36 Fisher’s exact test (indicated with ‡). The number of mothers with clinical variables varied slightly due to missing data for some variables. OGTT = oral glucose
t1:37 tolerance test, gw = gestational weeks, SD = standard deviation, NICU = neonatal intensive care unit, I.V. = intravenous. Birth weight in SD and centiles were
t1:38 adjusted for Finnish population growth charts. Macrosomia was defined as birth weight > 4500 g or > 2 SD
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t2:1 Table 2 Change in concentrations of inflammatory markers and IGFBP-1 phosphoisoforms from baseline to 36 gestational weeks

t2:2 Variable Metformin and insulin
combined

Metformin Insulin p-value for comparison of changes
(metf vs ins)

t2:3 n 179 94 85

t2:4 median/mean
(95% CI)

p-value median/mean
(95% CI)

p-value median/mean
(95% CI)

p-value

t2:5 Inflammation

t2:6 hsCRP (mg/L) −0.47 [−1.3; −
0.014]

0.011 − 0.45 [− 1.7;
0.16]

0.028 − 0.47 [− 1.8;
0.093]

0.18 0.72

t2:7 IL-6 (ng/L) 0.70 [0.20; 1.40] 0.002 0.85 [0.50; 1.8] 0.002 0.62 [−0.19; 1.4] 0.13‡ 0.31

t2:8 MMP-8 (μg/L) 0.0 [−2.0; 0.80] 0.50 −0.70 [− 2.0; 1.0] 0.76 0.70 [− 2.0; 2.6] 0.20 0.28

t2:9 GlycA (mmol/L) 0.11 [0.089; 0.13] <
0.0001

0.15 [0.11; 0.18] <
0.0001‡

0.091 [0.064; 0.12] <
0.0001‡

0.020

t2:10 IGFBP-1

t2:11 Non-phosphorylated
t2:12 (μg/L)

17.0 [13.0; 20.5] <
0.0001

21.0 [14.0; 26.0] <
0.0001

13.4 [7.9; 18.9] <
0.0001‡

0.008

t2:13 Low-phosphorylated
t2:14 (μg/L)

6.0 [4.0; 7.9] <
0.0001

6.0 [3.6; 7.5] <
0.0001

4.0 [−2.0; 4.0] 0.021 0.081

t2:15 High-phosphorylated
t2:16 (μg/L)

300 [190; 410] <
0.0001‡

260 [110; 420] 0.001‡ 340 [180; 500] <
0.0001‡

0.48†

t2:17 Median/mean change from baseline to 36 gestational weeks [95% confidence interval (CI)]. Positive values indicate increase and negative values decrease. p-
t2:18 values are given for the one-sample t-test (indicated with ‡) or Wilcoxon’s signed rank test (comparisons not indicated by ‡). For comparison of changes between
t2:19 metformin and insulin groups, Mann-Whitney’s U-test or the t-test (indicated with †) was used. hsCRP = high sensitivity CRP, IL-6 = interleukin 6, MMP-8 =matrix
t2:20 metalloproteinase 8, GlycA = glycoprotein acetylation, IGFBP-1 = insulin-like growth factor-binding protein 1. n-values for GlycA are 190, 99 and 91 for combined,
t2:21 metformin and insulin groups, respectively

f1:1 Fig. 1 Heatmap representation of Spearman’s correlations between age, pre-pregnancy BMI and glucose metabolism with inflammatory markers
f1:2 and IGFBP-1 phosphoisoforms at baseline (n = 196–208) and at 36 gestational weeks (n = 181–198). BMI = body mass index, OGTT = oral glucose
f1:3 tolerance test, gw = gestational weeks, hsCRP = high sensitivity CRP, IL-6 = interleukin 6, MMP-8 = matrix metalloproteinase 8, GlycA = glycoprotein
f1:4 acetylation, non/low/high-pIGFBP-1 = non/low/high-phosphorylated insulin-like growth factor-binding protein 1. *p < 0.05, **p < 0.01, ***p < 0.001.
f1:5 This figure was created using ggplot2 in R
f1:6
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255 adjustment for pre-pregnancy BMI, both non-pIGFBP-1
256 (− 1.5 kg/SD, p < 0.0001) and low-pIGFBP-1 (− 0.99 kg/SD,
257 p = 0.0037) were inversely associated with total GWG and
258 non-pIGFBP-1 (− 0.47 kg/SD, p = 0.019) with late GWG
259 (see Additional file 4 for adjusted regression results). Irre-
260 spective of these adjustments, MMP-8 was associated with
261 late, but not total GWG. Only after adjustment for pre-
262 pregnancy BMI, was hsCRP associated with total GWG
263 (0.72 kg/SD, p = 0.05). HsCRP was positively associated
264 with the gestation length and was not affected by adjust-
265 ment for pre-pregnancy BMI (0.20 weeks/SD, p = 0.048).
266 Non-pIGFBP-1 was associated with lower birth weight be-
267 fore (− 0.15 SD-unists/SD, p = 0.027) and after (− 0.14 SD-
268 units/SD, p = 0.049) adjustment for pre-pregnancy BMI.

269 Gestational week 36
270 Similarly to baseline, non-pIGFBP-1 measured at 36 gw
271 was associated with lesser total and late GWG, and after
272 adjustment for pre-pregnancy BMI also low-pIGFBP-1
273 was associated with total GWG. In the metformin group,
274 MMP-8 was related to higher late GWG (0.74 kg/SD,
275 p = 0.35) and hsCRP with longer gestation (0.40 weeks/
276 SD, p = 0.046), and these associations were unaffected by
277 adjustment for pre-pregnancy BMI. A high non-pIGFBP-1
278 concentration was related to a lower incidence for
279 cesarean section (OR: 0.49, p = 0.043), but this association
280 was no longer significant after adjustment for pre-
281 pregnancy BMI. A high MMP-8 was associated with lower
282 birth weight (− 0.17 SD-units/SD, p = 0.022), and this as-
283 sociation was not affected by pre-pregnancy BMI.
284 When the regression p-values at each time point were
285 adjusted using Bonferroni method, the associations be-
286 tween non-pIGFBP-1 and GWG remained significant at

287both time points in models irrespective of adjustment
288for pre-pregnancy BMI. In addition the association be-
289tween low-pIGFBP-1 at baseline and total GWG was sig-
290nificant in the regression adjusted for pre-pregnancy
291BMI. Regression results for metformin and insulin
292groups separately are shown in Additional file 5, for
293those models in which there was a significant interaction
294(p < 0.05) in the association between the independent
295and outcome variable. None of the p-values for metfor-
296min and insulin groups separately reached Bonferroni
297adjusted threshold of p < 0.0045.

298Discussion
299Seven biomarkers at the time of GDM diagnosis and at 36
300gestational weeks were analyzed and the effects of metfor-
301min and insulin treatment on the biomarker concentra-
302tions and their relation to clinical outcomes were
303compared. In addition to the traditional markers hsCRP
304and IL-6, also MMP-8 and GlycA were included in the
305analyses, since both of these markers are promising
306markers of cardiovascular risk outside pregnancy [28, 29].
307In both treatment groups hsCRP decreased from base-
308line to 36 gw, as demonstrated previously in non-diabetic
309obese and normal-weight pregnant women [30]. To our
310knowledge, this is the largest sample comparing the effect
311of metformin and insulin on hsCRP in GDM. In another
312large trial comparing metformin and insulin treatment in
313GDM (the MiG trial), CRP remained unchanged from
314GDM diagnosis to 36 gw [31]. Notwithstanding the differ-
315ent quantification method, this difference may be ex-
316plained by lower baseline hsCRP in the MiG study [31].
317Conversely, hsCRP has been related to BMI [32], which
318was higher in MiG than in our cohort; this emphasizes the

t3:1 Table 3 Regression models with significant (p < 0.05) association of inflammatory markers and IGFBP-1 concentrations with maternal
t3:2 and neonatal outcomes

t3:3 Independent variable Outcome β-estimate [95% CI] (p-value) n total

t3:4 Baseline

t3:5 non-pIGFBP-1 total GWG (kg/SD) −1.2 [− 2; −0.64] (< 0.001)* 201

t3:6 MMP-8 late GWG (kg/SD) 0.41 [0.022; 0.77] (0.035) 202

t3:7 non-pIGFBP-1 late GWG (kg/SD) 0.45 [−0.87; − 0.13] (0.021) 202

t3:8 hsCRP length of gestation (weeks/SD) 0.2 [0.028; 0.36] (0.044) 202

t3:9 high-pIGFBP-1 induction of labor (OR/SD)† 0.67 [0.48; 0.92] (0.0094) 202

t3:10 non-pIGFBP-1 birth weight (SD/SD) −0.15 [−0.32; − 0.052] (0.027) 198

t3:11 36 gestational weeks

t3:12 non-pIGFBP-1 total GWG (kg/SD) −1.1 [−1.8; −0.52] (0.0027)* 188

t3:13 non-pIGFBP-1 late GWG (kg/SD) −0.55 [− 0.96; − 0.21] (0.0069) 189

t3:14 non-pIGFBP-1 cesarean section (OR/SD)‡ 0.49 [0.24; 0.84] (0.043) 189

t3:15 MMP-8 birth weight (SD/SD) −0.17 [− 0.34; − 0.037] (0.022) 185

t3:16 Both metformin and insulin treated patients were included. Induction of labor was performed in 92 and cesarean section in 26 women. Data is given as regression
t3:17 β-estimates or odds ratios (OR) in respect to one SD change of the predictor [95% confidence interval, CI] (p-value). The reference groups for binary outcomes
t3:18 were no induction of labor (†) and vaginal delivery (‡). SD = standard deviation, GWG = (maternal) gestational weight gain, pIGFBP-1 = phosphorylated insulin-like
t3:19 growth factor-binding protein 1, MMP-8 =matrix metalloproteinase 8, hsCRP = high sensitivity CRP. *p < 0.0045 (Bonferroni)
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319 possible effects of ethnicity and the need for absolutely
320 identical diagnostic criteria for GDM.
321 In line with previous reports in non-diabetic subjects,
322 IL-6 increased during the last trimester of pregnancy
323 [30]. IL-6 is secreted to a large extent by adipocytes and
324 correspondingly higher serum concentrations are associ-
325 ated with higher BMI [30]. However, IL-6 has also anti-
326 inflammatory effects [33] and considering the lack of as-
327 sociations with any adverse outcomes in our data, the
328 complexity of IL-6 signaling in pregnancy remains in-
329 completely understood. Still, we have demonstrated that
330 compared with insulin metformin treatment of GDM
331 does not appear to affect serum IL-6.
332 Previously it has been shown that, in the presence of
333 premature rupture of membranes, maternal serum IL-6
334 predicts preterm delivery at 72 h before delivery [34]. In
335 our data there was an inverse, albeit statistically non-
336 significant association between IL-6 at 36 gw and gesta-
337 tion length.
338 Serum GlycA increased in both treatment groups but
339 more in response to metformin treatment. This is in
340 contrast to a previous study in non-diabetic individuals
341 where metformin did not affect serum GlycA [35]. How-
342 ever, the serum concentrations of some glycoproteins,
343 such as α-1-acid glycoprotein and α-1-antitrypsin,
344 change in normal pregnancy [36], and this confuses the
345 interpretation of GlycA. In general, pregnancy is associ-
346 ated with activation of the innate immune system and
347 with an increase in the concentration of acute phase
348 proteins in the serum. An overall increase of GlycA dur-
349 ing pregnancy has been reported previously in a popula-
350 tion cohort study [37] and this probably reflects changes
351 in the immune system [38]. High GlycA predicts T2DM
352 [39] and cardiovascular [29] risk in non-pregnant
353 women. Similarly, in pregnancy it has been associated
354 with insulin resistance, a poor lipid profile [40] and
355 GDM in obese women [12]. In agreement with this,
356 GlycA correlated with HbA1c and C-peptide at baseline
357 but not with HbA1c at 36 gw. These results suggest that
358 GlycA may not be a reliable marker of inflammation
359 near term, possibly due to changes in glycoprotein com-
360 position [36].
361 Serum MMP-8 was rather constant during the last tri-
362 mester of pregnancy, and to our knowledge this is the
363 first longitudinal study characterizing MMP-8 in GDM.
364 Outside GDM, MMP-8 is associated with chorioamnio-
365 nitis [14] and preterm delivery [41]. Although we did
366 not observe an association between maternal serum
367 MMP-8 and gestation length, MMP-8 was associated
368 with a slightly reduced birth weight. Serum MMP-8 may
369 indicate subclinical inflammation of the placenta or the
370 chorion, which would affect birth weight.
371 In normal pregnancy, serum IGFBP-1 increases during
372 the first trimester and then decreases slightly before

373another peak just before delivery [42]. In our data,
374IGFBP-1 phosphoisoform concentrations increased from
375baseline to 36 gw in both treatment groups. Non-
376pIGFBP-1 concentrations increased significantly more in
377women treated with metformin, and there was a trend
378towards a higher concentration of low-pIGFBP-1. In line
379with this, metformin causes a marked increase in
380IGFBP-1 in non-pregnant women with the polycystic
381ovary syndrome [43]. Metformin increases insulin sensi-
382tivity and this might decrease insulin levels. There is a
383negative feedback loop from insulin to the production of
384IGFBP-1 [22], and this might explain the difference in
385serum IGFBP-1 levels between the treatment groups.
386Another possibility is that the increase in IGFBP-1’s in
387the metformin group is a consequence of dietary
388changes in response to gastrointestinal symptoms often
389occurring during metformin use. Previously metformin
390treatment has been related to lower GWG when com-
391pared to either insulin [44] or placebo [45]. And al-
392though in our data there were no differences in GWG
393between the treatment groups, non-pIGFBP-1 and low-
394pIGFBP-1 were inversely associated with GWG.
395Neither at baseline nor at 36 gw was there any appar-
396ent association between inflammatory markers, IGFBP-
3971’s and clinical outcomes, with the exception of the in-
398verse association between non-pIGFBP-1, low-pIGFBP-1
399and GWG.
400IGFBP-1 phosphoisoform concentrations were associ-
401ated with healthier metabolic profiles, as expected, but
402high non-pIGFBP-1 and low-pIGFBP-1 were also related
403to lesser GWG. High pre-pregnancy BMI and high
404GWG are two major risk factors of excessive fetal
405growth. In spite of that, IGFBP-1’s in our data were not
406clearly associated with any birth weight variables. This is
407in contrast with previous results from a population co-
408hort where low IGFBP-1 throughout pregnancy was re-
409lated with a higher birth weight [46]. The discrepancy
410may at least in part be explained by the fact that our
411study population, having GDM and being therefore at
412risk for fetal macrosomia, were given intensive dietary
413and lifestyle counselling after the GDM diagnosis to pre-
414vent excessive weight gain.
415Metformin has been found to reduce the risk of gesta-
416tional hypertension in comparison to insulin [5] and the
417risk of preeclampsia when compared to placebo [45].
418This effect however was unlikely mediated by reduction
419of insulin resistance in obese patients [47]. In line with
420these findings, neither IGFBP-1’s nor the inflammatory
421markers were associated with the risk of hypertensive
422disorders in our data.
423Baseline high-pIGFBP-1 in all patients requiring met-
424formin or insulin and low-pIGFBP-1 in metformin-
425treated patients was associated with a lower risk for in-
426duction of labor. This may reflect a better overall
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427 metabolic health of patients with high serum IGFBP-1
428 while having a lower overall risk for pregnancy compli-
429 cations (of which induction of labor was the most fre-
430 quent). The induction rate of labor was marginally
431 higher in patients treated with insulin. This might reflect
432 the physicians’ perception that GDM treated with insulin
433 is more severe than GDM without insulin treatment.
434 In our study, at baseline the inflammatory markers
435 hsCRP, IL-6 and GlycA, and IGFBP-1 phosphoisoforms
436 correlated stronger with fasting C-peptide and pre-
437 pregnancy BMI than with fasting or postprandial glucose.
438 Hence, inflammatory markers and IGFBP-1 phosphoiso-
439 forms seem to indicate obesity related insulin resistance.
440 We have demonstrated that metformin affects serum
441 GlycA and non-pIGFBP-1 in GDM, and that the associa-
442 tions between these markers and clinical outcomes are
443 similar irrespective of the antihyperglycemic treatment
444 used. Based on this data it is unlikely that metformin, at
445 least when started this late in pregnancy, has any signifi-
446 cant impact on the systemic low-grade inflammation
447 that is present in GDM [9–12] or reflects morbidity later
448 in life [13]. Follow-up studies are needed to assess the
449 long term safety of metformin treatment of GDM on
450 children. Further on, it needs to be studied whether pos-
451 sible long term consequences are associated with the
452 changes in serum inflammatory markers or IGFBPs.

453 Strengths and limitations of the study
454 We have included two relatively novel inflammatory
455 markers, MMP-8 and GlycA, and provide longitudinal
456 data of their changes during the last trimester of preg-
457 nancy. The study design was a randomized controlled
458 trial – a setting that improves the reliability of results.
459 Even so, there are some limitations to our study.
460 Our sample size was designed to prove non-inferiority
461 of metformin or insulin in birth weight in the previously
462 published primary randomized trial (24). Thus, although
463 the study population is fairly large, it was underpowered
464 to reveal or exclude all studied associations between in-
465 flammation markers and IGFBP-1 s and outcome vari-
466 ables. There may also be confounding factors that
467 slightly affect both maternal and neonatal outcomes, but
468 the statistical power of multiple adjusted regression
469 models to examine each outcome closely is limited. The
470 serum samples in late pregnancy were taken at mean 36
471 gw of the patients. Since the women delivered at mean
472 39 gw, additional samples taken nearer delivery could
473 have provided important additional information on the
474 effect of metformin and insulin. Our population is repre-
475 sentative of mostly Caucasian patients in excellent gly-
476 cemic control, and these results may not necessarily be
477 generalizable to populations of other ethnicities or with
478 inferior glycemic control. Furthermore the indications
479 for induction, cesarean section and NICU admissions

480vary between countries making comparisons of these
481outcomes between various studies difficult. The trial was
482registered at ClinicalTrials.gov retrospectively.

483Conclusions
484Metformin had beneficial effects on maternal serum
485IGFBP-1 concentrations compared to insulin, possibly
486due to its favorable effect on insulin resistance. IGFBP-1,
487the non-phosphorylated isoform in particular, related to
488lower total and late pregnancy maternal weight gain.
489Otherwise there were no evident clinically relevant rela-
490tions between inflammatory markers and pregnancy out-
491come measures. Compared to insulin metformin caused
492a similar decrease in serum hsCRP and a similar increase
493in IL-6 but a slightly greater rise in GlycA. The signifi-
494cance of GlycA, and of IL-6-CRP-signalling in GDM will
495need to be more profoundly examined in further studies.
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