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Abstract

Drought is a major threat to plant growth and crop productivity. The phytohormone abscisic

acid (ABA) plays a critical role in plant response to drought stress. Although ABA signaling-

mediated drought tolerance has been widely investigated in Arabidopsis thaliana, the feed-

back mechanism and components negatively regulating this pathway are less well under-

stood. Here we identified a member of Arabidopsis HD-ZIP transcription factors HAT1

which can interacts with and be phosphorylated by SnRK2s. hat1hat3, loss-of-function

mutant of HAT1 and its homolog HAT3, was hypersensitive to ABA in primary root inhibition,

ABA-responsive genes expression, and displayed enhanced drought tolerance, whereas

HAT1 overexpressing lines were hyposensitive to ABA and less tolerant to drought stress,

suggesting that HAT1 functions as a negative regulator in ABA signaling-mediated drought

response. Furthermore, expression levels of ABA biosynthesis genes ABA3 and NCED3

were repressed by HAT1 directly binding to their promoters, resulting in the ABA level was

increased in hat1hat3 and reduced in HAT1OX lines. Further evidence showed that both

protein stability and binding activity of HAT1 was repressed by SnRK2.3 phosphorylation.

Overexpressing SnRK2.3 in HAT1OX transgenic plant made a reduced HAT1 protein level

and suppressed the HAT1OX phenotypes in ABA and drought response. Our results thus

establish a new negative regulation mechanism of HAT1 which helps plants fine-tune their

drought responses.

Author summary

Drought stress is a key environmental factor that severely reduces crop yield all over the

world. The phytohormone abscisic acid (ABA) is known to mediate drought responses

through regulating drought-responsive genes expression and stomatal closure, but the
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mechanisms that negatively regulate this process and prevent the adverse effects of excess

drought responses on plant growth is less well studied. Here, we show that a HD-ZIP II

transcription factor HAT1 negatively regulates ABA-mediated drought responses through

suppressing ABA biosynthesis and signaling. The hat1hat3 mutant showed ABA-hyper-

sensitive and drought-tolerant phenotypes, whereas the HAT1-overexpressing lines were

insensitive to ABA and less tolerant to drought. Furthermore, we found SnRK2.3 kinase, a

positive component of ABA signaling, interacts with and phosphorylates HAT1 to desta-

bilize and suppress its binding activity. Overexpression of SnRK2.3 reduces HAT1 protein

level and inhibits HAT1OX phenotypes in ABA and drought responses. Our results

revealed a HAT1-mediated negative regulatory mechanism in attenuating the ABA signal-

ing and drought response.

Introduction

As sessile organisms, plants need to respond and adapt to environmental stress to survive

adverse conditions. Plants respond and adapt to stresses through a complex network of factors

involved in stress hormone signaling and regulation of gene expression. The phytohormone

abscisic acid (ABA) plays a key role in plant responses to biotic and abiotic stress, in particular

drought and salinity [1–3].

Since the discovery of ABA receptors, PYRABACTINRESISTANCE1 (PYR1)/PYR1-LIKE

(PYL)/REGULATORYCOMPONENTS OF ABA RECEPTORS (RCAR) [4,5], a core ABA sig-

naling pathway has been proposed. In the absence of ABA, group A protein phosphatases type

2C (PP2Cs) interact with subclass III SNF1-related protein kinases (SnRK2.2, 2.3 and 2.6)

which keeps the kinases inactive by blocking their catalytic cleft and by dephosphorylating the

activation loop [6]. In the presence of ABA, ABA binds to the PYL receptors, forming a PYLs-

ABA-PP2C complex and inhibiting phosphatase activity of PP2C [7,8]. This binding and inhi-

bition of the PP2Cs releases the SnRK2s from PP2C-SnRK2 complexes, and the released

SnRK2s are activated through autophosphorylation. The activated SnRK2s can then phosphor-

ylate downstream effectors and activate ABA signaling [7,9,10]. Various transcription factors

function in ABA signaling-mediated drought response [2,11]. The basic leucine zipper (bzip)

family transcription factors including ABF1, ABF2 (AREB1), ABF3, and ABF4 (AREB2),

which bind directly to ABREs of stress-responsive genes and stimulate their transcriptional

activities, function in the ABA-dependent pathway and are major targets of SnRK2 protein

kinases in the ABA core signaling pathway [12–14]. Additionally, some members of the MYB

and MYC (bHLH) classes, the No Apical Meristem/Cup-Shaped Cotyledon (NAC), and

WRKY families have also been shown to be induced by ABA or abiotic stress or to regulate

stress responses, underscoring the importance of transcriptional regulation in plant stress

responses [2,15,16]. Transcriptional regulation is one of the most essential mechanisms in the

acquisition of stress tolerance [2,17].

However, in many cases, stress adaptation is exchanged for growth and productivity, there-

fore, it is necessary for plants to develop a resilient system to obtain the optimal trade-off for

survival and growth. To this end, plants use elaborate mechanisms associated with posttran-

scriptional modulation [18] and posttranslational regulation [19,20], as well as transcriptional

regulation. In particular, the appropriate control of transcription factors regulating plant

growth and development genes is important, because these transcription factors negatively

affect plant stress tolerance while being essential for increased productivity. The environmen-

tal conditions surrounding plants are constantly changing; thus, posttranslational regulation
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to control the protein levels of these transcription factors is considered an important mecha-

nism to avoid adverse effects on plant survival. However, the negative components involved in

regulation to efficiently coordinate ABA-dependent stress responses are less well known.

The homeodomain-leucine zipper protein (HD-ZIP) family constitute a large family of

transcription factors that are unique to plants and is divided into four subfamilies (HD-ZIP I–

IV) on the basis of the additional conserved domains, structures and physiological functions

[21–23]. HD-ZIP proteins contain homeodomain (HD) that is responsible for specific DNA

binding and the closely associated leucine zipper (LZ) domain which acts as a dimerization

motif [24]. HD-ZIP proteins can bind to partially inverted repeats such as CAAT(A/T)ATTG

(BS1 site), CAAT(C/G)ATTG (BS2 site) or as lightly modified version TAAT(C/T)ATTA for

AtHB2/HAT4 [25]. Arabidopsis thaliana homeodomain-leucine zipper protein 1 (HAT1) and

its close homologs belong to Class II HD-ZIP of transcription factors that mainly act as repres-

sors by binding to their target genes promoters and play important roles in plant development

and in response to the environment [25,26]. Previous works have shown that several members

of the family, HAT1, HAT4/AtHB2 and AtHB4, are induced by shade avoidance and overex-

pression of HAT1 or HAT4 resulted in a similar effect in promoting cell elongation [23,25–

27]. HAT2 expression is rapidly induced in response to auxin, and AtHB4 was also reported to

modulate auxin, BRs and gibberellin responses [28,29]. It was recently reported that HAT1 is a

substrate of BIN2 (BRASSINOSTEROID-INSENSITIVE 2) kinase and appears to function

redundantly with other family members such as HAT3 to positively mediate BR responses

[30]. HAT1 was also reported to participate in anti-CMV defense response in Arabidopsis and

negatively regulates this process [31]. Collectively, these studies indicate that HAT1 is involved

in the complex signaling and transcriptional networks coordinating plant growth and stress

response. HAT1 promotes plant growth and development by BR signaling or other pathway.

In this study, we demonstrate that HAT1, which was previously reported as a critical regula-

tor in BR-mediated plant growth and in viral defense response, is involved in ABA regulation

of drought response by suppressing the ABA biosynthesis and signaling. We found that HAT1

and its homolog HAT3 act redundantly, as the expression of both HAT1 and HAT3 were

repressed by ABA and drought, and the double mutant hat1hat3 displayed a reduced ABA sen-

sitivity and enhanced drought tolerance phenotype that was stronger than the single mutants

alone. HAT1-overexpressing transgenic plants exhibit a hyposensitive response to ABA and

drought. Furthermore, we found that HAT1 physically interacts with and can be phosphory-

lated by SnRK2.3 in vitro and in vivo. SnRK2.3 phosphorylation of HAT1 decreased its protein

stability and binding activity. Overexpressing SnRK2.3 in HAT1OX transgenic plant can sup-

press its phenotype in ABA and drought responses. Therefore we identified a new substrate of

SnRK2.3 and established a novel negative regulation mechanism by which plants can effi-

ciently coordinate drought responses.

Results

HAT1 acts as a negative factor in response to ABA signaling and in osmotic

stress tolerance

From public data (http://bbc.botany.utoronto.ca/efp/cgi-bin/efpWeb.cgi), we found that

HAT1 expression was reduced after ABA and osmotic stress treatment in seedlings, implying

that HAT1 may be implicated in ABA and stress responses. To test the hypothesis, we exam-

ined the expression of HAT1 in different tissues and in seedlings treated with exogenous ABA

or osmotic stress. Consistent with the public data, the expression level of HAT1 was highest in

root, and lower in stem, leaf, and inflorescence (Fig 1A), and was significantly repressed by

exogenous ABA and osmotic stress (Fig 1B). We further generated GUS reporter lines using

HAT1, a key component in ABA signaling, maintains the balance between plant growth and drought tolerance
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Fig 1. ABA sensitivity and osmotic stress tolerance of HAT1 mutants (hat1, hat1hat3) and HAT1-overexpressing lines. (A, B) Expression

patterns of HAT1. (A) qRT-PCR analysis of HAT1 expression in different tissues. (B) qRT-PCR analysis of HAT1 expression in response to

exogenous ABA and osmotic stress. 12-day-old Col-0 seedlings were transferred to liquid 1/2 MS medium with or without 100 μM ABA or 200 mM

mannitol and then the plants were harvested at the indicated time. Data are shown as mean SD of three independent experiments. The significance

of difference was analyzed by Student’s t test (�P< 0.05, ��P< 0.01). (C) Growth of different genotype seedlings on 1/2 MS medium with or

without 10μM ABA or 200 mM mannitol. The 4-day-old seedlings were transferred to 1/2 MS or 1/2 MS medium supplemented 10μM ABA or 200

mM mannitol for 10 days, and then the photos were taken. (D-F) Quantification of primary root length and biomass in different genotypes after

HAT1, a key component in ABA signaling, maintains the balance between plant growth and drought tolerance
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HAT1 native promoter and examined the responsiveness of HAT1 expression in the presence

of ABA and osmotic stress. As shown in S1A Fig, after ABA and osmotic stress treatments,

GUS signals were reduced in cotyledons, leaves and roots as well as guard cells. To determine

the subcellular localization of HAT1, we generated constructs that introduced the GFP

sequence at the C-terminus of HAT1. The 35S:GFP and 35S:HAT1-GFP constructs were used

to transfect Arabidopsis thaliana protoplasts. As shown in S1B Fig, 35S:GFP fluorescence was

observed in the entire cell, while HAT1-GFP fusion protein localized in the nucleus. The

expression of HAT3, its homolog, was similarly regulated, whereas the expression of HAT2
was not changed by ABA and osmotic stress (S3A and S3B Fig).

To investigate the role of HAT1 in the ABA response and in osmotic stress tolerance, we

obtained T-DNA insertion mutants of HAT1, HAT2 and HAT3, hat1, hat2 and hat3, respec-

tively. Then we created the double mutant hat1hat2, hat1hat3 and triple mutants hat1hat2hat3.

The RT-PCR results showed that HAT1 expression was hardly detected in hat1, hat1hat2,

hat1hat3 and hat1hat2hat3 mutants. Similarly, transcript of HAT2 was not observed in hat2,

hat1hat2 and hat1hat2hat3 mutants, and HAT3 transcript was abolished in hat3, hat1hat3 or

triple (hat1hat2hat3) mutants (S2A Fig). Western blotting using an anti-GFP antibody showed

that HAT1-GFP accumulated in the two HAT1OX lines (S2B Fig). Next, we analyzed ABA sen-

sitivity with regard to seedlings growth in Col-0, HAT1OX lines and knockout mutants. The

4-day-old seedlings grown on 1/2 MS medium were transferred to 10 μM ABA-containing

medium for 10 days. As shown in Fig 1C and 1D and S3C and S3D Fig, root growth of double

mutant hat1hat3 or triple mutant hat1hat2hat3 was dramatically retarded under ABA condi-

tions compared with that of wide-type Columbia-0 (Col-0) and was similar among Col-0, hat1,

hat2, hat3 and hat1hat2 with or without ABA treatment. To analyze the function of HAT1 in

osmotic stress tolerance, 4-day-old Col-0 and knockout mutants were treated with mannitol, a

stress treatment commonly used to mimic osmotic stress tolerance in the laboratory. The dou-

ble mutant hat1hat3 or triple mutant hat1hat2hat3 displayed less inhibition on growth in the

medium containing mannitol compared with Col-0, while the single mutant hat1, hat2, hat3
and double mutant hat1hat2 showed little difference after mannitol treatment in comparison

with Col-0 (Fig 1C, 1E and 1F and S3C, S3E and S3F Fig). In contrast, the two HAT1-overex-

pressing lines (HAT1OX#11 and HAT1OX#13) showed significantly reduced ABA sensitivity

and osmotic stress tolerance (Fig 1C bottom, Fig 1D, 1E and 1F). Together, these data indicate

that HAT1 plays a negative role in ABA signaling and in osmotic stress tolerance, and it is

functionally redundant with HAT3 in ABA and osmotic stress response.

HAT1 impairs ABA-induced stomatal closure and drought tolerance

ABA regulation of stomatal movements is a well established model system for the study of

plants response to drought stress. Thus, we measured the stomatal aperture from epidermal

peels of Col-0, HAT1OX lines and knockout mutants. Overexpression of HAT1 suppressed

ABA-mediated stomatal closure, while double mutant hat1hat3 and triple mutant

hat1hat2hat3 exhibited an accelerated ABA sensitivity in stomatal closure and single mutants

(hat1, hat2, hat3) or hat1hat2 showed little difference after ABA treatment in comparison with

Col-0 (Fig 2A and 2B and S4A and S4B Fig), indicating that HAT1 and HAT3 function redun-

dantly in regulating ABA-mediated stomatal closure. As H2O2 acts as an important signal

molecular in ABA-induced stomatal closure, H2O2 accumulation in guard cells was measured

ABA treatment or mannitol treatment indicated in (C). CK, control check. Data represent mean ± SD of three independent replicates. asterisks

indicate significant differences compared with Col-0 under the same treatment conditions. The significant difference was analyzed by Student’s t

test (�P< 0.05, ��P< 0.01).

https://doi.org/10.1371/journal.pgen.1007336.g001
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by a fluorescence dye, 2,7-dichlorodihydro fluorescein diacetate (H2DCF-DA) [32,33]. As

shown in Fig 2C and 2D, H2O2 accumulation in guard cells was less in HAT1OX lines, more in

hat1hat3 double mutant, compared to Col-0 and hat1 after ABA treatment, suggesting that

HAT1-impaired stomatal closure may be caused by changed H2O2 in guard cells. Next, we

tested whether HAT1 plays a role in the drought stress response. When exposed to dehydra-

tion stress by withholding water for 10 days, HAT1OX lines displayed a withered phenotype,

while the hat1hat3 double mutant largely remained turgid and single mutant hat1 showed little

difference in comparison with Col-0 (Fig 3A). Measurement of leaves water loss showed that

HAT1OX lines lost water much faster, while hat1hat3 displayed reduced water-loss rate than

Col-0 and hat1 (Fig 3B). As a result, overexpression of HAT1 markly reduced plant survival

under drought stress, whereas hat1hat3 showed enhanced survival compared to Col-0 and

hat1(S5A–S5C Fig).

To study the responses of different genotypes to controlled soil water deficit drought, Col-

0, HAT1OX lines and knock-out mutants (hat1, hat1hat3) were grown for 3 weeks under well-

water condition (2.2g H2O/g dry soil) and then subjected to mild drought stress (Fig 3D).

After grown under mild drought condition (0.7g H2O/g dry soil) for 9days, the biomass of

both drought-treated and well-watered plants was measured and then the change in biomass

was calculated. As shown in Fig 3C and 3E, HAT1OX lines showed more reduction in biomass

Fig 2. HAT1 suppresses ABA-induced stomatal closure and H2O2 accumulation in guard cells. (A) Epidermal peels of indicated genotypes were treated with or

without ABA for 3 h after stomatal pre-opening under light for 2h, and the stomatal aperture was measured. Scale bars: 10 μm. (B) Stomatal apertures of different

genotypes indicated in (A). (C, D) Fluorescence images (C) and pixel intensities (D) in guard cells preloaded with 50 μM H2DCFDA for 10 min in darkness. Each

assay was repeated at least three times. The data are presented as means ± SD. (Student’s t-test: �� P<0.01). Scale bar: 25 μm.

https://doi.org/10.1371/journal.pgen.1007336.g002
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Fig 3. HAT1 negatively regulate drought stress responses in Arabidopsis thaliana. (A) The phenotypes of Col-0, HAT1OX lines, hat mutants (hat1,

hat1hat3) in response to progressive drought stress. Different genotype plants were grown in soil with sufficient water for 3 weeks (Watered), and then water

was withheld for 10 d (Progressive drought), and the photos were taken. (B) Water loss from detached leaves of different genotype plants. Leaves at similar

developmental stages were excised and weighed at the indicated time after detachment. The proportion of fresh weight losses was calculated on the basis of

the initial weight of the leaves. Data are shown as mean SD of three independent experiments. The significance of difference was analyzed by Student’s t test

(��P< 0.01). (C-E) Growth of Col-0, HAT1OX lines, hat1 mutants (hat1, hat1hat3) in response to mild drought stress. 3-week-old plants were subjected to

mild drought treatment and the images of both drought-treated plants (right) and the well-watered plants (left) were taken (C). (D) Water loss from the peat

pellets during the duration of the experiment. Control soil water content was maintained at a constant value of 2.2 g water g-1 dry soil (solid line) during the

entire experiment. For the mild drought condition, soil water content was maintained at 0.7g H2O g-1 dry soil. (E) The change in biomass under mild

drought among different genotypes compared to Col-0. After mild drought treatment, all the replications of the drought-treated and the well-watered control

were harvested and the dry weights (biomass) were measured. Then calculate the reduction in biomass. Bars indicate SD calculated from three independent

experiments. The significance of difference was analyzed by Student’s t test and Asterisks indicate significant difference from the wild type (�P< 0.05,
��P< 0.01).

https://doi.org/10.1371/journal.pgen.1007336.g003
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compared to the Col-0 which is considered drought sensitive genotype, while the double

mutant hat1hat3 displayed less reduction in biomass and hat1 showed similar reduction in

biomass in comparison to Col-0. Altogether, these data demonstrate that HAT1 and HAT3

function redundantly and negatively to regulate ABA-mediated stomatal closure and drought

response.

HAT1 negatively regulates drought-responsive genes and positively

regulates PP2Cs
As HAT1 is a negative regulator of ABA signaling and drought response (Fig 1 and Fig 2), the

expression of ABA or drought stress inducible marker genes were tested in different genotypes.

We first determined the transcript levels of ABA response maker genes which were also ABA

biosynthesis genes. These genes include ABA1 [34], AAO3 [35], ABA3 [36], and NCED3 [37].

Among the four genes, the expression of ABA3 and NCED3 were significantly reduced in

HAT1OX lines and up-regulated in hat1hat3 double mutant under both control and osmotic

stress conditions (Fig 4A and 4B). To determine whether or not ABA levels were affected, we

quantified the ABA content in different genotypes. Under normal conditions, ABA level in

HAT1OX seedlings was found to be lower than that in Col-0 and hat1 single mutants, whereas

it was elevated in hat1hat3 double mutant. When exposed to 15% polyethylene glycol (PEG)

6000 that mimics a drought stress, HAT1OX lines had a reduced ABA level, and the hat1hat3
double mutants accumulated higher level of ABA compared with Col-0 and hat1 (Fig 4E). In

Fig 4. Expression profiles of ABA or drought stress-responsive genes. (A-D) qRT-PCR analysis of ABA3 (A), NCED3 (B), RD29A (C), and RD22 (D) expression.

12-day-old seedlings were transferred to liquid MS medium with or without 15% PEG6000 and sampled after 6h treatment. Data are means of three replicates ± SD,

asterisks indicate significant differences compared with Col-0 under the same treatment conditions. The significance of difference was analyzed by Student’s t test

(�P< 0.05, ��P< 0.01). (E) ABA content as determined by ELISA. Data are shown as mean SD of three independent experiments. The significance of difference was

analyzed by Student’s t test (�P< 0.05, ��P< 0.01). (F-H) qRT-PCR analysis of PP2Cs expression, HAI1 in (F), HAI2 in (G), PP2CA in (H). Three independent

repeats were performed, the significance of difference was analyzed by Student’s t test (�P< 0.05, ��P< 0.01).

https://doi.org/10.1371/journal.pgen.1007336.g004
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addition, the induction of RD29A and RD22, which are well established drought-induced

marker genes [16,38], was also tested in different genotypes. As expected, the expression of

these two genes were reduced in HAT1OX lines and elevated in hat1hat3 double mutant com-

pared with Col-0 and hat1 (Fig 4C and 4D). Furthermore, the expression of HAI1, HAI2 and

PP2CA, which belong to PP2Cs, negative regulators of ABA signaling, was diminished by

down-regulation of both HAT1 and HAT3 and enhanced by HAT1 overexpression (Fig 4F–

4H). Taken together, these results indicate that HAT1 repressed drought-responsive genes and

induced PP2C genes, which may account for the repressed drought tolerance in HAT1OX lines.

HAT1 physically interacts with SnRK2.2/2.3/2.6 and can be phosphorylated

by SnRK2.3

The SnRK2 kinases are integral positive component of ABA signaling, and phosphorylate S/T

residues in the RXXS/T motif in their substrates. There are 7 potential phosphorylation sites

for SnRK2 kinases in the predicted HAT1 protein, which prompted us to test whether HAT1

was a substrate of SnRK2 kinases. First, we tested if subclass III SnRK2s could physically inter-

act with HAT1. Bimolecular fluorescence complementation (BiFC) analysis was performed to

examine the interaction of HAT1 with SnRK2.2, SnRK2.3, and SnRK2.6 in plants. We found

that HAT1 interacts with all subgroup III SnRK2s in the nucleus and no fluorescence signal

was detected in the negative controls (Fig 5A). Quantitative analyses of BiFC signals showed

strong SnRK2.3-HAT1 interactions and weak signals for HAT1 interaction with other sub-

group III SnRK2s (Fig 5B). GST pull-down experiment confirmed this interaction in vitro (Fig

5C). GST-SnRK2s, but not GST alone, pulled down a significant amount of MBP-HAT1 pro-

tein, demonstrating a direct interaction between SnRK2s and HAT1. Consistent with the result

of BiFC assays, the interaction between SnRK2.3 and HAT1 is the strongest (Fig 5C). The in

vivo interaction of SnRK2s with HAT1 were corroborated by co-immunoprecipitation (Co-

IP) assay using Arabidopsis protoplasts co-expressing Myc-SnRK2s and HAT1-Flag fusion

constructs (Fig 5D). We also generated a series of truncated HAT1 fragments (HAT1-1F (135–

282), HAT1-2F (192–282), HAT1-3F (234–282)) which were fused with the C-terminal half of

YFP and transformed them individually with SnRK2.3-nYFP into tobacco leaves. When

deleted to amino acid 134 in HAT1, only a weak fluorescent signal was detected, while dele-

tions to amino acid 191 and 233 in HAT1 totally abolished the interaction with SnRK2.3 (S6B

Fig). Several truncated MBP-HAT1 (N-terminal region, HD, LZ, and C-terminal region of

HAT1) were further used to map the specific domain of HAT1 required for the interaction

with SnRK2.3. As shown in S6C Fig, HAT1 interacts with Snrk2.3 with its N-terminal region.

Taken together, the N-terminal region in HAT1 mediates the interaction between HAT1 and

SnRK2.3. Further, we conducted in vitro kinase assays to test whether SnRK2.3 can phosphor-

ylate MBP-fusion HAT1 protein and found that SnRK2.3 can phosphorylate HAT1, but not

MBP (Fig 5E). The kinase dead form of SnRK2.3 (SnRK2.3K51N) was used as a negative control

and it totally abolished the phosphorylation of SnRK2.3 on HAT1 (Fig 5E). We further found

that the homeodomain of HAT1 (MBP-HAT1-HD) can be phosphorylated by SnRK2.3 rather

than the other regions (Fig 5F). In addition, the interaction of SnRK2.3 with HAT3 was also

examined by BiFC analysis. As shown in S7A Fig, HAT3 interacts with SnRK2.3 in the nucleus,

suggesting that SnRK2.3 may regulate HAT3 through a similar manner as HAT1.

Proteasome-mediated HAT1 degradation is triggered by SnRK2.3

phosphorylation

To test whether phosphorylation of HAT1 by SnRK2.3 in vivo, the HAT1-GFP was immuno-

precipitated from HAT1OX or SnRK2.3OX/HAT1OX transgenic seedlings treated with/
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without ABA or MG132 and detect the phosphorylation/dephosphorylation form using phos-

tag gel blot analysis with an anti-GFP antibody (Fig 6A). Two faster-migrating bands can be

detected in untreated plants. We found that ABA treatment or SnRK2.3 overexpression

resulted in the appearance of a slower-migrating HAT1 in HATOX transgenic plants (Fig 6A).

Fig 5. SnRK2.3 interacts with and phosphorylates HAT1. BiFC assays of interactions of HAT1 with the indicated SnRKs in N. benthamiana leaves (A) and

quantification of relative fluorescence intensities (relative to that of HAT1-HAT1 interaction) in BiFC analyses (B). HAT1-nYFP/ HAT1-cYFP were used as positive

control and nYFP/HAT1-cYFP and cYFP/SnRK2.2/ SnRK2.3/ SnRK2.6 were used as negative controls. Data represent mean ± SD of three independent replicates. Ten

cells were analyzed in each replicate for each construct combination. Scale bars: 50 μm. Images were acquired using identical settings. (C) SnRK2s interacts with HAT1 in

GST pull-down assay. GST, GST-SnRK2s and MBP-tagged HAT1 were used in this assay. HAT1 was detected by western blotting with anti-MBP antibody. (D) CoIP

analysis of the interaction between SnRK2s and HAT1 in Arabidopsis leaf protoplasts. Myc-fused SnRKs (SnRK2.2/2.3/2.6) were immunoprecipitated using anti-Myc

beads, and coimmunoprecipitated HAT1-Flag was then detected using an anti-Flag antibody. Experimental details are provided in Methods. (E, F) SnRK2.3

phosphorylates HAT1 in vitro. GST-SnRK2.3 was used to phosphorylate MBP or MBP-HAT1 (E) or truncated MBP-HAT1 (F).

https://doi.org/10.1371/journal.pgen.1007336.g005
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When subjected to phosphatase [calf-intestinal alkaline phosphatase (CIP)] treatment, all

three bands disappeared and a new lower band which is likely the unphosphorylated form of

HAT1 appeared, indicating that HAT1 exists mostly as phosphorylated forms in plants and an

elevated phosphorylation of HAT1 is formed by ABA treatment or SnRK2.3 overexpression

(Fig 6A and 6B). Furthermore, when treated with MG132, the phosphorylation level of HAT1

was significantly increased in ABA-treated HAT1OX or SnRK2.3OX/HAT1OX seedlings, indi-

cating that super-phosphorylation form of HAT1 was instable (Fig 6A).

To investigate the function of the SnRK2.3 phosphorylation on HAT1 protein stability, we

detect HAT1-GFP protein level in transgenic plants. First, we expressed HAT1-GFP fusion

proteins in Nicotiana benthamiana epidermal cells and examined the effects of ABA and the

proteasome inhibitor MG132 on GFP fluorescence. Time-course microscopic observation

revealed that the HAT1-GFP fluorescence intensity was substantially reduced in leaves treated

with ABA alone, whereas HAT1-GFP was more stable after application of ABA plus MG132

(Fig 6C). Similarly, HAT3-GFP fluorescence intensity was also rapidly reduced in response to

Fig 6. ABA treatment and SnRK2.3 phosphorylation destabilizes HAT1. (A) SnRK2.3 phosphorylates HAT1 in vivo. HAT-GFP was prepared from HAT1OX
transgenic plants treated with or without ABA or ABA plus MG132 or from SnRK2.3OX/HAT1OX transgenic plants treated with or without MG132, and then

separated on SDS/PAGE gel containing Phos-tag reagent (NARD Institute). (B) Characterization of up-shifted band of HAT1 by dephosphorylation. HAT1

immunoprecipitated from SnRK2.3OX/HAT1OX transgenic plants with anti GFP beads were incubated with or without calf intestinal alkaline phosphatase (CIP)

(sigma) and then separated on Phos-tag SDS-PAGE. The HAT1-GFP protein was detected by immunoblot analysis using anti-GFP antibody. (C) Time microscope

images of a representative Nicotianabenthamiana leaf epidermal cell expressing HAT1-GFP exposed to 50 μM ABA. Results are representative microscope images

from three separate experiments, and at least 5 independent cell images were captured per experiment. Scale bars: 50 μm. (D) ABA promotes HAT1 degradation

through the proteasome. 12-day-old seedlings grown one half-strength MS plates were treated with (+) or without (-) 50μM ABA and/or 30μM MG132 for indicated

time period. Total protein was extracted and analyzed by immunoblotting. Ponceau S staining was used to demonstrate equal loading. (E) SnRK2.3 promotes the

degradation of HAT1 in vivo. Proteins extracts from 12-day-old HAT1OX seedlings or from SnRK2.3OX/HAT1OX seedlings treated with or without MG132 were

subjected to immunoblot analysis using anti-GFP for HAT1 and anti-Myc antibody for SnRK2.3. (F) Ubiquitination level of HAT1 is enhanced by SnRK2.3 in vivo.

HAT1-GFP protein was immunoprecipitated from 12-day-old HAT1OX seedlings treated with or without ABA and in SnRK2.3OX/HAT1OX seedlings.

Immunoprecipitated proteins were detected by immunoblotting using anti-GFP or anti-Ubiquitin (Ub) antibody (Abcam) for HAT1 and anti-Myc antibody for

SnRK2.3.

https://doi.org/10.1371/journal.pgen.1007336.g006
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ABA treatment and only slightly altered in response to the control stimulus (solvent used for

ABA) and combined ABA and MG132 (S7B Fig). We then examined HAT1-GFP protein level

in HAT1-GFP transgenic plants. As shown in Fig 6D, HAT1 protein increased in the liquid

one-half MS (Murashige and Skoog) medium without ABA treatment (Fig 6D top panel).

However, in the presence of ABA, HAT1-GFP protein clearly decreased in relation to the

mock treatment after 3 h of treatment (Fig 6D middle panel). When we treated plants with

ABA and MG132 together, the HAT1 protein level significantly increased as mock (Fig 6D

bottom panel), suggesting that ABA triggers proteasome-mediated HAT1 degradation.

To investigate whether ABA-induced HAT1 degradation is mediated by SnRK2.3 phosphor-

ylation in plant, we detected HAT1-GFP protein level in HAT1OX or SnRK2.3OX/HAT1OX
transgenic seedlings. The transcriptional level of HAT1 was same in HAT1OX and SnRK2.3OX/
HAT1OX (S8 Fig). As shown in Fig 6E, HAT1 protein was clearly degraded in SnRK2.3OX/
HAT1OX transgenic plants, while this degradation was blocked by addition of MG132. We fur-

ther examined the ubiquitination level of HAT1 in ABA-treated HAT1OX and in SnRK2.3OX/
HAT1OX transgenic plants. As shown in Fig 6F, the ubiquitinated level of HAT1 was signifi-

cantly increased in HAT1OX plants after treatment with ABA, or in SnRK2.3OX/HAT1OX
transgenic plants. Taken together, these results indicated that SnRK2.3-mediated HAT1 phos-

phorylation facilitates the degradation of HAT1 via stimulating its ubiquitination.

SnRK2.3 represses the binding ability of HAT1 to HB site on promoter of

ABA3 and NCED3
HAT1 acts as a regulator by binding to HB site within its target genes promoters. First, we ana-

lyzed promoter sequences of four ABA or drought-responsive genes (ABA3, NCED3,RD29A,

RD22) and found that there were two HB-binding sites within the ABA3 and NCED3 promoter

regions respectively (Fig 7A). To determine whether or not HAT1 bind to the ABA3 and NCED3
promoter, electrophoresis mobility shift assays (EMSAs) were conducted. The MBP-HAT1 fusion

protein can bind to A1 fragment of ABA3 promoter and N1 fragment of NCED3 promoter, but

this binding was abolished by mutation of HB sites in the probes (Fig 7B and 7C). The addition of

GST-SnRK2.3 fusion protein was able to slightly inhibit the ability of HAT1 binding to the A1

fragment and N1 fragment (Fig 7B and 7C). When HAT1 was phosphorylated by SnRK2.3 in

vitro, the binding affinity of phosphorylated HAT1 was dramatically reduced (Fig 7B and 7C).

These data indicate that HAT1 protein can bind to the A1 fragment of ABA3 promoter and N1

fragment of NCED3 in vitro, and its binding ability is repressed by SnRK2.3 phosphorylation.

To further test the effect of SnRK2.3 on the binding ability of HAT1 in vivo, we performed chro-

matin immunoprecipitation (ChIP) assays. We immunoprecipited HAT1-GFP protein from

HAT1OX transgenic seedlings treated with/without ABA or ABA in combination with MG132 with

anti-GFP antibody. TA3, a retrotransposable element, was used as the internal control [39]. ChIP-

qPCR results indicated that HAT1 specifically bound to the A1 region of ABA3 and N1 region of

NCED3, and other genomic fragments containing HB sites were not targeted by HAT1 (Fig 7D and

7E). The binding ability of HAT1 was reduced by both ABA treatment and ABA plus MG132 treat-

ment (Fig 7D and 7E). Furthermore, HAT1 binding ability was significantly diminished by SnRK2.3

overexpression, and it cannot be recovered by addition of MG132 (Fig 7D and 7E). Altogether,

these results support that SnRK2.3 represses the binding ability of HAT1 by phosphorylation.

SnRK2.3 Overexpression suppresses ABA-insensitivity and drought-

hypersensitivity of HAT1OX plants

To confirm the regulation of HAT1 by SnRK2.3, we examined whether or not overexpression

of SnRK2.3 can suppress HAT1OX phenotypes in ABA and drought responses. SnRK2.3OX/
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HAT1OX double overexpressing line displayed an enhanced ABA sensitivity in seedlings

growth and was more tolerant to drought stress compared with HAT1OX, which was similar

to Col-0 (Fig 8A–8D and S9 Fig). Moreover, SnRK2.3OX/HAT1OX showed less reduction in

biomass under mild drought conditions compared to HAT1OX (Fig 8E and 8F). Then, we

tested the influence of SnRK2.3 overexpression on HAT1 in the regulation of ABA or drought

Fig 7. SnRK2.3 phosphorylation represses the binding ability of HAT1 to the promoters of ABA3 and NCED3. (A) Schematic representation of ABA3 and

NCED3 promoter. The upstream region and part of an exon of ABA3 and NCED3 are shown with a white box and black box, respectively. The arrowheads in the top

indicate the sites containing HB sites in the ABA3 and NCED3 promoter. Black lines represent the DNA fragments amplified in the ChIP assay. Sequences of wild-

type probe with HB sites and various mutant probes were shown. (B, C) Electrophoretic mobility shift assays (EMSAs) to examine HAT1 binding to the ABA3 (B)

and NCED3 (C) promoter. MBP-HAT1 was immunoprecipitated with MBP agarose and incubated with purified GST-SnRK2.3 with kinase reaction buffer at 37˚C

for 30 min. The MBP, MBP-HAT1, phosphorylated MBP-HAT1 and GST-SnRK2.3 proteins were incubated with the WT or mutants probes. (D, E) ChIP-qPCR

assay of HAT1 binding to ABA3 (D) and NCED3 (E) promoter in vivo. The 12-day-old HAT1OX were treated with 50 μM ABA or ABA plus MG132 for 3h, and the

SnRK2.3OX/HAT1OX seedlings were treated with/without 30 μM MG132 alone for 3h, then the seedlings were harvested for ChIP-qPCR assay using anti-GFP

antibody. Data are shown as mean SD of three independent experiments. The significance of difference was analyzed by Student’s t test (�P< 0.05, ��P< 0.01).

https://doi.org/10.1371/journal.pgen.1007336.g007

HAT1, a key component in ABA signaling, maintains the balance between plant growth and drought tolerance

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007336 April 16, 2018 13 / 27

https://doi.org/10.1371/journal.pgen.1007336.g007
https://doi.org/10.1371/journal.pgen.1007336


Fig 8. Overexpression of SnRK2.3 suppresses the ABA-insensitive and drought- hypersensitive phenotypes of HAT1-overexpressing line. (A) Phenotypic

comparison. 4-day-old Col-0, HAT1OX#13, and SnRK2.3OX/HAT1OX seedlings were transferred to 1/2 MS medium or 1/2 MS medium supplemented 10μM ABA or

200 mM mannitol for 10 days, and then the photos were taken. (B-D) Quantitication of primary root length and biomass in Col-0, HAT1OX#13, and SnRK2.3OX/
HAT1OX seedlings after ABA treatment and mannitol treatment indicated in (A). Data represent mean ± SD of three independent replicates. asterisks indicate

significant differences compared with Col-0 under the same treatment conditions. The significant difference was analyzed by Student’s t test (�P< 0.05, ��P< 0.01).

(E, F) Growth of Col-0, HAT1OX#13, SnRK2.3OX/HAT1OX in response to mild drought stress. 3-week-old plants were subjected to mild drought treatment and the
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inducible marker genes expression. As shown in Fig 8G–8J, the expression of ABA3, NCED3,

RD29A, and, RD22, were significantly up-regulated in SnRK2.3OX/HAT1OX, compared to

HAT1OX, which reached to the expression level of Col-0. These data together with phenotype

tests indicated that SnRK2.3 overexpression suppressed the ABA-insensitivity and drought-

hypersensitivity of HAT1OX.

Discussion

Currently, the most thoroughly understood in transcriptional regulation of ABA-mediated

drought responses is AREB/ ABFs pathway, which activated the expression of drought-respon-

sive genes in an ABA-dependent manner [40], however, the components involved in

compromising drought response were less well studied. In this study, we identified SnRK2.3

interaction transcription factors HAT1 and HAT3 as important components to regulate ABA-

mediated drought response. As negative regulators, HAT1 and HAT3 suppressed ABA sensi-

tivity and drought tolerance. Furthermore, we found HAT1 was a substrate of SnRK2.3 and

SnRK2.3 phosphorylation decreased HAT1 protein stability and binding activity. Our results

identified a new negative component that regulates ABA signaling in Arabidopsis in response

to drought and established a novel mechanism to attenuate stress response.

HAT1 plays important roles in phytohormone-regulated developmental processes and

stress response [23,25]. HAT1 interacts with BES1, a central regulator in BR signaling pathway,

and functions as a BES1 co-repressor to inhibit BR-repressed genes and thus optimizes BR-

regulated plant growth [30]. In addition, HAT1 acts as a repressor in plant defense response to

CMV infection [31]. Thus, HAT1 may function as a transcriptional regulator to modulate

plant growth and stress response. Several lines of evidence support the role of HAT1 as a nega-

tive regulator in ABA-mediated drought response. First, the expression of both HAT1 and its

close homologs HAT3 is repressed by ABA and osmotic stress, indicating that these genes are

ABA or stress-responsive factors. Second, HAT1 can bind to specific DNA sequences (HB

binding sites) on promoter of NCED3 and ABA3, two key ABA biosynthesis genes, and

represses these genes expression, leading to a reduction of ABA synthesis. In addition,

drought-responsive genes like RD22 and RD29A, were also suppressed by HAT1. Third, con-

sistent with the role of negative regulators for ABA signaling under stress conditions,

HAT1OX displayed reduced sensitivity to ABA and less tolerance to drought stress, whereas

the double knockout mutant hat1hat3 showed an enhanced ABA sensitivity and increased

drought tolerance phenotypes. Finally, the modulation of HAT1 by SnRK2.3 kinase further

suggests that HAT1 forms part of ABA signaling network to regulate ABA-dependent stress

response.

Besides the repression by ABA at transcription level, HAT1 is regulated by ABA-activated

SnRK2 kinases through a post-transcriptional modification mechanism. Post-translational

modifications of transcription factors fine-tune their functions to effectively and precisely

implement the stress response. SnRK2s-mediated phosphorylation of target proteins triggers

most of the molecular actions of ABA signaling pathway [14,41,42]. In addition to the origi-

nally identified bZIP transcription factors AREBs (ABA-Responsive Element Binding factors)

that function in ABA-responsive gene regulation, 58 putative substrates of ABA-activated

SnRK2s were identified through mass spectrometry-based global phosphorylation profiling,

images of both drought-treated plants (right) and the well-watered plants (left) were taken (E) and the reduction in biomass of each genotype was measured (F). The

average and SDs were from three independent experiments and At least 12 plants were measured for each genotype per replication. The significance of difference was

analyzed by Student’s t test (��P<0.01). (G-J) Expression of ABA or drought-responsive genes in 12-day-old seedlings with or without 15% PEG 6000 treatment for 6h.

Data are means of three replicates ± SD, asterisks indicate significant differences compared with Col-0 under same conditions (Student’s t-test: � P< 0.05, ��P< 0.01).

https://doi.org/10.1371/journal.pgen.1007336.g008
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which include components involved in flowering time regulation, RNA and DNA binding,

miRNA and epigenetic regulation, signal transduction, chloroplast function, and many other

cellular processes [41]. In this study, we identified an additional substrate for SnRK2.3 kinase.

In contrast to bZIP transcription factors AREBs, which are stabilized by SnRK2s phosphoryla-

tion [43,44], SnRK2.3 phosphorylation promotes the degradation of HAT1. In addition to

destabilizing HAT1 protein, we found that SnRK2.3 phosphorylated HAT1 on its homeodo-

main, which is responsible for specific DNA binding, leading to the reduction of its binding

ability to the HB sites on the promoter of target genes. Our results thus suggest that SnRK2.3

phosphorylation of HAT1 can have different functional consequences, inhibiting both its

DNA binding and protein accumulation. However, the mechanisms how phosphorylation by

SnRKs mediates HAT1 degradation remain to be determined in future studies.

HAT1 belongs to Class II HD-ZIP transcription factors, which have been shown to regulate

plant growth and development [45–47]. For example, ATHB4, ATHB2 and HAT3 are required

for normal leaf development and blade growth [45]. ATHB4, a shade signaling component,

acts redundantly to other members of the HD-Zip class-II subfamily to integrating shade per-

ception and hormone-mediated growth [29]. HAT2 is an auxin inducible gene and modulates

auxin-mediated morphogenesis [48]. In addition to the regulation of plant growth and devel-

opment, several of the class II HD-ZIP transcription factors have been also reported to partici-

pate in plant responding to exogenous ABA and drought stress. ATHB17 has been

characterized as a positive regulator of ABA response and multiple stress responses [46,49].

ABIG1/HAT22 is induced by ABA and drought stress, and relays ABA signaled growth inhibi-

tion and drought induced senescence [50]. HDG11 can promote main root elongation and lat-

eral root formation in Arabidopsis and was able to confer drought tolerance in Arabidopsis,

tobacco, rice, sweet potato, cotton and woody plant poplar (Populus tomentosa Carr.) [51–55].

It seems likely that a general role for HD-ZIP II proteins is to link environmental and develop-

mental signals to growth control. As noted above, these class II HD-ZIP transcription factors

share many similar characteristics though they have different expression patterns. Expression

pattern of HAT1 and HAT3 in response to BR and ABA is analogous and functions in BR-

mediated hypocotyl elongation and ABA-induced drought stress tolerance are redundant. So

it proposed that HAT1 together with HAT3 played essential roles in balancing plant growth

and stress responses. However whether ABA regulates HAT1 and HAT3 function and stability

in a similar manner is unclear and further study will be needed.

Our results strongly indicate that HAT1 is an important part of mechanisms that functions

to control basal ABA signaling and drought response. HAT1 can suppress ABA synthesis and

signaling through down-regulating the expression of ABA3 and NCED3 via directly binding to

their promoters, and ABA/drought-responsive genes, RD29A and RD22. In contrast, HAT1

promotes the expression of PP2Cs which negatively regulate the ABA response, enhancing the

negative regulation of ABA signaling (Fig 9). When exposed to drought conditions, stress-

induced ABA led to activation of SnRK2s, which in turn negatively regulates HAT1 functions

by posttranslational regulation of its stability and binding ability. The suppression of HAT1 at

both transcriptional and protein level appears to be an adaptive strategy of plant responses to

water deficit, facilitating plants survival under drought conditions (Fig 9). When the environ-

mental conditions are favorable, HAT1 and its homologous function to suppress drought

response, prevent unnecessary activation of stress response, and ensure the normal growth of

plants. HAT1 thus can be considered as a brake to fine tune ABA signaling and drought

response (Fig 9).

In summary, this study revealed the mechanism of the negative regulatory function of

HAT1 in ABA-mediated drought response (Fig 9). We found that ABA biosynthesis and sig-

naling were repressed by HAT1. We also establish that HAT1 is phosphorylated by SnRK2.3
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kinase and that SnRK2.3 phosphorylation promotes the proteasome-mediated HAT1 degrada-

tion and represses the binding ability of HAT1. The identification of negative regulators, like

HAT1, and elucidation of the regulatory mechanism will lead to a better understanding of

ABA signaling mechanism and drought response, which has potential in manipulating crop

plants for drought tolerance.

Materials and methods

Plant materials and growth conditions

Arabidopsis thaliana ecotype Columbia-0 (Col-0) was used as the WT control. The HAT1-

overexpressing lines (HAT1-OX#11 and HAT1-OX#13) were described previously [30].

T-DNA insertion mutants hat1, hat2 and hat3 were obtained from ABRC (Arabidopsis Biolog-

ical Resource Center) [56], corresponding to line SALK_059835, SALK _091887 and

SALK_056541. We performed cross to create the double mutant hat1hat2, hat1hat3 and triple

mutant hat1hat2hat3. HAT1OX and mutants were identified (S2 Fig). All the plants were

grown on half-strength MS plates and/or in soil under long-day conditions (16 h light/8 h

dark) at 22˚C.

Construction of plasmids and generation of transgenic plants

Gene-specific primers HAT1 were used to isolate HAT1, from a cDNA library by PCR. To

generate the pZP211-HAT1-GFP, full-length HAT1 was amplified and cloned into the pZP211

vector with a GFP tag using the BamHI and SalI sites [57]. To generate the Myc-SnRK2.2/2.3/

Fig 9. Working model for HAT1 in the negative regulation of stress responses. ABA, which is induced by drought

stress, inhibits the activity of PP2Cs to release the kinase activity of SnRK2s kinase for further activation of

downstream regulators through phosphorylation. HAT1 could directly bind to the promoters of ABA3 and NCED3
and negatively regulates the expression of these two genes, resulting in reduced ABA biosynthesis. Furthermore, HAT1

could positively regulate several PP2C genes expression, which in turn negatively regulates the ABA signaling. Thus,

HAT1 acts as a repressor to keep the drought response silence during the environmental conditions are comfortable.

Under stress conditions, stress-induced ABA accumulation could repress HAT1 at transcriptional and protein level,

ensuring plants survive stress conditions. P, Phosphorylation.

https://doi.org/10.1371/journal.pgen.1007336.g009
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2.6, the coding regions of SnRK2.2/2.3/2.6 were cloned into pCAMBIA1307-63 Myc vector

[58]. To generate HAT1-Promoter::GUS, 1.3-kb fragments upstream of HAT1 were amplified

by PCR using primers HAT1p-F/R and inserted into the binary vector pBI121-GUS using

HindIII and BamHI sites [59]. For BiFC assays, SnRK2.2/2.3/2.6 were cloned into the pXY103

vector fused to the C terminus of YFP, and HAT1 and its fragments were fused into the

pXY104 vector fused to the N terminus of YFP [60]. For the recombinant protein and GST

pull-down assay, the HAT1 coding region was amplified from Col-0 cDNA and various dele-

tion constructs were incorporated into the pETMALc-H vector (MBP, BamHI/SalI) [61]. The

coding regions of SnRK2s were inserted into the binary vector PGEX-6P-1(GST, BamHI/SalI).

All primers are listed in S1 Table. The construct of HAT1-GFP driven by 35S promoter were

transformed into Agrobacterium tumefaciens (strain GV3101), which were used to transform

plants by the floral dip method. Transgenic lines were selected on half-strength MS medium

that contained 50 μg ml-1 kanamycin. Transgene expression was analyzed by western blotting.

GUS staining and transient expression in protoplasts

Rosette leaves of 4-week-old A. thaliana plants grown under short day conditions were used

for the isolation of protoplasts [62]. The relevant vectors 35S:HAT1–GFP, and 35S:GFP were

used for protoplast transformation. A fluorescence microscope was used to observe GFP sig-

nals (Kim et al., 2001; Bae et al., 2008). For GUS staining, the transgenic plants with or without

ABA and osmotic stress treatment were immersed in a staining solution (100 mM sodium-

phosphate buffer, pH 7, 1 mM K4Fe(CN)6, 1 mM K3Fe(CN)6, 0.1% Triton X-100, 2 mM

X-Gluc) overnight at 37˚C in the dark followed by two times washes with 70% ethanol to

remove chlorophyll. Samples were photographed using a stereoscope (Leica) equipped with a

CCD camera. To test for GUS expression before and after ABA and osmotic stress, plants were

treated with 100 μM ABA for 3 h and mannitol treatment for 6 h, respectively.

Phenotype analysis and drought stress treatment

For ABA sensitivity, different genotype seeds were grown vertically on 1/2 MS medium for

3–5 days and then transplanted to normal 1/2 MS medium or 1/2 MS medium containing

10μM ABA. The root growth was observed after about 10 days [63]. For the osmotic stress

treatment, 4-day-old seedlings grown on half-strength MS medium (0.5% agar) were trans-

ferred to new agar plates containing 200 mM mannitol, and the primary root length and

30-seedlings fresh weight were measured after 10 days. The primary root lengths were mea-

sured with ImageJ (National Institutes of Health, Bethesda, MD, USA). Three independent

experiments were performed.

To study the promotion of stomatal closure by ABA, fully expanded young leaves of

4-week-old Arabidopsis plants were harvested and incubated in MES-KCl buffer (50 mM KCl,

10 mM MES-KOH, pH 6.15), at 22˚C and exposed to light for 2 h. Once the stomata were fully

open, leaves were incubated in MES-KCl buffer alone or containing 50 μM ABA. Control

treatments involved the addition of DMSO, an appropriate solvent with ABA. After treatment

for 3h under light conditions, the epidermal strips were immediately peeled carefully from the

abaxial surface of leaves, and stomatal apertures were measured with an optical microscope

(Nikon, Optiphot-2) fitted with a camera lucida and a digitizing table linked to a personal

computer [64]. The stomatal aperture sizes were analysed by the software image J. To avoid

any potential rhythmic effects on stomatal aperture, experiments were always started at the

same time of the day. Blinded stomatal aperture experiments were conducted by another

group in the laboratory who are not aware of any information about the control group (WT)

and test group (mutants and transgenic plants) (S2 Data Blinded experiments). For the ROS
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accumulation assay in guard cells, prepared epidermal peels with or without ABA treatment

were loaded with 50 μM 2,7-dichlorofluorescin diacetate for 10 min (H2DCF-DA; Sigma-

Aldrich) in dark, as described previously [65]. Fluorescence emission of guard cells was ana-

lyzed using image J. Three independent experiments were performed.

To measure leaf water loss, rosette leaves of similar developmental stages from 4-week-old

plants were excised from their roots, placed in open Petri dishes, and kept on the lab bench for

the indicated time, and then their fresh weights were monitored, with three replicates per

time-point [66]. Water loss was expressed as a percentage of weight loss at the indicated time

versus initial fresh weight.

For the progressive drought treatment experiment, 10-day-old plants were transferred from

1/2 MS medium to water-saturated soil and the plants were grown in the same glasshouse with

120 μmol m-2 s-1 under a 16 h: 8 h, light: dark photoperiod (23˚C) for 2 weeks, then the plants

were deprived of water for 14 days and the survival rates of plants were determined 5 d after

re-watering (rehydration) [67]. Relative electrolyte leakage rates were measured as described

by Julieta V. Cabello et al. [68]. Three independent experiments were performed.

The mild drought treatment was conducted as previously described [69,70], with a slight

modification. Briefly, 12-day-old Arabidopsis seedlings of different genotypes grown on 1/2

MS medium were transferred to pots. Before transfer, the relative water content of the pots

was set at 2.2 g water g-1 dry soil. The plants were kept to grow for 10 days. During this growth

period, the water content of the soil was kept constant until 10 days, after which it was lowered

daily to target 0.7 g water g-1 dry soil and mild drought stress treatment began. Control soil

water content (well water) was maintained at a constant value of 2.2 g water g-1 dry soil during

the entire experiment. Fig 3D showed the water loss from the peat pellets during the duration

of the experiment. After mild drought treatment for 9 days, images of each genotype were

taken. To quantify the biomass change of each genotype, the dry weights of detached rosettes

of both the drought-treated and the well-watered control were measured. The reduction in

biomass was calculated using the following equation:

Reduction in Biomass (RB) = (Biomass of Well Watered Control–Biomass of Drought

Treated) / (Biomass of Well Watered Control)

PEG treatment and ABA content determination

Polyethylene glycol (PEG) 6000 was used to mimic drought stress [66]. Arabidopsis seedlings

grown on 1/2 MS medium plates were transferred to 1/2 MS liquid medium (CK) and 1/2MS

liquid medium containing 15% PEG (drought stress treatment) for indicated time, and then

the seedlings were harvested for gene expression analysis or ABA content assay.

For ABA content assay, 0.5g 12-day-old seedlings with or without 15% PEG treatment were

homogenized in 2 mL of 80% methanol, and incubated with additional 3 mL of 80% methanol

overnight at 4˚C. After centrifugation (4000 r/min for 10 min, 4˚C), the supernatant was

passed through a C18-SepPak classic cartridge (Waters, Milford, USA) [71]. ABA content

measurement was performed by using a Plant hormone abscisic acid (ABA) ELISA Kit (BIO-

SAMITE, CK-E90047). Three independent experiments with different biological repeats were

done.

RNA extraction and reverse-transcription PCR

12-day-old seedlings grown under long-day conditions were used for qRT-PCR analysis of

ABA or drought stress-responsive genes. Total RNA extraction, cDNA synthesis and qRT-PCR

were performed as described by Zhang et al. (2010) [72]. Briefly, total RNAs were extracted

using RNAprep pure Plant Kit (from Transgene Biotech Co. Ltd. of Qiagen, Beijing) according
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to the manufactures’ protocols. Total RNAs treated with DNase I (Transgene Biotech Co. Ltd.

of Qiagen, Beijing) were converted into cDNAs using M-MLV Reverse Transcriptase Kit (Invi-

trogen, USA). Real-time qPCR analysis was carried out using the SYBR1 Premix Ex TaqTM

II (TAKARA) on a BIO-RAD CFX ConnectTM Real-Time System, following the manufactur-

er’s instruction. Three independent experiments were performed, and three technical repli-

cates of each experiment were performed. Actin2 genes was used as an internal control for

normalization of transcript levels [73]. All primers used for gene expression analysis are

shown in S1 Table.

Protein interaction assay

For GST pull-down assay, HAT1 and HAT1 fragments fused with MBP were purified with

amylose resin (NEB). SnRK2.3 fused with GST was purified with glutathione beads (Sigma,

G4510). GST pull-down assays were performed as described Yin et al. [74]. The assays were

repeated three times with similar results.

For the BiFC assay, SnRK2s were cloned into the pXY103 vector and fused to the C termi-

nus of YFP, and HAT1 and its fragments were fused into the pXY104 vector and fused to the

N terminus of YFP. The resulting plasmids were introduced into Agrobacterium tumefaciens

(strain GV3101), and then infiltrated into young leaves of Nicotiana benthamiana. Infected

leaves were analyzed 48h after infiltration. YFP fluorescence was observed under a fluores-

cence microscope (Leica).

For the Co-IP assays in the Arabidopsis protoplasts, full-length coding sequences of HAT1

and SnRK2.3 were individually cloned into tagging plasmids behind Flag or Myc tag sequences

in the sense orientation behind the cauliflower mosaic virus 35S promoter. Flag-fused HAT1

and Myc-fused SnRK2s were then transformed into Arabidopsis protoplasts. After overnight

incubation at 23˚C, the protoplasts were lysed, sonicated, and centrifuged. Co-IP assays were

performed using transiently expressed proteins as described previously [75]. Briefly, the pro-

tein extracts were mixed with Myc agarose beads (Sigma-Aldrich) and then incubated at 4˚C

for 2 h. After being was hed at least five times, the agarose beads were recovered and mixed

with the SDS sample buffer. The samples were detected by immunoblotusing anti-Myc anti-

body, and the coimmunoprecipitated protein was then detected using an anti-Flag antibody.

In vitro kinase assay and detection of in vivo HAT1 phosphorylation

The in vitro kinase assay was performed as previously described as Yin et al. [74]. MBP,

MBP-HAT1, and truncated MBP-HAT1 were incubated with GST-SnRK2.3 kinase in 20 μL of

kinase buffer [20 mM Tris (pH 7.5), 100 mM NaCl, and 12 mM MgCl2] and 10 μCi 32P ATP.

After incubation at 37˚C for 60 min, the reactions were stopped by adding 20 μL of 2×sodium

dodecyl sulfate (SDS) buffer and boiling for 5 min. Proteins were resolved by polyacrylamide

gel electrophoresis (PAGE) and phosphorylation was detected by exposing to a phosphor

screen, and signals were obtained by a Typhoon 9410 phosphor imager. The in vivo phosphor-

ylated HAT1 was examined by Phostag reagent (NARD Institute) with or without CIP treat-

ment as described Guan et al [76].

Protein extraction and immunoblot analysis

Total protein was extracted from Arabidopsis using extraction buffer as described previously

[77]. Briefly, plant material was ground in the Eppendorf tube using 2×sodium dodecyl sulfate

(SDS) sample buffer, centrifuged at 13,000g for 10 min, and the supernatant was saved. For

immunoblot analysis, total protein was separated by 10% SDS-polyacrylamide gel electropho-

resis (PAGE) and transferred to PVDF membranes. The membrane was blocked for 1 h in
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TBST buffer (10 mM Tris, pH 7.6, 150 mM NaCl, 1.0% Tween20) with 5% skim milk powder

at room temperature and then incubated with specific primary antibodies in TBST buffer for 1

h. After the membrane washed by TBST buffer for several times, the blot was incubated with

horseradish peroxide-conjugated secondary antibody (goat anti-rabbit IgG, Thermo fisher) at

a dilution of 1/10000 for detection by the enhanced chemilumine scence assay.

The EMSA and ChIP assays

EMSA was performed using an Electrophoretic Mobility-Shift Assay (EMSA) Kit �with SYBR

Green and SYPRO Ruby EMSA stains� (MolcularprobesTM, E33075). The binding reactions

were carried out in 20 μL binding buffer [25 mM HEPES-KOH pH 8.0, 50 mM KCl, 1 mM

dithiothreitol (DTT) and 10% glycerol] with approximately 1 ng probe (10000 cpm) and

recombinant proteins purified from E. coli. After 30 min incubation on ice, the reactions were

resolved by 5% native polyacrylamide gels with 1×TGE buffer (6.6 g L-1Tris, 28.6 g L-1 glycine,

0.78 g L-1EDTA, pH 8.7). The assays were repeated three times with similar results.

ChIP was performed as previously described [78]. Briefly, 14-day-old seedlings of HAT1OX
and SnRK2.3OX/HAT1OX seedlings were treated as above described. 1.5 g of the samples were

cross-linked with formaldehyde and nuclei were isolated using sucrose gradients. Chromatin

was sonicated to generate fragments with the average size of 300 bp and precipitated using

anti-GFP antibody. Immunocomplexes were harvested by protein A beads, washed and

reverse cross-linked by boiling in the presence of Chelex resin (Bio-Rad, http://www.bio-rad.

com/). The level of precipitated DNA fragments was quantified by RT-qPCR using specific

primer sets (S1 Table). Col-0 was the negative control and the values in control plants were set

to 1 after normalization against TA3 for qPCR analysis. Three biological replicates were car-

ried out through the whole process.

Supporting information

S1 Fig. Expression pattern of HAT1 response to ABA and drought stress and subcellular

localizations of HAT1. (A) GUS staining for expression patterns of HAT1. Transgenic plants

expressing HAT1-Promoter::GUS at seedlings (left) and leaves of adult plants (right) were

stained with 5-bromo-4-chloro-3-indolyl β-D-glucuronide (X-Gluc). GUS expression was

examined in cotyledons, roots and guard cells before and after 100 μM abscisic acid (ABA)

treatment for 3 h and mannitol treatment for 6 h. (B) Subcellular localizations of HAT1-GFP.

Protoplasts from wild-type (WT) plants were transformed with 35S:HAT1-GFP or 35S:GFP.

The signals were observed under a fluorescence microscope. GFP, green fluorescent protein.

Cell images were also taken under bright field as a control. Bars, 20 μm.

(TIF)

S2 Fig. Indentification of T-DNA insertion mutants and HAT1OX lines. (A) Reverse tran-

scription-PCR was employed to estimate the transcription levels of HAT1, HAT2 and HAT3 in

T-DNA insertion mutants. (B) HAT1 protein was detected by western blotting with anti-GFP

antibody. Similar HAT1 protein levels in HAT1OX#11 and HAT1#13 line.

(TIF)

S3 Fig. The ABA sensitivity and osmotic tolerance of HAT1 and its homologous genes

T-DNA insertion mutants (hat1, hat2, hat3, hat1hat2, hat1hat3, hat1hat2hat3). (A, B)

Expression patterns of HAT2 and HAT3 in response to ABA and osmotic stress. 12-day-old

Col-0 seedlings were transferred to liquid MS medium containing 100 μM ABA and 200 mM

mannitol and then the plants were harvested at the indicated time. Actin2 was used as the

internal control. Data are shown as mean ± SD of three independent experiments. (C) Growth
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of different genotype seedlings on 1/2 MS medium with/without 10μM ABA or 200 mM man-

nitol. The 4-day-old seedlings were transferred to 1/2 MS or 1/2 MS medium supplemented

10μM ABA or 200 mM mannitol for 10 days, and then the photos were taken. (D-F) Quantifi-

cation of primary root length and biomass in different genotypes after ABA treatment or man-

nitol treatment indicated in (C). The average and SDs were from three replications, asterisks

indicate significant differences compared with Col-0 under the same treatment conditions.

The significant difference was analyzed by Student’s t test (�P< 0.05, ��P< 0.01).

(TIF)

S4 Fig. The role of HAT1 and its homologous genes (HAT2, HAT3) in abscisic acid (ABA)-

induced stomatal closure. (A) Epidermal peels of indicated genotypes were treated with or

without ABA for 2 h after stomatal pre-opening under light for 3h, and the stomatal aperture

was measured by microscope. Scale bars: 10μm. (B) Stomatal apertures of different genotypes

indicated in (A). Bars indicate SD calculated from three replications and at least 20 stomatals

were measured for each genotype per replication. The significance of difference was analyzed

by Student’s t test (��P < 0.01).

(TIF)

S5 Fig. Drought tolerance of Col-0, HAT1OX lines and hat1 mutant plants (hat1,
hat1hat3). (A) Phenotypes of different genotypes in response to progressive drought stress.

4-week-old plants were subjected to drought stress by withholding watering (drought) for 14

days (when the lethal effect was observed in the Col-0), followed by rehydration for 5days. (B)

Membrane stability status of different genotypes subjected to drought stress for 7 days and 14

days. Data is presented as a percentage of electrolyte leakage. Data are shown as mean SD of

three independent experiments. The significance of difference was analyzed by Student’s t test

(�P < 0.05, ��P< 0.01). (C) Percentage of plants that survived the treatment mentioned in

(A). Survival rate was recorded 5 days after rewatering. Bars indicate SD calculated from three

replicated experiments. The significance of difference was analyzed by Student’s t test

(�P < 0.05, ��P< 0.01).

(TIF)

S6 Fig. HAT1 interacts with SnRK2.3 in its N-terminal region. (A) Schematic representation

of a series of truncation mutations of HAT1. HD, homeodomain; LZ, leucine zipper domain.

(B) BiFc assay for the interaction of SnRK2.3 with HAT1 fragments. The truncated HAT1 frag-

ments were fused with n-YFP and co-expressed with SnRK2.3-cYFP, respectively. (C)

SnRK2.3 interacts with N-terminal region of HAT1 in GST pull-down assay. GST,

GST-SnRK2.3 and MBP-tagged different domains of HAT1 were used in this assay. MBP-

tagged domains of HAT1 were detected by western blotting with anti-MBP antibody.

(TIF)

S7 Fig. SnRK2.3 interacts with HAT3 and ABA treatment promotes the degradation of

HAT3. (A) BiFC analysis of SnRK2.3 and HAT3 interactions with fusions to N- and C-termi-

nal fragments of YFP, respectively. The constructs were expressed in tobacco leaves and the

reconstitution of YFP is determined. Scale bars: 50 μm. (B) Time microscope images of Nico-
tianabenthamiana leaf epidermal cells expressing HAT3-GFP exposed to 50 μM ABA. The

experiment was repeated three times with similar results and representative photos were dis-

played. Scale bar: 50 μm.

(TIF)

S8 Fig. The expression level of SnRK2.3 and HAT1 in SnRK2.3OX/HAT1OX double overex-

pressing plants. The expression of HAT1 (A) and SnRK2.3 (B) was tested by qRT-PCR in Col-
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0, HAT1OX#13 and SnRK2.3OX/HAT1OX. Data are shown as mean ± SD and Three indepen-

dent experiments were done (Student’s t-test: �� P<0.01).

(TIF)

S9 Fig. Drought sensitivity of Col-0, HAT1OX lines SnRK2.3OX/HAT1OX plants. (A-C)

Drought phenotypes (A), membrane stability status (B) and survival rates (C) of Col-0,

HAT1OX#13, and SnRK2.3OX/HAT1OX plants subjected to progressive drought stress. In F,

data is presented as a percentage of electrolyte leakage. The average and SDs were from three

biological repeats in A. The significance of difference was analyzed by Student’s t test

(�P < 0.05, ��P< 0.01).

(TIF)

S1 Data. Underlying data for Figs 1A, 1B, 1D, 1F, 2B, 2D, 2F, 2G, 3B, 3D, 3E, 4, 5B, 7D, 7E,

8B, 8C, 8D and 8F.

(XLSX)

S2 Data. Underlying data for S3D, S3E, S3F, S4, S5B, S5C, S8, S9B, S9C, Blinded experi-

ments.

(XLSX)

S1 Table. Primer sequences used in this study.

(DOCX)
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