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Background: AI-driven digital health tools often rely on estimates of disease incidence

or prevalence, but obtaining these estimates is costly and time-consuming. We explored

the use of machine learning models that leverage contextual information about diseases

from unstructured text, to estimate disease incidence.

Methods: We used a class of machine learning models, called language models,

to extract contextual information relating to disease incidence. We evaluated three

different language models: BioBERT, Global Vectors for Word Representation (GloVe),

and the Universal Sentence Encoder (USE), as well as an approach which uses all

jointly. The output of these models is a mathematical representation of the underlying

data, known as “embeddings.” We used these to train neural network models to predict

disease incidence. The neural networks were trained and validated using data from the

Global Burden of Disease study, and tested using independent data sourced from the

epidemiological literature.

Findings: A variety of language models can be used to encode contextual information

of diseases. We found that, on average, BioBERT embeddings were the best for disease

names acrossmultiple tasks. In particular, BioBERTwas the best performingmodel when

predicting specific disease-country pairs, whilst a fusion model combining BioBERT,

GloVe, and USE performed best on average when predicting disease incidence in

unseen countries. We also found that GloVe embeddings performed better than BioBERT

embeddings when applied to country names. However, we also noticed that the models

were limited in view of predicting previously unseen diseases. Further limitations were also

observed with substantial variations across age groups and notably lower performance

for diseases that are highly dependent on location and climate.

Interpretation: We demonstrate that context-aware machine learning models can

be used for estimating disease incidence. This method is quicker to implement than

traditional epidemiological approaches. We therefore suggest it complements existing

modeling efforts, where data is required more rapidly or at larger scale. This may

particularly benefit AI-driven digital health products where the data will undergo further

processing and a validated approximation of the disease incidence is adequate.
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1. INTRODUCTION

Accurate, comprehensive estimations of global health statistics
are crucially important for informing health priorities and
health policy decisions at global, national, and local scales (1).
However, obtaining accurate and informative estimates of disease
incidence and prevalence requires a substantial amount of time,
money and expertise to design rigorous data collection processes,
gather data, and build infrastructure for data collection. This
is particularly challenging in developing countries where health
systems have less capacity. More recently, comprehensive data
on the incidence of different diseases in different settings have
become an important component of AI-driven digital health
products addressing global healthcare needs, which is difficult to
achieve if data availability is limited.

Whilst collecting high quality data remains an important
public health priority, sometimes rapid decision making is
needed. Emerging diseases and medical advances for instance
new drugs or vaccines, are two examples whereby public health
priorities shift rapidly and policy makers cannot wait for the data
for thoroughly evidence-based decisions. Policy decisions are
then made using the best available knowledge, such as data from
similar settings, data with known biases, or local expert opinion.
Machine learning models have also used this information to
impute estimates of disease incidence or prevalence much
more quickly.

A “class” of machine learning techniques called deep neural
networks (more broadly, deep learning algorithms) have recently
seen a tremendous rise in their adoption across various fields (2).
However, they require large “training” datasets to achieve high
predictive performance, limiting their predictive ability when
such data is not readily available. Large amounts of information
about diseases exist online in free text and other unstructured
formats, which has led to an increasing interest in the use
of methods from Natural Language Processing (NLP), called
language models, for healthcare.

Language models are widely used, for example in predictive
text (3) and language translation (4). They estimate a probability
distribution over a set of words (semantics and syntax), to
compute the likelihood of some text occurring, given an
input sequence. In order for language models to process
and understand natural language, free-text words (or whole
sentences) are converted into numeric values; referred to as
word embeddings (or dense representations), which encode
contextual information and meaning. The quality of these
embeddings will be dependent on the underlying mechanics of
the transformation and on the original text, which affects the
utility of the embeddings for downstream tasks. This makes word
embeddings especially useful for healthcare, since pre-trained
embedding models obtained from publicly available biomedical
text and data can be exploited for a variety of tasks.

The effectiveness of language models has been demonstrated
on general language problems, such as question answering
(5) and sentiment analysis (6). In medical contexts, deep
learning approaches have been used for for diagnosis (7), disease
clustering (8) and temporal modeling of electronic health records
(9–13). Word embeddings have been explored for automated
disease cohort selection (14), predicting hospital readmission

from clinical notes (15) and for automated radiology report
annotation (16). However, their use has never been explored in
an epidemiological application for estimating disease incidence.

In this study, we evaluated the utility of using different
pre-learned language models [GloVe (17), BioBERT (18), and
the Universal Sentence Encoder [USE] (19)] to train disease
incidence predictive networks. These languagemodels compute a
vectorized representation of free text inputs. When transforming
disease and country names to embeddings, these will capture the
associated meaning and context, which (combined with age) can
be exploited as a rich feature set for training a neural network for
disease incidence estimation. We compared the performance of
different word embeddings in three different scenarios:

1. Where we have data on the incidence of the disease in other
countries and data on the incidence of other diseases in the
same country, and are simply missing data for a specific
disease-country pairing.

2. Where we have data on the incidence of the disease in other
countries, but no data for the country of interest.

3. Where we have data on the incidence of other diseases in that
same country, but no data on the disease of interest.

2. METHODS

2.1. Ethics Declarations
The analyses shown in this paper used publicly available,
aggregated data and therefore ethical approval was not required.

2.2. Data Sources
2.2.1. Global Burden of Disease Study
The Global Burden of Disease (GBD) study (20), conducted
by the Institute for Health Metrics and Evaluation (IHME),
aims to systematically and scientifically quantify health losses
globally. The GBD dataset captures data from 195 countries
globally, and combines these data to produce accurate age- and
sex-specific estimates of the incidence, prevalence, and rates of
disability and mortality that are caused by over 350 diseases and
injuries. Data are used from many sources, including surveys,
administrative data (including vital registration data, census data,
epidemiological, and/or demographic surveillance data), hospital
data, insurance claims data, disease registries, and other related
sources. As well as data published in the scientific literature,
unpublished data are sourced directly from collaborating
researchers. This dataset was used primarily to develop and
validate the methods used in this paper using cross-validation.

2.2.2. Additional Sources Using Published

Epidemiological Data
In order to investigate the ability of the deep learning
models to generalize, additional data stemming from published
scientific literature and national reports was used as an
independent test set. These data were sourced to inform
disease incidence estimates for Babylon Health’s AI symptom
checker, and are typically data from national statistics, disease
surveillance/registries, and large-scale or population-level cohort
and cross-sectional studies. It includes studies from 25 countries
for 232 diseases.
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2.3. Word Embeddings
There are many methods for learning word embeddings from
text. Words are generally represented as binary, one-hot
encodings which map each word in a vocabulary to a unique
index in a vector. These word encodings can then be used as
inputs to a machine learning model, such as a neural network,
to learn the context of words. The information encoded in these
embeddings is tied to the context that was used to train the
neural network.Word embeddings can discover hidden semantic
relationships between words and can compute complex similarity
measures. If these embeddings were obtained from training
on different data sources, the context encoded would likely
differ. Consequently, better performance in downstream tasks
will be linked to the information content encoded in these dense
representations of words and its relationship with the task itself.

In this paper, we evaluated different types of word
representations, obtained by different modeling strategies,
on the downstream task of predicting disease incidence. This
was performed by using the embeddings as inputs to a neural
network for estimating disease incidence.

2.3.1. Global Vectors for Word Representation
The Global Vectors for Word Representation (GloVe) model
is built on the word2vec method (21), which initially converts
words to numeric values. The GloVe model then learns its
embeddings from a co-occurrence matrix of words, where each
potential combination of words is represented as an entry in the
matrix as the number of times the two words occur together
within a pre-specified context window. This window moves
across the entire corpus. In this work, we used the pre-trained
GloVe model trained on common crawl data (17) from raw web
page data. Some Publicly available information about diseases
and demographics of different countries are present in such data
and therefore, it is expected that such embeddings will facilitate a
prediction in our model.

2.3.2. BioBERT
Bidirectional Encoder Representations from Transformers
(BERT) (22) is a contextualized word representation model
which learns the context for a given word from the words that
precede and follow it in a body of text (22). We used BioBERT,
which is a model initialized with the general BERT model but
pre-trained on large-scale biomedical corpora, such as PubMed
abstracts and PMC full-text articles. This enables the model to
learn the biomedical context of words.

2.3.3. Universal Sentence Encoder
The Universal Sentence Encoder (USE) is a language model
which encodes context-aware representations of English
sentences as fixed-dimension embeddings.

2.3.4. Feature Fusion
In addition to testing each of the language models individually,
we performed feature fusion to combine the three word
embeddings into a single vector by concatenation. The neural
network was then trained on the combined representation.

2.3.5. Sentence Embeddings
We treat the names of diseases and countries as sentences
because they may consist of multiple words. The models USE
and BioBERT are capable of producing embeddings for sentences
and for words. GloVe and other word2vec models are limited to
produce only embeddings for single words. In order to extract
sentence embeddings with those models, we use the bag of words
approach and computed the min, max and average values of all
word embeddings within a bag of words.

2.3.6. Evaluating the Contextual Information of Word

Embeddings
It is important to evaluate the context that each embedding
type captured, prior to using them for training disease incidence
estimation models. For the embeddings to be meaningful, the
word representations for either countries or diseases need to
encapsulate relationships amongst each other. For instance,
country embeddings for France and Spain should display
similarities between each other that cover both geographical and
socioeconomic metrics.

We performed two classification experiments to evaluate
the context captured by the different embeddings. In these
experiments, the input features were word embeddings obtained
from either disease or country names whilst the classification
labels were either GBD disease groups or country clusters (23).
The resulting classification accuracy can serve as a metric to
capture the contextual power of each embedding method when
applied to either diseases or countries.

The first experiment aimed at evaluating whether disease
embeddings capture context and similarities between diseases.
In this experiment, we learned to predict the 17 high-level
GBD disease groups (section A.6) from disease embeddings.
The second experiment was focused on embeddings computed
from countries and whether they can capture both geographical
and economic dimensions. This can be evaluated by considering
the classification of 21 country clusters, such as “High-Income
Asia Pacific” and “Western Europe” from country embeddings
(section A.7).

Linear Support Vector Machines (24) were trained for each
experiment across a candidate set of hyperparameters. Models
were trained and evaluated using 3-fold cross-validation. The
cross-validation experiments were repeated ten times to mitigate
any potential bias in the training and validation split. The best
performing model for each embedding across both experiments
were then used to assess the accuracy.

2.4. Training a Neural Network to Estimate
Disease Incidence
The process for training a neural network to predict disease
incidence rates is illustrated in Figure 1. These input features to
the neural network consist of embeddings of disease, country,
and age group. The neural network outputs a prediction for the
incidence of a specified disease. Prior to training, the values for
disease incidence are pre-processed with a log transformation.
An inverse log transformation must therefore be applied to the
neural network output to obtain the disease incidence rate.
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FIGURE 1 | An illustration of machine learning pipeline we used for estimation of disease incidence. si represents the sentence embeddings of the disease of interest

(e.g., HIV), ci represents the embedding of the country of interest (e.g., UK), ai represents the age group of interest (e.g., 30–34 years), and labeli represents the

ground-truth value (from the GBD study).

2.4.1. Applications of Disease Incidence Prediction
We investigated the three following incidence
estimation applications:

• Application 1—specific disease-country pairs. This task
simulates a scenario where we need to predict incidence rates
for a specific diseases in a selected set of countries. This is
important if data points are missing or are difficult to collect
in the target country. For this application, we have data of the
target disease in other countries, and data of other diseases in
all countries yet data for a specific target disease-country pair
is missing.

• Application 2—previously unseen countries. There may
be cases where there is no high-quality data available in
countries with poor healthcare and data infrastructure. For
these situations, it may be desirable to predict incidence rates
of all diseases. For this application, we simulate the case where
we have no data for any disease in the target country but
comprehensive incidence data for all others.

• Application 3—previously unseen diseases. This represents
a situation where we have a key disease for which incidence
data is difficult to obtain. This application consequently deals
with the prediction of disease incidence rates for a given
disease. In this case, incidence data is available for other
diseases, but there is no data about the new, “unseen” disease
in any country.

2.4.2. Data Inputs

2.4.2.1. Disease embeddings
We generated disease embeddings using each of the methods
described in section 2.3.

2.4.2.2. Country embeddings
We used the GloVe model to create representations of countries.
We observed in our experiments that this model performed best
for that purpose (see sections 2.3.6 and 3.2, Table 1).

2.4.2.3. Age embeddings
The 20 age groups of 5-years periods (0–4, 5–9, . . . , 95+) were
represented as binary one-hot vectors. Representing age groups
in this way means that they are treated as separate categories, so
that non-linear associations between incidence and age can easily
be modeled.

2.4.3. Experimental Set-Up
Wehave used two independent and non-overlapping data sets for
model development and evaluation.

The first data set is the GBD data (section 2.2.1) which was
used for model development and hyper-parameter tuning. This
dataset consists of 199 diseases that are annotated with incidence
values across 195 countries and 20 age groups. We removed
a subset of data points with zero incidence values from the
original GBD study (132,903/626,580 data points, 21%). Zero
incidence can happen either because data is not available or the
actual incidence value is zero for some specific data entries. Since
the distribution of disease incidence values was highly skewed,
we log-transformed the data to base 10. The predictions from
the model were inverse log-transformed to derive estimates of
disease incidence.

We selected the hyperparameters of the model using 10-fold
cross-validation on the GBD data. This avoids over-optimistic
estimates of the model’s performance, which can arise if the
model is trained and tested on the same data. In each fold, we
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TABLE 1 | Classification results for GBD disease groups using disease embeddings and country clusters with country embeddings.

GBD disease groups Country clusters

Model GloVe BioBERT USE GloVe BioBERT USE

Accuracy 0.77 (0.03) 0.77 (0.02) 0.66 (0.02) 0.73 (0.02) 0.17 (0.02) 0.62 (0.03)

Mean (Standard deviation) of cross-validation results are reported. The numbers in bold highlight the best performing models.

train with 90% of the GBD data, and predict on the remaining
10%. We use the following split for each application (see
section 2.4):

For Application 1, each fold contains randomly selected
country-disease pairs, where it is possible that data from the
same disease or country can occur in the training and validation
set but not both. This model is optimized for predicting disease
incidence for country-disease combinations the model has not
seen before, for example HIV in Singapore. In this example, the
training data may contain disease incidence estimates for other
diseases in Singapore, and for HIV in other countries. The model
is therefore able to learn from these combinations of samples and
then to predict the incidence for a different disease-country pair.

For Application 2, we ensured cross-validation was
independent of the country. Within each fold of the data,
the model was trained on data from 90% of countries, and
validated on data from the remaining 10% of countries.

For Application 3, we ensured that cross-validation was
independent of disease, but not country. Within each data fold,
the model was trained on data from 90% of diseases, and
validated on data using the remaining 10% of diseases.

We further used the published epidemiological data as
the independent test set. The best performing model found
and trained on the GBD data was then evaluated on this
secondary dataset.

2.4.4. Implementation Details
We performed a hyperparameter search on the neural networks
for each of the three applications. The final neural network
architecture was selected based on the overall performance across
all applications using 10-fold cross validation. The resulting
neural network has five hidden layers that are stacked in form of
a funnel with 256, 128, 64, 16, and 4 neurons, respectively. Each
layer of the neural network consisted of a fully connected layer,
followed by Batch Normalization (25) and a Rectified Linear
Unit (ReLU). We applied the root mean squared error as a loss
function on the predicted outputs. Lastly, we used the Adam
optimizer (26) with an initial learning rate of 3 × 10−4 and
standard values for the exponential decay of moment estimates.

2.4.5. Evaluation of Model Performance

2.4.5.1. Baseline comparisons
For the dataset sources described in section 2.4.3 (GBD
data and published epidemiological data), we investigated the
performance of neural networks in predicting disease incidence
across applications defined in section 2.4.1. Additionally, we
compared the performance of the neural networks against three
separate baselines:

1. The global average incidence (Global) for the disease
of interest. This is a naïve baseline that all models
should outperform.

2. A ridge regression (RidgeReg) model trained on language
embeddings denoted as RidgeReg. This allows us to gauge
the performance gain obtained from more complex models,
such as neural networks. Note that this baseline uses BioBERT
embeddings for diseases and GloVe embeddings for countries
as inputs.

3. Neural network models where the input features are one-
hot encoded vectors (OneHot) for countries and diseases,
respectively. We considered a model with only disease labels
(OneHotd), only country labels (OneHotc), and one that
uses both disease and country one-hot vectors (OneHotd,c).
This allows us to assess the gain obtained by using
language embeddings.

2.4.5.2. Metrics for evaluating performance
We used the mean absolute error (MAE) in log10 space to
evaluate the performance of the disease incidence estimation.
For example, a prediction with MAE of 0.2 is either 1.58 times
larger or lower than the “ground truth” value. The factor of
1.58 is computed by inverse transformation (100.2 = 1.58). To
measure the similarity of relative rankings of the estimates (in
our case, between our predictions and disease incidence values
in the GBD study), we calculated the inter-group concordance ρc
ranking whose values are bounded between 0 (worst) and 1 (best)
(detailed definition can be found in section A.1 in theAppendix).

3. RESULTS

We first evaluated the contextual information of the country
and disease embeddings to justify their use in all following
experiments (section 3.1). We then evaluated the performance
of each language embedding on the three possible applications
(section 3.2) and report results for both the GBD (section
2.2.1) cross-validation results and the independent test set
(section 2.2.2). We also conducted additional experiments (see
Appendix) including: (1) estimating the accuracy of the BioBERT
feature model on the GBD data across different age groups
(section A.2), (2) estimating the accuracy of the BioBERT feature
model on the GBD data across various types of diseases (section
A.3) and (3) demonstrating an illustrative scenario where we
predicted UK disease incidence for previously unseen diseases
(section A.4).

3.1. Contextual Information of Disease and
Country Embeddings
Results for the classification experiments for GBD disease groups
using disease embeddings and country clusters using country
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TABLE 2 | Application 2 model performance with different input features for previously unseen diseases on the GBD and the test data.

Data

Model Global RidgeReg OneHotd OneHotc OneHotd,c BioBERT GloVe USE Fusion

Training and Validation (from the GBD study)

MAE N/A 1.03 N/A 0.805 N/A 0.781 0.807 0.765 0.736

ρc N/A 0.726 N/A 0.790 N/A 0.796 0.775 0.826 0.806

Test (from the epidemiological literature)

MAE N/A 1.02 N/A N/A N/A 0.933 0.989 1.01 2.43

ρc N/A 0.982 N/A N/A N/A 0.967 0.971 0.962 0.931

The numbers in bold highlight the best performing models.

TABLE 3 | Application 1 model performance with different input features for specific disease-country pairs on the GBD and the test data.

Data

Model Global RidgeReg OneHotd OneHotc OneHotd,c BioBERT GloVe USE Fusion

Training and Validation (from the GBD study)

MAE 0.207 0.559 0.166 0.155 0.152 0.157 0.157 0.168 0.157

ρc 0.952 0.867 0.987 0.988 0.990 0.990 0.988 0.985 0.988

Test (from the epidemiological literature)

MAE N/A 1.13 N/A N/A N/A 0.835 0.910 1.06 3.78

ρc N/A 0.97 N/A N/A N/A 0.977 0.970 0.960 0.938

The numbers in bold highlight the best performing models.

TABLE 4 | Application 3 model performance with different input features for previously unseen countries on the GBD and the test data.

Data

Model Global RidgeReg OneHotd OneHotc OneHotd,c BioBERT GloVe USE Fusion

Training and Validation (from the GBD study)

MAE 0.212 0.562 0.204 N/A N/A 0.197 0.198 0.209 0.196

ρc 0.965 0.866 0.953 N/A N/A 0.954 0.955 0.953 0.955

Test (from the epidemiological literature)

MAE N/A 1.12 N/A N/A N/A 0.881 0.921 1.07 0.937

ρc N/A 0.976 N/A N/A N/A 0.972 0.977 0.970 0.978

The numbers in bold highlight the best performing models.

embeddings are shown in Table 1. We report the mean and
standard-deviation from 10-repeated 3-fold cross validation
experiments. The results indicate that GloVe and use country
embeddings capture meaningful relationships between countries
whilst BioBERT country embeddings are ineffective as they
were trained on large-scale biomedical corpora. In contrast, all
language models are able to effectively capture disease semantics
with BioBERT and GloVe performing best and equitably.

3.2. Effect of Language Embedding on
Disease Incidence Estimation
Results for the performance across various embeddings are
reported for the GBD data and independent test data in
Tables 2–4. Models that exploited BioBERT embeddings on
average saw the best performance with consistently lower MAE
and high concordance scores. However, models that employ
GloVe and USE embeddings can also perform well, such as in

the previously unseen countries application (Table 4) where the
Fusion model performed best on average.

Whilst most embedding methods produced accurate
incidence estimates in the GBD dataset, it is apparent that
BioBERT, followed by GloVe embeddings, produced the best
results generally in the independent test set when compared to
USE. For instance, BioBERT and GloVe had an MAE of 0.157
and 0.157 with concordance of 0.990 and 0.988, respectively
compared to an MAE of 0.168 and a concordance of 0.985
for USE in the specific disease-country pairs application
(Table 3). This illustrates that these embeddings contain
informative, contextual information. This is validated in the
one-hot model, which used one-hot encoded representations
and suffered in performance as seen in the previously unseen
diseases (Table 3) and previously unseen countries (Table 4).
Note that models with one-hot features are only applicable
when the target disease or country is present in the training
and test data. For this reason, they do not apply to the test
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set because the diseases in the training and test data do
not overlap.

We evaluated the utility of BioBERT embeddings by
comparing the performance of the neural network method
(BioBERT) with a ridge regression that used BioBERT features
(RidgeReg). The neural network method saw consistently better
results compared to the ridge regression across all applications
for the GBD dataset.

The performance of most neural network models was
consistently high in the specific disease-country pairs application
(Table 3) and previously unseen countries (Table 4). However,
there was a marked decrease in the validation metrics within the
previously unseen diseases application (Table 3). For instance,
the MAE of BioBERT rose from 0.157 (Table 2) and 0.197
(Table 4) to 0.781 whilst the concordance of GloVe for instance
dropped from 0.955 (Table 3) and 0.988 (Table 4) to 0.775.

3.3. Performance Across Different
Magnitudes of Incidence
We examined the performance of the network trained with
feature fusion across diseases with different magnitudes of
incidence rate. We compared the distribution of errors with
the baseline model that predicted incidence rates using a global
average estimate (Figure 2). Note that in these plots the Y-axis
shows the MAE in log space and X-axis shows the predicted
exponent of the incidence value. The incidence is normalized
for a population of 100,000 people. The true incidence can be
computed as follows: I = 10x/100,000.

For the previously unseen countries application (Figure 2),
we observed a decrease in the error magnitude at higher
incidence rates across the baseline and the trained network. This
illustrates that both predictive models saw higher accuracy for
common diseases whilst exhibiting a reduction in performance
for rare diseases. However, this effect is more pronounced in the
baseline model.

In the previously unseen diseases application using neural
networks with feature fusion, we analyzed the error distribution
in the GBD validation set and the independent test set with
data originating from peer-reviewed literature (Figure 3). For
this application, the residual distribution is much wider and
the accuracy is lower for both the GBD validation set and test
set. Importantly, we did not validate the global average baseline
method in this application since a global average prediction can
not be made if we deal with new diseases.

4. DISCUSSION

In this study, we tested the ability of different language models
to encode contextual information, and used the corresponding
embeddings as inputs to a neural network which was used to
predict disease incidence. We found that on average, models
using BioBERT embeddings performed best across all metrics.
We observed high performance when predicting for previously
unseen countries and specific disease-country pairs, which was
consistent across age groups (for more details, see section A.2).
Performance for previously unseen diseases was lower, varied
substantially with age, and performance was notably lower for

FIGURE 2 | Residual plots for (A) naive baseline and (B) NN predictions with

feature fusion for previously unseen countries on the GBD dataset. Red lines

indicate the standard deviation. This is also the logarithm of the error. It is

positive (negative) if the ML model overestimates (underestimates) the true

value. The plots show that the errors for diseases with a higher incidence rate

are lower.

diseases which are highly dependent on location and climate.
Overall, predictions were more accurate for common diseases
than rare diseases (see section A.3).

BioBERT was on average, the best-performing language
model for creating disease embeddings across all three
applications: predicting disease incidence for previously
unseen diseases, previously unseen countries, and specific
disease-country pairs. The word embeddings for BioBERT
are trained with text from medical journals and other clinical
literature; this model should therefore have the most relevant
context for interpreting words, which should be reflected in
better disease incidence estimates from the neural network
using these embeddings. Interestingly for previously unseen
diseases and specific disease-country pairs, using feature fusion
to combine information from the three language models
resulted in substantially higher MAE than using BioBERT
or other language models individually when we tested our
models on external data from published epidemiological
literature. This suggests that using BioBERT alone results
in sufficient contextual information, and further feature
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FIGURE 3 | Residual plots for previously unseen diseases on data from (A)

GBD and (B) peer-reviewed journals. Red lines indicate the standard deviation.

augmentation from other sources only adds redundant or
correlated data.

When comparing our predictions for the GBD data, we
observed that performance for previously unseen diseases was
significantly lower than for previously unseen countries and
specific disease-country pairs. The purely data-driven neural
network is able to predict disease incidence better for previously
unseen countries and specific disease-country pairs because it
already has data for the incidence of the disease it is trying
to predict, and can draw sufficient context from the country
embeddings to make a prediction for a new country. However, it
is difficult to fully encapsulate how a previously unseen disease
is similar to other diseases within a word embedding, and so
the model’s predictive ability is more limited for previously
unseen diseases. This reflects our general state of knowledge;
we can make good inferences for disease incidence in countries
where data is lacking, based on our knowledge of the country’s
socioeconomic situation, location, and healthcare provision,
but struggle to predict the incidence of an unknown disease,
regardless of how much data we have on other diseases in the
same country. This is because the incidence of a disease is
not only influenced by country-level factors but also by many
biological, immunological, and sociodemographic factors.

We also observed discrepancies in the MAE of the predictions
across the GBD study and the published epidemiological study
(independent test set) yet generally equitable performance in
the concordance index for disease-country pairs (Table 2) and
previously unseen countries (Table 4) applications. Whilst this
may suggest that the trained models have trouble generalizing,
this is in fact a symptom of the inability of machine learning
models to adapt to data that differs from the training data
statistics. Both datasets are independent and contain certain non-
overlapping sets of examples. As the test set contains new unseen
examples, we face a scenario where incidence values need to be
predicted for out of distribution examples. Additionally, it is
a valid to assume that both datasets are drawn from different
distributions as the mechanisms for generating the data differ.
This is a case of distribution shift, which can negatively affect
performance (27). In effect, both out of distribution examples
and distribution shift are likely to negatively impact metrics,
such as the MAE, which measures the average magnitude of
the error. Despite this disparity, we observed equitable levels
of performance when considering the inter-group concordance
index (except for the application for the previously unseen
diseases). This demonstrates that the ranking of the predictions
is maintained despite the systematic errors introduced by the
new dataset; further supporting the utility of language models
and neural networks in the challenging problem of predicting
disease incidence.

Deep learning methods for predicting disease incidence,
which use contextual embeddings learnt from unstructured
information, have the potential to give better estimates of disease
incidence than are currently available for settings where high
quality data is lacking. In resource poor settings, where healthcare
infrastructure is weak and expressed through the lack of doctors,
nurses and hospitals, it is unlikely that there is access to reliable
data that facilitates estimating disease incidence (28). In these
circumstances, the deployment of automated methods, such as
the those presented in this paper, show the potential to benefit
such populations (29).

Studies, such as the GBD, which rigorously model disease
statistics using information from multiple data sources, are
limited by the time lag of data becoming available, and in their
ability to incorporate new conditions due to the substantial effort
involved in reviewing data and building new models. Whilst
the method we propose in this paper may be less rigorous,
it is substantially quicker to implement for new diseases and
can be easily updated to incorporate up-to-date contextual
information for existing diseases. We therefore suggest it as a
useful complement to existing modeling efforts, where data is
required more rapidly or at larger scale than traditional methods
allow for. This could be particularly useful for use in AI-driven
digital health products, where the data will undergo further
processing and a clinician-validated approximation of the disease
incidence is adequate.

5. CONCLUSION

In this work, we developed a machine learning method
based on deep learning and transfer learning. We used
embeddings, which had been trained by their creators using
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large amounts of unstructured and freely accessible text data, to
train the target neural network for incidence estimation using
epidemiological data from the GBD study.. We investigated three
popular different language model architectures and text corpora
(BioBERT, USE, GloVE) in addition to numerous baselines. We
have shown that the BioBERT language model performs well at
encoding contextual information relating to disease incidence.
The resulting embeddings can be used as inputs to a neural
network to successfully predict disease incidence for previously
unseen countries and specific disease-country pairs, but is more
limited in predicting for previously unseen diseases. Whilst
this method is not a replacement for robust epidemiological
modeling, we suggest that it could be a useful alternative when
faced with situations where approximate estimates are needed
rapidly on a large-scale.
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