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ABSTRACT

Prediction of cancer-specific drug responses as well
as identification of the corresponding drug-sensitive
genes and pathways remains a major biological and
clinical challenge. Deep learning models hold im-
mense promise for better drug response predic-
tions, but most of them cannot provide biological
and clinical interpretability. Visible neural network
(VNN) models have emerged to solve the problem
by giving neurons biological meanings and directly
casting biological networks into the models. How-
ever, the biological networks used in VNNs are often
redundant and contain components that are irrele-
vant to the downstream predictions. Therefore, the
VNNs using these redundant biological networks are
overparameterized, which significantly limits VNNs’
predictive and explanatory power. To overcome the
problem, we treat the edges and nodes in biolog-
ical networks used in VNNs as features and de-
velop a sparse learning framework ParsVNN to learn
parsimony VNNs with only edges and nodes that
contribute the most to the prediction task. We ap-
plied ParsVNN to build cancer-specific VNN mod-
els to predict drug response for five different can-
cer types. We demonstrated that the parsimony
VNNs built by ParsVNN are superior to other state-
of-the-art methods in terms of prediction perfor-
mance and identification of cancer driver genes.
Furthermore, we found that the pathways selected
by ParsVNN have great potential to predict clinical

outcomes as well as recommend synergistic drug
combinations.

INTRODUCTION

For decades of cancer study, one of the most striking find-
ings has been the extreme genetic heterogeneity among can-
cer patients (1–4). The heterogeneity of tumor cells poses a
fundamental challenge for predicting the clinical response
to therapeutic agents (5–9). To address this problem, there
has been great interest recently to apply deep learning to
model the complexity of cancer mutations on various can-
cer types (10–13). Despite the improved performance, deep
learning in cancer still faces a critical challenge that they are
still ‘black box’ models and are fundamentally more diffi-
cult to interpret than classical statistical models (14–16).
Although they are accurate, they provide no meaningful in-
sights about how their decisions are made. Such models,
while undoubtedly useful, are insufficient in cancer studies
for which clinicians need to understand the mechanisms un-
derlying the predictions.

To address this problem, a new type of interpretable deep
learning model emerged that coupled the neural network
architecture with the hierarchical structure of a cell. Ma
et al. (17) first proposed a visible neural network (VNN),
named Dcell, to accurately predict the impact of genetic mu-
tations on cellular growth response by directly mapping the
neurons of a deep neural network into a large hierarchy of
known and putative molecular components and pathways.
It has been demonstrated that the VNN model could gain
better interpretability than the conventional deep learning
model by assigning biological meanings to the neurons and
edges in the neural networks. This seminal research has
spurred the development of other VNN models that cast
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different types of biological networks into the architecture
of deep learning models. For instance, Wang et al. (18) em-
bedded the structure of the gene regulatory network derived
from multi-omics data into a large multilevel deep learning
model. The resulting model was adopted to impute inter-
mediate phenotypes and provide forward predictions from
genotypes to traits. DrugCell (19) was developed by com-
bining a VNN model with a fully connected neural network
model to simulate the response of cancer cells to therapeu-
tic chemical compounds by guiding the neural network ar-
chitecture with the hierarchical structure of a tumor cell.
Very recently, another VNN model named P-NET (20) was
designed to predict treatment resistance in prostate cancer
patients using a biologically informed architecture that in-
tegrated mutation, copy number, methylation and gene ex-
pression information.

However, a major drawback of the VNN models is that
the biological hierarchies used in VNN models might have
redundant nodes and edges that are irrelevant to the down-
stream prediction tasks, which significantly limits the VNN
models’ explanatory power. These uninformative nodes and
edges also contribute to the ‘curse of dimensionality’ and
overfitting associated with highly nonlinear models like
deep neural networks. Specifically, in order to incorporate
rich prior information, the VNN model typically utilizes a
general biological hierarchy that is agnostic to the down-
stream prediction tasks, which implies that some functional
components in the biological hierarchy might not involve in
the biological process related to the prediction task. How-
ever, the conventional learning algorithm used by the VNN
model cannot distinguish these redundant functional com-
ponents and therefore enforces them to make contributions.
Such a phenomenon would lead the VNN model to gen-
erate misleading interpretations since even uninformative
network components still contribute to the prediction task.
Postprocessing procedures have been proposed to alleviate
the problem by ranking functional components by their nu-
merical contributions to the prediction accuracy (17,19,20).
However, they cannot fundamentally resolve the problem
because functional components that do not make biological
contributions might make great numerical contributions.
Furthermore, the redundant functional components result
in overparameterized neural network architectures and thus
require a lot of training data to avoid overfitting.

To address the above problems in VNNs, here we intro-
duce ParsVNN, a method to prune redundant components
in the VNN model to make its biological hierarchy simple
and specific to the prediction task. ParsVNN starts from a
VNN model with a general biological hierarchy and uses
the training data of a specific prediction task to guide the
pruning procedure. As a result, redundant components in
the general biological hierarchy used in the VNN model that
are less important to the prediction task will be pruned and
the VNN model will become a parsimonious model with
greater explanatory predictive power. ParsVNN addresses
important challenges in building biologically interpretable
deep learning models. It can be used to elucidate the inter-
pretability of deep learning models that utilize biological
networks in their architectures.

We applied ParsVNN to build cancer-specific VNN mod-
els to help us better understand the biological mechanisms

for five different cancers: stomach, breast, pancreatic, kid-
ney and liver cancers. We use ParsVNN to prune the Drug-
Cell model whose architecture mirrors the Gene Ontology
(GO) hierarchy (21,22) of a human cell using the cancer-
specific training samples collected from the Cancer Ther-
apeutics Response Portal (CTRP) v2 and the Genomics
of Drug Sensitivity in Cancer (GDSC) database (23,24).
To validate the predictive power of models generated by
ParsVNN, we evaluate their prediction performance on the
test samples. We compared ParsVNN with several state-of-
the-art methods and found that the models generated by
ParsVNN have extremely simple architectures compared to
the original DrugCell (19), and surprisingly, most of them
achieve significantly better test accuracy. In addition, we
examined the explanatory power of the models generated
by ParsVNN. We found that the genes remaining in these
ParsVNN models consist of more cancer driver genes (25),
co-occurrence genes and mutually exclusive genes than the
competing methods. Furthermore, we discovered that the
functional modules in biological hierarchies recognized by
ParsVNN can help predict clinical outcomes for different
cancers. Finally, we demonstrated that we can analyze the
subsystems identified by ParsVNN to suggest synergistic
drug combinations.

MATERIALS AND METHODS

ParsVNN overview

The main idea of ParsVNN is to use cancer-specific drug
response data to prune the redundant components in the
biological hierarchy used in a VNN model. The resulting bi-
ological network in the pruned model will be simple and im-
portant for explaining drug response in cancers. To accom-
plish this, ParsVNN requires three components: (i) a VNN
model with the general biological hierarchy to begin with
(Figure 1A); (ii) the cancer-specific drug response samples
to guide the pruning process (Figure 1B); and (iii) an algo-
rithmic technique guaranteeing convergence of the pruning
procedure. Below we provide a basic explanation of these
three components. The details of the method and its math-
ematical underpinning are described in this section.

As shown in Figure 1A, the VNN model uses a biological
hierarchy as its architecture. Because the biological hierar-
chy is agnostic to the cancer type we aim to model, some
of the nodes and edges in it might be redundant and ir-
relevant to the underlying mechanism. The drug response
training samples for a specific cancer (Figure 1B) can help to
guide ParsVNN to prune those redundant components. Af-
ter applying ParsVNN, a parsimony VNN model will be ob-
tained (Figure 1C.1). Then, we can further analyze the par-
simony architecture to interpret the predictive power of the
obtained model in Figure 1C.1. Specifically, we can identify
the essential genes for the drug response (Figure 1C.2) and
important pathways that lead to different patient survival
rates (Figure 1C.3). Furthermore, by analyzing the parsi-
mony architecture in Figure 1C.4, new drug combinations
with synergistic effective would be suggested.

Overall, as shown in Figure 1, starting from a VNN
model ParsVNN treats each edge weight as a feature of
the VNN model and performs sparse learning to simul-
taneously enhance prediction accuracy as well as select
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Figure 1. The overview of ParsVNN. (A) A VNN model using a specific biological network as its architecture. (B) Cancer-specific drug response data to
guide the pruning in ParsVNN. (C.1) The resulting parsimony VNN model after applying ParsVNN. (C.2) Genes identified by ParsVNN are enriched in
cancer driver genes, co-occurrence genes and mutually exclusive genes. (C.3) Mutation of the GO terms remaining in panel (C.1) leads to different patient
survival. (C.4) New drug combinations could be suggested by panel (C.1).

important features/edges, the latter removing redundant
features/edges and allowing better interpretability for the
downstream analysis (Figure 1C.1–C.4). Computationally,
ParsVNN is formulated as a sparse learning problem, where
�0 norm regularization is used to prune edges between genes
and subsystems, while group lasso regularization is applied
to remove edges between subsystems. The novel combina-
tion of �0 norm regularization and group lasso regulariza-
tion makes the corresponding training objective noncon-
vex and NP-hard. We addressed this computational chal-
lenge by using a new cutting-edge technique known as prox-
imal alternative linearized minimization (PALM) (26) as de-
scribed in this section. The source code of ParsVNN is avail-
able at https://github.com/EJIUB/ParsVNN.

Visible neural network model

A visible neural network (VNN) model is a transparent
deep learning model that aims to characterize the relation-
ship between gene-level measurements and the correspond-
ing phenotypic response in a cell. The architecture of the
VNN model mirrors the hierarchical organization of molec-
ular subsystems in a cell. Specifically, as shown in Figure 2,
the VNN model consists of artificial neurons that represent
genes (black color in Figure 2) and artificial neurons that
represent molecular subsystems (pink color in Figure 2).
As illustrated in Figure 2, we call the neurons that rep-
resent genes the ‘gene-neurons’ and the neurons that rep-
resent molecular subsystems the ‘subsystem-neurons’, re-
spectively. We further use V I = {

vI
1, . . . , v

I
p

}
to annotate all

‘gene-neurons’ and use VS = {
vS

1 , . . . , vS
q

}
to annotate all

‘subsystem-neurons’. Notably, as illustrated in Figure 2,
each ‘gene-neuron’ is a single artificial neuron, but each
‘subsystem-neuron’ is a group of neurons. The use of mul-

tiple neurons to represent a subsystem acknowledges that
molecular subsystems are often multifunctional, with states
that are too complex to be described by a single neuron (19).

The wiring between ‘gene-neurons’ V I and ‘subsystem-
neurons’ VS and connectivity between ‘subsystem-neurons’
VS are provided by biological prior knowledge. Specifically,
if we know the gene annotation for each molecular sub-
system, we can connect ‘gene-neurons’ to the correspond-
ing ‘subsystem-neurons’. The black edges in Figure 2 rep-
resent such connectivity. Similarly, if we know the hierar-
chical organization of molecular subsystems, we are able to
link ‘subsystem-neurons’. The pink edges in Figure 2 rep-
resent interactions between ‘subsystem-neurons’. Let EI be
the edge set including all edges between ‘gene-neurons’ V I

and ‘subsystem-neurons’ VS and ES be the edge set contain-
ing all interactions between ‘subsystem-neurons’ VS. We
further define WI

e , e ∈ EI, as the weight of the edge e in
EI and define WS

t , t ∈ ES, as the weight matrix associated
with the edge t in ES.

Given n training samples {(xi, yi); i = 1, . . . , n}, where
xi ∈ R

p is the ith input vector for the VNN model and its
element Xi

j , j ∈ {1, . . . , p}, is the measurement from gene
j, and yi is the corresponding phenotypic output, the VNN
model can be trained by solving the following empirical risk
minimization:

min
WI,WS

: L(WI, WS) := 1
n

∑
i

L
(
yi , f (WI, WS; xi )

)
, (1)

where WI = {WI
e , e ∈ EI} and WS = {WS

t , t ∈ ES}. L is the
loss function and f(WI, WS; xi) yields the predicted phe-
notypic response ŷi for input xi. We can use the off-the-
shelf conventional optimization methods to minimize the
loss function and learn the model parameters in WI and WS.

https://github.com/EJIUB/ParsVNN
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Figure 2. The overview of ParsVNN. (A) Biological knowledge is encoded in networks. (B) A VNN model embeds the networks in its architecture. (C)
ParsVNN prunes the VNN model by removing less important edges for a specific prediction task. The resulting network is essential for the prediction task.
(D) We can further analyze the components in the resulting network to study how they related to the prediction task.

Learning a parsimony VNN model

We hypothesize that ‘gene-neurons’ and ‘subsystem-
neurons’ do not contribute equally to the predictive power
of the VNN model. There must be a small portion of ‘gene-
neurons’ and ‘subsystem-neurons’ that are crucial to the
VNN model. Therefore, we propose to learn a parsimony
VNN model that only retains the key ‘gene-neurons’ and
‘subsystem-neurons’ as shown in Figure 2. Furthermore,
because the ‘input neurons’ and ‘subsystem neurons’ all
have specific biological meanings, the remaining ‘gene-
neurons’ and ‘subsystem-neurons’ can help us to better
interpret the VNN model.

We propose to learn the VNN model with parsimonious
structures by pruning less important weights in WI and WS

in the VNN model. The pruning of the VNN model can be
achieved by solving the following optimization problem:

min
WI,WS

: L(WI, WS) + �λ(WI) + �η(WS). (2)

Comparing to Equation (1), we add two sparse-inducing
penalty terms �λ(WI) and �η(WS) to remove less impor-
tant edges in EI and ES, respectively. Specifically, �λ(WI) is
defined as

�λ(WI) = λ
∑
e∈EI

‖WI
e ‖0, (3)

where λ is the regularization parameter. For each edge e ∈
EI, ‖WI

e ‖0 is 1 when WI
e �= 0 and 0 otherwise. Minimizing

Equation (3) tends to zero out the weight of the edge e ∈
EI, which results in removing the edge between the corre-
sponding ‘gene-neuron’ and ‘subsystem-neuron’. In other
words, the penalty term in Equation (3) could help refine the
gene annotation of each molecular subsystem as illustrated
in Figure 2. We note that using �1 norm is also able to prune
less important edges in the VNN model. We choose to use
�0 norm because �0 norm has been proved to have better
empirical performance on selecting sparse features (27,28).
The other sparse-inducing penalty term �η(WS) is defined
as follows:

�η(WS) = η
∑
t∈ES

‖WS
t ‖g, (4)

where η is the regularization parameter that controls the

strength of the penalty term. ‖WS
t ‖g =

√∑
i j WS

t (i, j )2

[WS
t (i, j ) is the element in WS

t ] is the group lasso term that
is applied to the groups of weights associated with the con-
nection t ∈ ES between ‘subsystem-neurons’. Minimizing
Equation (4) tends to zero out all weights in WS

t resulting
in the removal of the connection t ∈ ES. Such removal can
be interpreted as the interaction between the corresponding
molecular subsystems is less important for the learning task
in Equation (1).

The ParsVNN algorithm

The optimization problem in Equation (2) is challenging to
solve. Both the sparse-inducing penalty terms are not dif-
ferentiable; therefore, convectional optimization techniques
for regular deep learning models cannot be applied. We em-
ploy proximal alternative linearized minimization (PALM)
algorithm (29) to solve the proposed formulation in Equa-
tion (2). PALM is designed to solve a general optimization
problem formulated as

min
WI,WS

: F(WI, WS) + �I(WI) + �S(WS), (5)

where F(WI, WS) is a smooth function and �I(WI) and
�S(WS) do not need to be convex or smooth but are only re-
quired to be lower semi-continuous. The PALM algorithm
applies the proximal forward–backward algorithm (29) to
optimize both WI and WS in an alternative manner. Specif-
ically, at iteration k, the proximal forward–backward map-
pings of �I(WI) and �S(WS) for given (WI)k and (WS)k are
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the solutions of the following subproblems, respectively:

(WI)k+1 ∈ min
WI

:
{

ck

2

∥∥WI − Uk
∥∥2

F + �I(WI)
}

, (6a)

(WS)k+1 ∈ min
WS

:
{

dk

2

∥∥WS − Vk
∥∥2

F + �S(WS)
}

, (6b)

where Uk = (WI)k − (1/ck)∇WI F
(
(WI)k, (WS)k

)
and Vk =

(WS)k − (1/dk)∇WS F
(
(WI)k+1, (WS)k

)
. ck and dk are pos-

itive real numbers and ∇WI F
(
(WI)k, (WS)k

)
is the deriva-

tive of F(WI, (WS)k) with respect to WI at point (WI)k

for fixed (WS)k and ∇WS F
(
(WI)k+1, (WS)k

)
is the deriva-

tive of F((WI)k+1, WS) with respect to WS at point (WS)k

for fixed (WI)k+1. It has been proven that the sequence
{((WI)k, (WS)k)}k∈N generated by PALM converges to a crit-
ical point (29).

Casting our proposed optimization problem (2) into
the PALM framework (5) introduced above, we have
F(WI, WS) := L(WI, WS), �I(WI) := �λ(WI) and �S(WS)
:= �η(WS). It is easy to verify that F(WI, WS), �I(WI) and
�S(WS) satisfy the requirements of the PALM algorithm.
Hence, we can apply the PALM algorithm to our problem
as long as we can efficiently solve the proximal forward–
backward mappings for our specific �I(WI) and �S(WS).

Putting �I(WI) := �λ(WI) and �S(WS) := �η(WS) into
Equations (6a) and (6b), we have the specific subproblem
for our formation (2):

(WI)k+1 ∈ min
WI

:

{
ck

2

∥∥WI − Uk
∥∥2

F + λ
∑
e∈EI

‖WI
e ‖0

}
, (7a)

(WS)k+1 ∈ min
WS

:

{
dk

2

∥∥WS − Vk
∥∥2

F + η
∑
t∈ES

‖WS
t ‖g

}
.(7b)

Both subproblems (7a) and (7b) have closed-form solutions
as follows:

(WI
e )k+1 ∈ T√

2λ

ck
(Uk

e ), ∀e ∈ EI, (8a)

(WS
t )k+1 ∈ max

(
‖Vk

e ‖ − 2η

dk
, 0

)
Vk

e

‖Vk
e ‖ , t ∈ ES. (8b)

T c(·) is the hard-thresholding operator (29). We skip the
derivations of (8a) and (8b) because similar derivations can
be found in (30).

We now have all the ingredients for our ParsVNN algo-
rithm. Hence, we describe the VNN Prune algorithm in Al-
gorithm 1. The operations from line 3 to line 6 compute the
solution for subproblem (7a), where line 4 and line 5 esti-
mate the Lipschitz constant of ∇WIL(WI, ·). Similarly, the
operations from line 7 to line 10 compute the solution for
subproblem (7b), where line 8 and line 9 estimate the Lips-
chitz constant of ∇WSL(·, WS).

Build cancer-specific ParsVNN models

We applied the ParsVNN algorithm to prune the DrugCell
model to predict drug responses for specific cancer types.

Table 1. Details of the cancer-specific data

Cancer type
No. of

samples
No. of cell

types
No. of
drugs

STAD 17 964 42 684
BRCA 24 928 57 684
PAAD 22 101 42 684
KICH/KIRC/KIRP 13 463 38 684
LIHC 12 550 26 684

Data. In order to build cancer-specific ParsVNN models,
we collected cancer-specific data from the CTRP v2 and
the GDSC database (23,24). We have collected data for five
specific cancer types, which are stomach adenocarcinoma
(STAD), breast invasive carcinoma (BRCA), pancreatic
adenocarcinoma (PAAD), kidney chromophobe/kidney re-
nal clear cell carcinoma/kidney renal papillary cell carci-
noma (KICH/KIRC/KIRP) and liver hepatocellular car-
cinoma (LIHC). Table 1 provides an overview of each can-
cer dataset. For example, STAD-specific data include 17 964
cell line–drug pairs covering 42 stomach cancer cell lines
and 684 drugs.

The DrugCell model. DrugCell is a VNN model that is
built on the GO hierarchy and has been successfully applied
to predict drug response and synergy (19). The architec-
ture of DrugCell is shown in Figure 3A and has two main
branches. The first branch is a conventional artificial neu-
ral network (ANN) that takes the Morgan fingerprint of a
drug, a canonical vector representation of chemical struc-
ture (31), as the input. This branch intends to embed the
chemical structure of drugs. The second branch is a VNN
model, whose architecture is provided by the GO hierarchy
of a cell. The GO hierarchy consists of 3008 GO terms (sub-
systems in Figure 1) and 2086 genes. There are 3176 inter-
actions between GO terms, which represent the functional
organization of the GO terms. There are 19 744 connections
between GO terms and specific genes, which represent the
gene annotation of each GO term (21,22). The VNN branch
takes cancer cell-line genotype, which is represented by a bi-
nary vector registering the mutational status (1 = mutated,
0 = nonmutated) of each gene as input. The VNN branch
aims to embed the genotype of different cancer cell lines.
Overall, DrugCell integrates the embeddings of drug struc-
tures and genotypes and associates them with correspond-
ing drug responses.

The ParsVNN model. The original architecture of a
ParsVNN model is exactly the same as the DrugCell model
as shown in Figure 3A, which has an ANN branch for drug
embedding and a VNN branch for genotype embedding.
We then apply the ParsVNN algorithm to train and prune
the original ParsVNN model using cancer-specific training
data. We train and prune edges in the VNN branch. For the
ANN branch, we train the edge weights without pruning.
After training, we obtained the cancer-specific ParsVNN
model, where the VNN branch would have a cancer-specific
architecture as shown in Figure 3A.

The competing models. We compared our cancer-specific
ParsVNN models with models built by other methods. We
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Figure 3. The architectures of five cancer-specific ParsVNN models and their performance on test samples. (A) The architecture of DrugCell. The result-
ing architectures of ParsVNN models for STAD, BRCA, PAAD, KICH/KIRC/KIPR and LIHC cancer types after applying ParsVNN to the original
DrugCell model using cancer-specific training samples. (B) Memory comparison of DrugCell and the pruned models. (C) Prediction time comparison of
DrugCell and the pruned models. Prediction time is the average forward passing time of the deep learning models for 10 000 inputs over 10 times. (C) Per-
formance comparison between ParsVNN and other competing methods on drug response prediction for five different cancer types. RF stands for random
forest. We use the Pearson’s correlation between the predicted drug responses and the observed drug responses as the evaluation criterion. The asterisks
(***) indicate the P-value <0.0001.

first compared with the original DrugCell models that are
trained on cancer-specific samples. We also compared with
ParsVNN (random) models, where the biological meanings
of each neuron are randomly assigned. We compared with
the models generated from the elastic net (ElasticNet), a
state-of-the-art sparse learning technique that could also
yield parsimony models and has been used in many pre-
vious approaches to drug response prediction (19,32–34).
Last but not least, we compared with the random forest
(RF) model. For the ElasticNet and RF models, we build
the input feature set by stacking the Morgan fingerprint of
drugs and the genotypes of cells. All competing models take
the same input data. The difference among them is the way
they extract features.

Training and evaluation. We use 80% of the cancer-specific
samples for training and 20% samples for testing for each
competing model. The hyperparameters for each competing

model are selected by 5-fold cross-validation on the training
samples. We compared the competing models in terms of
the prediction accuracy, which is estimated by Pearson’s cor-
relation between predicted drug response and the observed
area under the curve values provided in (31).

The final models. The final cancer-specific models are built
by using the entire cancer-specific samples and the selected
hyperparameters.

RESULTS

Cancer-specific ParsVNN models have parsimonious archi-
tectures and improved performance

Following the ‘Build cancer-specific ParsVNN models’ sec-
tion, we built five cancer-specific ParsVNN models and
benchmarked them with other cancer-specific competing
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models. First, we observed that the learned cancer-specific
ParsVNN models are very compact as shown in Figure 3A.
For example, the STAD-specific ParsVNN model has only
29 GO terms and 494 genes left, which indicates around
98% GO terms and 83% genes have been removed from
the original DrugCell model. Similarly, all the remaining
cancer-specific ParsVNN models have very few GO terms
and genes left. Because the cancer-specific ParsVNN mod-
els are extremely compact, as shown in Figure 3B and C,
the memory consumption of each model and the forward
passing prediction time have been dramatically reduced.

We further found out that the obtained cancer-specific
ParsVNN models although compact have better prediction
performance. Specifically, we compared the performance
of the cancer-specific ParsVNN models with other mod-
els (19,35) in terms of test accuracy. The test accuracy is
measured by Pearson’s correlation between the predicted
drug responses and the ground truth drug responses. As il-
lustrated in Figure 3D, the cancer-specific ParsVNN mod-
els achieve higher Pearson’s correlation on all five cancer-
specific datasets, except that DrugCell is slightly better
than the ParsVNN model on the STAD dataset. We fur-
ther tested whether the correlation achieved by ParsVNN
is statistically better than others (36). It turns out that
the correlation achieved by ParsVNN is significantly larger
than the competing algorithms with P-values <0.0001 for
BRCA, PAAD, KICH/KIRC/KIRP and LIHC cancer
types (36). DrugCell achieves a slightly larger correlation
than ParsVNN on STAD cancer type, but the difference is
not significantly larger with a P-value of 0.68 (36), which in-
dicates ParsVNN and DrugCell have similar test accuracy
for STAD cancer data. The performance comparison indi-
cates that the ParsVNN is able to prune redundant architec-
tures of VNN models into compact ones and thus reduces
the generalization error of the models.

Remarkably, the architectures in these five cancer-specific
ParsVNN models (Figure 3A) are quite different, which
confirms that drug responses are cancer type specific. In the
following sections, we scrutinize these parsimonious archi-
tectures to see whether they can provide the biological in-
sights to explain cancer-specific drug responses.

ParsVNN identifies cancer driver genes

To demonstrate ParsVNN models have better explanatory
power, we studied the genes that remained in the parsimo-
nious architectures of the ParsVNN models. It has been
shown that cancer driver genes are the key factor to influ-
ence cancer-specific drug response (37). Therefore, we mea-
sure the overlap between the genes in the ParsVNN models
and the cancer-specific driver genes reported by IntOGen
pipeline (25). As illustrate in Figure 4A, the Venn diagrams
show the overlap between genes identified by ParsVNN and
ElasticNet and the cancer driver genes reported by IntO-
Gen pipeline (25) for five different cancer types. Clearly,
ParsVNN selected more cancer driver genes than Elastic-
Net. We further computed the odds ratios, 95% confidence
intervals and P-values (H0: the odds ratio is ≤1) for the gene
lists identified by both methods. As shown in Figure 4B,
the gene lists identified by ParsVNN for STAD, BRCA and
PAAD attain higher odds ratios than ElasticNet and the

gene lists identified by ElasticNet achieve higher odds ra-
tios than ParsVNN. However, the gene lists identified by
ParsVNN achieve narrower confidence intervals across all
five cancer types, which suggests that we have more sta-
tistically precise odds ratios obtained by ParsVNN. Fur-
thermore, the gene lists identified by ParsVNN also achieve
lower P-values across all five cancer types, which indicates
that ParsVNN provides stronger evidence to reject the null
hypothesis (the odds ratio is ≤1). Furthermore, we stud-
ied the number of co-occurrence and mutually exclusive
gene pairs within the selected gene set found by ParsVNN
and ElasticNet. Co-occurrence and mutually exclusive are
important mutational patterns that can help characterize
specific cancers. For example, we use cBioPortal (38,39) to
identify 75 224 and 360 co-occurrence and mutually exclu-
sive gene pairs within the 494 genes found by ParsVNN
for STAD cancer. However, there are only 578 and 2 co-
occurrence and mutually exclusive gene pairs within the 45
genes found by ElasticNet. We have the same observation
for the rest of the cancer types as shown in Figure 4C and
D. Clearly, the genes selected by ParsVNN have richer mu-
tational information than genes found by ElasticNet. The
detailed numbers can be found in Supplementary Data.

These results indicate that ParsVNN has better ex-
planatory power than ElasticNet, which is a state-of-the-
art sparse learning technique used in many previous ap-
proaches to drug response prediction (19,32–34).

Cancer-specific subsystems identified by ParsVNN predict
clinical outcomes

To illustrate that the subsystems identified by ParsVNN
also have explanatory power, we explored the relationships
between subsystems in ParsVNN models and clinical out-
comes of cancer patients. We screened the leaf GO terms of
each cancer-specific GO hierarchy and study the influence
of the mutation of each leaf GO term with respect to cancer
survival.

We first examined 15 leaf GO terms for GO hierarchy in
the STAD-specific ParsVNN model. The cBioPortal’s sur-
vival analysis tool and all STAD samples (40–45) are used to
analyze each leaf GO term. Specifically, for each GO term,
we split all STAD samples into two groups, where one group
contains the samples that do not have any genes mutated in
the GO term and the other group includes all samples that
have at least one gene mutated in the GO term. We found
that the mutations of 4 GO terms out of 15 lead to sig-
nificantly different survival rates (P-value <0.01). The de-
tails of these four GO terms are listed in Figure 5F and the
genes annotated in those GO terms can be found in Supple-
mentary Figure S1. For example, we scrutinize GO:0016235
shown in Figure 5A. We found that most of the genes in the
term are co-occurrence genes. Surprisingly, as illustrated in
Figure 5A, patients with the mutation of the GO term have
better survival rates compared to those without the muta-
tion, which indicates that the mutation of the GO term is
beneficial.

We investigated the six leaf GO terms in the GO hier-
archy identified by BRCA-specific ParsVNN model. For
each GO term, we did survival analysis on samples with the
term mutated and samples with the term unmutated using
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Figure 4. Comparison between genes selected by ParsVNN and ElasticNet. (A) Comparison of agreement with cancer driver genes using Venn diagrams.
(B) Comparison of odds ratios, 95% confidence intervals and P-values (H0: the odds ratio is ≤1). OR stands for odds ratio and CI stands for confidence
interval. (C) Comparison of the number of co-occurrence gene pairs in the selected gene sets of both methods. (D) Comparison of the number of mutually
exclusive gene pairs in the selected gene sets of both methods.

Figure 5. Examples of the GO terms identified by ParsVNN for the five cancer-specific models. (A) GO:0016236 is a GO term in the STAD-specific
ParsVNN model. We study how the mutation of GO:001623 influences the survival in patients. (B) GO:0097421 is a GO term in the BRCA-specific
ParsVNN model. We study how the mutation of GO:0097421 influences the survival in patients. (C) GO:0022011 is a GO term in the PAAD-specific
ParsVNN model. We study how the mutation of GO:0022011 influences the survival in patients. (D) GO:0032228 is a GO term in the KICH/KIRC/KIRP-
specific ParsVNN model. We study how the mutation of GO:0032228 influences the survival in patients. (E) GO:0043967 is a GO term in the LIHC-
specific ParsVNN model. We study how the mutation of GO:0043967 influences the survival in patients. (F) All GO terms in the ParsVNN models lead to
significantly different survival in patients (adjusted P-value <0.05) for five cancers.
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BRCA samples (45–48). We found that all six leaf GO terms
showing the mutation of the GO terms would lead to sig-
nificantly different survival times (P-value <0.01). The de-
tails of these six GO terms are shown in Figure 5F and the
genes annotated in those GO terms can be found in Supple-
mentary Figure S2. In addition, in Figure 5B, we show the
genes in GO:0037421 term and the corresponding survival
analysis. The survival analysis shows that the mutation of
GO:0037421 would lead to poor survival in patients.

Similarly, we analyzed the 12 leaf GO terms in the GO hi-
erarchy identified by PAAD-specific ParsVNN model. For
each GO term, we did survival analysis on samples with
the term mutated and samples with the term unmutated
using PAAD samples (45,49–56). There are 10 out of 12
leaf GO terms showing that the mutation of the GO terms
would lead to significantly different survival times (P-value
<0.01). The details of these 10 GO terms are shown in Fig-
ure 5F and the genes annotated in those GO terms can be
found in Supplementary Figure S3. We further illustrated
the genes in GO:0022011 and the co-occurrence pattern
between these genes in Figure 5C. We also show the sur-
vival analysis (Figure 5C) with respect to this GO term.
The survival analysis demonstrates that the mutation of
GO:0022011 would lead to poor survival in patients.

In the KICH/KIRC/KIPC-specific ParsVNN model,
there are 24 leaf GO terms in the corresponding GO hi-
erarchy. We discovered that the mutation of 10 out of 24
GO terms would lead to significantly different survival
times in patients. The details of these nine GO terms are
listed in Figure 5F and the genes annotated in those GO
terms can be found in Supplementary Figure S4. We il-
lustrated the genes in GO:0022011 and the co-occurrence
pattern between these genes in Figure 5D. We also show
the survival analysis (Figure 5D) with respect to this GO
term (45,57–65). The survival analysis shows that the muta-
tion of GO:0032228 would lead to poor survival in patients.

In the LIHC-specific ParsVNN model, there are 18 leaf
GO terms in the corresponding GO hierarchy. We discov-
ered that the mutation of 10 out of 18 GO terms would lead
to significantly different survival times in patients. The de-
tails of these eight GO terms are listed in Figure 5F and the
genes annotated in those GO terms can be found in Sup-
plementary Figure S5. In Figure 5E, we listed the genes in
GO:0043967 and the co-occurrence pattern between these
genes and the survival analysis with respect to this GO
term (45,66–71). The survival analysis shows that the muta-
tion of GO:0043967 would benefit the survival of patients.

ParsVNN models suggest synergistic drug combination op-
portunities

In this section, we investigated whether we can use the
subsystems identified by ParsVNN to find synergistic drug
combination opportunities. Suggested by the parallel path-
way inhibition theory of drug synergy (72), two drugs will
be synergistic if they inhibit different pathways that reg-
ulate the same essential function. Therefore, we look for
drugs that target genes in different subsystems in the BRCA
ParsVNN model as shown in Figure 6A. We found that dex-
amethasone targets NR3C1 in subsystem 2, MK-2206 tar-
gets AKT1 in subsystem 1, and doxorubicin and etoposide

target TOPA2 in subsystem 11. These drugs suggest three
different drug combinations as shown in Figure 6B. We fur-
ther explored the DrugCombDB to check the drug synergy
of these three different drug combinations. We listed four
drug synergy scores: ZIP, BLISS, LOEWE and HSA. For
these four scores, positive scores imply drug synergy and
negative scores imply drug antagonism. We showed the av-
erage synergy scores in DrugCombDB in Figure 6C. We
found that Comb1 has a synergistic effect on the KPL1
breast cancer cell line because all four synergy scores are
positive. Similarly, Comb2 has a synergistic effect on T-47D
and OCUBM breast cancer cell lines. Comb3 has a syner-
gistic effect on KPL1, MDAMB436 and OCUBM breast
cancer cell lines. This analysis indicates that we can analyze
the subsystems identified by ParsVNN to find synergistic
drug combinations.

ParsVNN models for other cancer types also suggest
novel drug combinations, which await experimental valida-
tion. We provide those novel drug combinations in Supple-
mentary File TS1.

DISCUSSION

Deep learning models have raised unprecedented atten-
tion in the field of bioinformatics and computational bi-
ology, due to their outperformance of traditional models
extracting inherently valuable information from biological
networks. VNN models have been developed (17,19,20) to
overcome the issue in modern ANNs that densely entangled
layers are not based on human interpretable relationships
such as known biological interactions. VNNs achieve this
by explicitly utilizing a biological network as its architec-
ture and assigning both artificial neurons and the edges be-
tween neurons specific biological meanings. However, VNN
models are agnostic to the biological context and have lim-
ited abilities to grasp the most important, relevant and con-
cise architecture in regard to a particular condition of inter-
est, by including nodes and edges that are irrelevant to the
downstream prediction tasks. Specifically, the training algo-
rithm used by VNN models cannot distinguish those irrele-
vant nodes and edges. After training, those irrelevant edges
always have nonzero weights indicating that they are mak-
ing contributions to the VNN models. For example, Drug-
Cell uses GO hierarchy as its architecture to predict drug
responses. The GO hierarchy is very general and encodes
all possible prior knowledge, but it might contain irrelevant
GO terms when we want to build a DrugCell model that
only predicts drug responses for a specific cancer type. If
we cannot distinguish the essential GO terms from those
irrelevant ones, a misleading interpretation could be gen-
erated. The training data provide specific information on
the prediction task; therefore, it is important to be able to
utilize the training data, along with the task-agnostic VNN
model, for the construction of task-specific VNN models.
To address this need, we introduced here a VNN learning
algorithm––ParsVNN. The unique property of ParsVNN
is that starting from a task-agnostic VNN model, it uti-
lizes training data to remove redundant nodes and edges
in the task-agnostic VNN model. We demonstrated that
ParsVNN outperforms the original VNN models and other
state-of-the-art methods to build task-specific VNN models
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Figure 6. Drug combinations suggested by subsystems identified by ParsVNN. (A) Functional organization of subsystems in BRCA-specific ParsVNN
model. (B) Genes in subsystems 1, 2 and 11 and the corresponding drugs targeting those genes. Three drug combinations are suggested by parallel pathway
inhibition theory. (C) The average drug synergy scores of the three drug combinations on four different breast cancer cell lines extracted from Drug-
CombDB (73). Comb1 is synergistic on KPL1. Comb2 is synergistic on T-47D and OCUBM. Comb3 is synergistic on KPL1, MDAMB436 and OCUBM.

in terms of test accuracy and interpretability (Figures 2 and
3).

We build interpretable ParsVNN models for five dif-
ferent cancer types and showed that the much simpler
ParsVNN models contain many more cancer driver genes,
co-occurrence genes and mutually exclusive genes than the
competing methods (Figure 4). In addition, we discovered
that most of the subsystems identified by ParsVNN have a
significant impact on patient survival (Figure 5). Further-
more, we illustrated that we can analyze the subsystems
identified by ParsVNN to find potential drug combinations
with synergistic effects. All these aspects mentioned above
demonstrated that ParsVNN models reveal insights specific
to the learning task and are interpretable to bioinformati-
cians and clinicians alike.

Overall, our results show that ParsVNN is a very power-
ful method for building parsimonious VNN models that are
predictive and explanatory. The explainability of our mod-
els solves one of the oldest and most challenging problems
facing the biological application of deep learning. Further-
more, ParsVNN can be applied to all deep learning models
that utilize biological networks in their architectures repre-
senting a broadly applicable advance in computational biol-
ogy. ParsVNN can also be extended to answer a set of ques-
tions that puzzle many clinicians, biologists and researchers.
One such question is how to identify unknown GO subsys-

tems, regulatory links or pathways that are not annotated
in the literature or ontologies but are very informative for
specific tasks. This newly discovered ontology information
could be used to guide novel studies of these previously un-
known mechanisms. One of our future works will be to im-
plement a ParsVNN variant to discover interactions and
links not found in the given ontology knowledge database
to better guide sensible experiments and inform more pre-
cise decisions.
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