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Correlation between levels 
of airborne endotoxin and heavy 
metals in subway environments 
in South Korea
Sungho Hwang1, So‑Yeon Kim2, Sangjun Choi3, Sangwon Lee1 & Dong‑Uk Park4*

This study aimed to evaluate the exposure levels and variation in airborne endotoxin and heavy 
metals such as aluminum, chromium (Cr), iron (Fe), manganese (Mn), nickel (Ni), zinc, and lead (Pb) in 
the three different South Korean subway environments (driver room, station office, and underground 
tunnel) and identify subway characteristics influencing endotoxin and heavy metals levels. Air samples 
were collected and analyzed using the kinetic Limulus Amebocyte Lysate assay and inductively coupled 
plasma mass spectrometers. The geometric mean was determined for endotoxin levels (0.693 EU/
m3). It was also found that Fe (5.070 µg/m3) had the highest levels in subway environments while 
Pb (0.008 µg/m3) had the lowest levels. Endotoxin levels were higher in the underground tunnel and 
lower in the station office; the total heavy metal levels showed the same pattern with endotoxin 
levels. Endotoxins and total heavy metal levels were higher in the morning than at night. Positive 
correlations were found between endotoxin and Cr, Fe, Mn, and Ni levels. Given the correlation 
between airborne endotoxins and heavy metals, further studies with larger sample sizes are needed to 
identify the correlation between levels of airborne endotoxin and heavy metals.

Subway systems have been developed in many metropolises around the world. In South Korea, they have been 
considered as the most-used public transportation service due to its high capacity and reduced traffic congestion. 
Subway lines have been expanding continuously in South Korea since their inception in 1974. Most lines were 
built underground and has several advantages, such as saving energy, saving ground space, and efficient transit1.

The Indoor Air Quality Control Act was first established in 1996 in South Korea as the Underground Living 
Space Air Quality Control Act2. Since 2005, only particulate matter (PM)10 in subway stations is required to be 
monitored once a year and mandatorily reported to the Korea Ministry of Environment (KMOE)3. Even though 
monitoring systems for indoor air quality have been established and operated in underground subway stations, 
people are still concerned about the type and amount of air pollutants that are present in the underground 
environments.

Despite its significant advantages, underground subway systems have continued to have problems regarding 
the air quality. In particular, exposure to PMs in the underground subway systems have an adverse effect on 
people’s health since they are in an enclosed space with restricted ventilation4,5. Epidemiological studies have 
reported that inhalable particles can seriously damage humans’ lung function and significantly increase the 
risk of lung cancer. Furthermore, long-term exposure to PMs can lead to pulmonary injury6,7. Among airborne 
PMs, endotoxin, a biological agent with the pathogenicity of Gram-negative bacteria, has been implicated in the 
development of Gram-negative shock. Endotoxin can cause decline in lung function, respiratory inflammation, 
and respiratory symptoms. Additionally, a meta-analysis reported the respiratory health effects of being exposed 
to low levels of airborne endotoxin8.

Many people use the subway—including pollutant-sensitive groups such as children, medical patients, elderly 
people, and pregnant women—and are, therefore, exposed to the air in subway environments. People who 
regularly work in the subway systems are exposed to the air there for much longer periods than those who do 
not work in the subway systems. However, no comprehensive studies have been conducted to assess variation 
in airborne endotoxin and heavy metals in an underground subway environment such as the driver room of 
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the subway train, the station office, and the underground tunnel since these areas are not commonly accessible 
unless subway officials are willing to cooperate and permit people to enter. The association between the levels of 
endotoxin and heavy metals in subway environments have never been reported, which may likely be associated 
with the health of commuters and people who are working in subway environments.

Current studies have mainly focused on qualitative rather than quantitative evaluation of PM pollution to 
help improve indoor air quality9,10. Thus, to the best of our knowledge, this is the first study which aimed to 
assess the variation in airborne endotoxin and heavy metals in underground subway environments in South 
Korea such as the driver room, the station office, and the underground tunnel. Furthermore, this study aimed 
to identify subway environment characteristics and the association between the levels of endotoxin and heavy 
metals such as aluminum (Al), chromium (Cr), iron (Fe), manganese (Mn), nickel (Ni), zinc (Zn), and lead (Pb).

Materials and methods
General information about subway environments.  A subway system in mega cities such as Seoul and 
the nearby Seoul area is one of the most important commuting infrastructures due to the number of passengers 
using a subway station from particular subway line. The general information on subway systems in metropolitan 
cities in South Korea is shown in Fig. 1 and Table 1. This information includes the subway line’s length, the year 
when the subway lines opened, and the number of stations by line. A total of 293 stations, with 270 underground 
and 23 above ground stations from eight lines, are currently operating nationwide. Three sampling sites—the 
driver room, station office, and underground tunnel—were chosen, with the cooperation of the subway officials. 
Drivers operate a specific subway line and are in charge of opening and closing doors through the driving room. 
The station office is where station management is conducted and administrative work is carried out. Under-
ground tunnels are cleaned by technical workers who handle periodic maintenance of facilities in the tunnels. 
While working in tunnels, diesel engine vehicles and equipment are generally used for repairs and cleaning every 
day when the trains are not being operated. Several types of diesel engine vehicles are widely used for repair, 
maintenance, and cleaning of tunnels and other subway facilities after subway operation hours.

Sampling of endotoxin and heavy metals.  We collected samples from the three sampling sites—the 
driver room, station office, and underground—tunnel between April and September 2018. The samples were 
taken at a height of 100–150 cm above the three sampling sites.

Endotoxins were collected onto glass fiber filters (37 mm diameter; SKC Inc., USA) and heavy metals (Al, Cr, 
Fe, Mn, Ni, Zn, and Pb) were collected onto mixed cellulose ester membrane filters (37 mm diameter; 0.8 μm 

Figure 1.   Location of subway lines 1, 2, 3, 4, 5, 7, and 9, and Incheon line 1 in Seoul and Incheon, South Korea.
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pore size). The samples were preloaded into a three-piece clear plastic cassette using an air sampler (17G9 GilAir 
Sampler, Sensidyne, Inc., USA) at a flowrate of 2.0 L/min (± 5%) for an average of 4 h. Precautions were taken 
to avoid breathing on, touching, or otherwise exposing the sampling containers to human contamination while 
sampling airborne endotoxins and heavy metals, including the use of gloves while connecting or disconnecting 
the cassette and the pump11. After sampling, a protective covering (cap) was placed on the cassette’s inlet and 
outlet and the entire cassette was wrapped in its original packing and sealed with tape.

Analysis of endotoxin and heavy metals.  Endotoxin samples were stored at 4 ± 2 °C, sent to an analyti-
cal laboratory within a week of sampling with no contamination immediately upon arrival, and analyzed using 
kinetic-turbidimetric Limulus Amebocyte Lysate (LAL) assay (Associations of Cape Cod, Inc., USA). Detection 
and quantification of endotoxin levels were conducted using kinetic-turbidimetric LAL assay. An extraction 
volume of 15 mL of pyrogen-free water was added to a test tube, which was then capped and sonicated at a 
minimum peak frequency of 48 kHz for 1 h11. Thereafter, samples were centrifuged at 1000g for 15 min and the 
supernatant was transferred to a pyrogen-free test tube. An amount of 100 µL of each sample was distributed into 
a pyrogen-free 96-well micro-plate and incubated at 37 °C for 10 min in an automated micro-plate reader (Bio 
TekELx808, Bio Tek Instruments, USA)11. The Escherichia coli O55: B5 control standard endotoxin (Lonza, USA) 
was utilized to draw a standard curve ranging from 0.005 to 50 endotoxin unit/mL. Positive product control 
recoveries within 50–200% and coefficients of variation less than 10% were considered valid11. The endotoxin 
levels were expressed as endotoxin units per cubic meter of air (EU/m3). The assay limit of detection (LOD) was 
0.01 EU/mL extract.

Heavy metal samples were stored at 4 ± 2 °C, sent to an analytical laboratory within a week of sampling with 
no contamination immediately upon arrival, and analyzed by the National Institute for Occupational Health 
and Safety 730012. Pre-treatment was performed using a microwave (MARS 6, CEM, USA). The MCE filter 
was inserted into the microwave vessel and 3 mL of nitric acid (HNO3) was injected. The temperature of the 
sample was slowly raised to 200 °C for 15 min, and was kept inside for another 15 min. Pressure was set to 800 
psi and power to 900–1050 W. Analysis of heavy metals was performed using inductively coupled plasma mass 
spectrometers (ICP/MS, NexION 350D, Perkin Elmer, USA). The quantities were determined by diluting each 
substance step by step to form a calibration curve which was drawn from the standard solution. The LOD was 
calculated by dipping a low concentration standard solution about seven times, referring to the standard method, 
and applying a value triple the standard deviation. Values below the LOD were assigned a value of LOD/

√

2
13.

Statistical analyses.  Statistical analyses were conducted using SAS software, version 9.4 (SAS Institute, 
Inc., USA). A nonparametric analysis was performed since the endotoxin and heavy metal levels were not dis-
tributed normally or log-normally according to a Shapiro–Wilk test. Kruskal–Wallis tests were performed to 
determine the differences between the endotoxin, heavy metals (Al, Cr, Fe, Mn, Ni, Zn, Pb) levels and between 
three different sampling sites driver room, station office and underground tunnel. Mann–Whitney tests were 
also carried out to determine the significant difference between morning and night. In addition, Spearman’s 
correlation analyses were employed to examine the associations between the endotoxin and heavy metal levels.

Ethics approval.  No approval from research ethics committees was required to conduct this study.

Results
Endotoxin levels ranged from 0.134 to 7.439 EU/m3 with a geometric mean (GM) of 0.693 EU/m3, Fe levels 
ranged from 0.317 to 722.384 µg/m3 with a GM of 5.070 µg/m3, which was the highest levels out of other heavy 
metal levels. Pb levels ranged from 0.001 to 0.284 µg/m3 with a GM of 0.008 µg/m3, which was the lowest levels 
out of others (Table 2). Al levels ranged from 0.104 to 18.315 µg/m3 with a GM of 0.506 µg/m3, Cr levels ranged 
from 0.048 to 2.491 µg/m3 with a GM of 0.048 µg/m3, Mn levels ranged from 0.005 to 7.992 µg/m3 with a GM of 
0.072 µg/m3, Ni levels ranged from not detected (ND) to 0.997 µg/m3 with a GM of 0.032 µg/m3, and Zn levels 
ranged from 0.013 to 4.286 µg/m3 with a GM of 0.085 µg/m3.

Table 1.   General information on the subway line system in major metropolitan cities Seoul and Incheon.

Subway line Length of lines (km) Opening year of lines

Number of subway stations by line

Underground Above ground Total

1 7.8 1974 10 0 10

2 48.8 1980 37 7 44

3 38.2 1985 30 4 34

4 31.1 1985 20 6 26

5 45.2 1995 51 0 51

7 57.1 1996 49 2 51

9 40.8 2009 37 1 38

Incheon 1 30.3 1999 36 3 39

Total 270 23 293
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Airborne endotoxin and heavy metal levels were monitored in the subway driver room, station office, and 
underground tunnel (Table 3). Among the three different sites, endotoxin levels were highest in the underground 
tunnel with 1.437 EU/m3 (GM), and lowest in the station office with 0.392 EU/m3 (GM). The total heavy metal 
levels showed the same pattern with endotoxin levels. Although there was no significant difference (p > 0.05) 
between the three sampling points for endotoxin, the levels of the seven heavy metals were significantly different 
between the three places (p < 0.05).

To evaluate time variations among these pollutants, we grouped endotoxin and total heavy metal levels by 
time: morning (7:30–11:00 a.m.) and night (5:00–10:20 p.m.) (Fig. 2). Endotoxin and total heavy metal levels 
were higher in the morning than at night (p > 0.05). Correlation analysis between endotoxin levels and heavy 
metals showed a positive association between endotoxins and Cr (r = 0.479), Fe (r = 0.441), Mn (r = 0.441), and 
Ni (r = 0.441) (Table 4).

Table 2.   Overall levels of airborne endotoxin (unit: EU/m3) and heavy metals (Al, Cr, Fe, Mn, Ni, Zn, and Pb) 
(unit: µg/m3) in subway environments. a Limit of detection.

Materials No. of samples GM (GSD) Min Median Max

Endotoxin 49 0.693 (4.3) 0.134 0.567 7.439

Al 44 0.506 (16.1) 0.104 0.440 18.315

Cr 45 0.324 (1.7) 0.048 0.262 2.491

Fe 47 5.070 (–) 0.317 4.335 722.384

Mn 47 0.072 (3.2) 0.005 0.061 7.992

Ni 47 0.032 (1.2) <LODa 0.028 0.997

Zn 42 0.085 (2.0) 0.013 0.062 4.286

Pb 44 0.008 (1.1) 0.001 0.006 0.284

Table 3.   Levels of airborne endotoxin (unit: EU/m3) and heavy metals (Al, Cr, Fe, Mn, Ni, Zn, and Pb) (unit: 
µg/m3) in different indoor places in subway environments. *p < 0.05. a Number of samples. b Limit of detection.

Materials Na

Driver room

Na

Station office

Na

Underground tunnel p 
valueGM (GSD) Min Max GM (GSD) Min Max GM (GSD) Min Max

Endotoxin 16 0.9219 (5.6) 0.250 7.439 22 0.392 (1.5) 0.134 1.993 11 1.437 (6.1) 0.275 6.053 0.392

Al 16 0.856 (1.9) 0.232 2.177 22 0.292 (1.6) 0.104 1.689 6 0.930 (7.5) 0.144 18.315 0.014*

Cr 16 0.414 (1.2) 0.181 0.946 22 0.173 (1.1) 0.048 0.267 7 1.318 (2.0) 0.744 2.491 0.015*

Fe 16 11.360 (2.2) 4.335 53.427 22 1.853 (4.6) 0.317 5.112 9 14.003 (9.9) 1.656 722.384 0.013*

Mn 16 0.131 (1.3) 0.042 0.873 22 0.036 (1.1) 0.005 0.300 9 0.137 (13.5) 0.017 7.992 0.013*

Ni 16 0.054 (1.0) 0.030 0.092 22 0.018 (1.0) 0.010 0.028 9 0.046 (1.4) <LODb 0.997 0.009*

Zn 16 0.079 (1.1) 0.022 0.419 22 0.066 (1.3) 0.013 0.892 4 0.448 (7.4) 0.063 4.286 0.017*

Pb 16 0.010 (1.1) 0.003 0.036 22 0.004 (1.0) 0.001 0.040 6 0.047 (1.1) 0.001 0.284 0.010*

Figure 2.   Morning and night variations in the levels of (a) endotoxin (p > 0.05), (b) total heavy metals (p > 0.05).
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Discussion
This study assessed the variations among airborne endotoxin and heavy metals, namely, Al, Cr, Fe, Mn, Ni, Cd, 
and Pb levels in the driver room, station office, and underground tunnel of subway stations in South Korea.

To evaluate the level of the seven heavy metals, they were compared to levels of heavy metals in a previous 
study conducted in Seoul, South Korea14. The results showed that the mean Fe level was the highest of the heavy 
metals in PM, followed by Zn, Ni, Mn, Cr, respectively14. The Fe level was consistent with that in our study, which 
showed that the Fe level was the highest among the heavy metals in the PM in all subway station platforms. The 
hexavalent Cr(VI) form of metal appears to be drastically toxic and carcinogenic; thus, it has been classified 
as carcinogenic to humans by the IARC​15. The carcinogenicity of the metal targets mainly the lungs and nasal 
cavity16.

The differences between the PM levels are thought to be caused by different regional backgrounds, such as 
emitting sources, meteorological factors (temperature and RH), and local sources17. In particular, generalizing 
factors that may influence airborne endotoxin and heavy metal levels measured under subway systems are not 
easy to specify because of the subway’s characteristics, surrounding environments, and other factors including 
the type of subway, location, age of subway, and number of subway users18.

Airborne endotoxin levels were lowest in the station office, which ranged from 0.134 to 1.993 EU/m3 (Table 3). 
We found that these levels are still higher compared to that found in houses, which ranged from 0.063 to 
1.720 EU/m3 in a previous studies on California riverside homes19. In the homes in an urban city of Amagasaki, 
Japan the levels were over tenfold higher than the maximum level, at 0.090–0.160 EU/m3 20.

Airborne endotoxin levels were highest in the underground tunnel with a GM of 1.437 EU/m3 and lowest in 
the driver room with a GM of 0.919 EU/m3 (Table 3). Therefore, it can be assumed that less illumination might 
have affected the increase in the endotoxin levels. Based on the recommended levels of illumination for an office 
(400 lx) by the Korean Standards Association (KSA 3011), the endotoxin levels were significantly higher in the 
sampling site with 400 lx illumination21. Another factor affecting endotoxin levels is the number of people, which 
may explain why endotoxin levels, in this study, were higher in the station office than in the driver’s room. Previ-
ous studies show that endotoxin levels were significantly negatively correlated with area per person22, and there 
was a significant positive correlation between endotoxins and the number of people in a dwelling21,23.

According to Park et al.11, the size characteristics of PM is the total amount of air pollutants including endo-
toxin and heavy metals exposure among subway employees, maintenance workers, and subway office workers, 
and reported that most of the fine or ultrafine particles are assumed to stem from the use of diesel engine vehicles 
and heavy equipment for tunnel maintenance. Using diesel engine vehicles in semi-confined underground envi-
ronments causes not only exposure to high levels of diesel engine exhaust emissions, but also an increase in PM 
in subway platforms and waiting rooms24. Another major source of PM is the widespread use of diesel-powered 
vehicles during maintenance of tunnels and subway facilities24.

Fe has the highest levels out of all heavy metal elements because iron-bearing materials are dominant (36–51% 
of the PM), originating from wheel/railway abrasion and the wear of iron-rich materials throughout the subway 
system25. Al levels were found to be the second highest in this study. We assumed that Al mostly come out from 
the steel composition of the railways9. According to a study conducted in Spain, the emission of abrasion products 
from train and rail wear in the subway system significantly contributes to increased ambient levels of elements 
harmful to the environment, such as Cr, Pb, and Zn9. Wheel/rail steel and catenary also contains a large number 
of additional components, namely Zn, Cr, Mn, and Ni, which are potential sources of emission contributing to 
the increased PM levels of these heavy metals (Fe, Cr, Zn, Mn, and Ni) in subway systems9.

Notably, the levels of endotoxin and Cr, Fe, Mn, and Ni are correlated (Table 4). This result is difficult to 
compare with other studies since there is no similar study conducted with both endotoxin and heavy metal 
levels. When we assume that endotoxins originate from the outer membrane of bacteria, we might explain the 
mechanism of this correlation between the levels of endotoxin and Cr, Fe, Mn, and Ni. Bacteria can easily attach 
to fine inorganic particles and be transported due to their smaller sizes. In fact, former studies have found cor-
relations between total PM and the amount and diversity of airborne bacteria26,27. However, whether it will show 
the same patterns in long-term and large-scale sample sizes is still unknown due to the differences in sampling 
conditions such as temperature, relative humidity, and precipitation28.

Table 4.   Correlation analysis between levels of endotoxins, Al, Cr, Fe, Mn, Ni, Zn, and Pb. *p < 0.05; 
**p < 0.001.

Endotoxin Al Cr Fe Mn Ni Zn Pb

Endotoxin 1.000 0.246 0.479* 0.441* 0.336* 0.571** 0.113 0.228

Al 1.000 0.474* 0.630** 0.589** 0.691** 0.406* 0.785**

Cr 1.000 0.610** 0.602** 0.780** 0.504** 0.355*

Fe 1.000 0.843** 0.800** 0.255 0.670**

Mn 1.000 0.760** 0.568** 0.731**

Ni 1.000 0.442* 0.675**

Zn 1.000 0.452*

Pb 1.000
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The endotoxin levels measured in this study are higher in the morning than at night in the driver room; this is 
the same for the levels of total heavy metals (Fig. 2). We can assume that the difference in the levels of endotoxin 
in the morning and night were mainly due to the number of passengers who go on and off the train because the 
driver room’s door and window are opened when checking passengers getting on and off every single station. 
We found that there were more passengers in the morning than at night based on bigdata from the Seoul Metro 
(data.seoul.go.kr). Research on other subway systems also show that the number of passengers is positively 
associated with the level of culturable airborne bacteria in underground subway stations, with airborne micro-
organism being dispersed into the air from subway passengers’ clothing and hair29–31. Furthermore, preschools, 
kindergartens and child daycare centers, airborne endotoxin levels were also higher than in dwellings due to the 
activities of children and frequent diaper changes32,33. Wheeler et al.34 found that the presence of more than two 
people in the home increased indoor endotoxin levels in PMs, suggesting the effects of human activity. In addi-
tion, levels of airborne endotoxin were reported to be negatively associated with floor area per person at home22. 
The PM’s levels of endotoxins was higher on weekends than on weekdays due to periods of human activities and 
stay at home during weekends20.

Similar to our study, Martin et al.35 reported that heavy metal levels in the morning are higher than at night, 
but there are many factors influencing the change in the levels of heavy metals in real-time measurement due to 
temporal and spatial variations along the platforms, differences in the time, place, or season of the measurements, 
design of the stations and tunnels, variations in the train frequency, passenger densities, and ventilation systems, 
among other factors35. To reduce emissions of heavy metals in subway systems, conventional friction materi-
als must be substituted with low metal materials such as graphite pantographs/catenaries and rubber wheels9.

Conclusion
Factors affecting airborne endotoxin and heavy metal levels in three different indoor subway environments in 
South Korea were evaluated. Levels of endotoxin and total heavy metals were highest in the underground tunnel, 
followed by the driver room, then the station office. There were significantly higher levels in endotoxin and total 
heavy metal in the morning (7:30–11:00 a.m.) than at night (5:00–10:20 p.m.). Endotoxin levels were found to 
have a correlation with Cr (r = 0.479), Fe (r = 0.441), Mn (r = 0.336), and Ni (r = −0.571).

To the best of our knowledge, this is the first study to show the association between airborne endotoxin and 
heavy metal levels in three different subway environments in South Korea. However, there are some limitations 
to this study. First, the measurements of the endotoxins and heavy metals from three different places may not 
necessarily reflect the association with public health outcomes. Second, the short daily sampling period of about 
6 h may have introduced some variation among measurements, resulting in poorer representation and weaker 
consistency between the levels for the entire day. Third, although endotoxin and Cr, Fe, Mn, and Ni were found to 
be correlated with each other, long-term evaluation for at least over a year of study using an integrated approach 
of quantitative exposure data in underground subway environments is needed to provide accurate assessment 
between levels of Cr exposure and human health. Finally, the limited sample size may not have been representa-
tive of the airborne levels of endotoxins and heavy metals, resulting in possible biases.

Despite these limitations, this study was conducted in a number of underground subway stations in areas 
which are not easy to access for sampling and time using standard air sampling methods. Our results are use-
ful not only for characterizing the level of endotoxin and heavy metals in the subway environment, but also for 
identifying specific factors that may be significantly associated with endotoxin and heavy metals such as Cr, Fe, 
Mn, and Ni. Moreover, measuring the levels of endotoxins and heavy metals in the drive room, stations office, and 
underground tunnel is unique in this case as the study was conducted over a metropolitan area. In conclusion, 
although we found that there was an association between the levels of airborne endotoxin and heavy metals, these 
levels were lower than the threshold. Therefore, further studies with a larger sample size are needed to identify 
the prevalent association between the levels of endotoxin and heavy metals.

Data availability
The datasets generated and/or analyzed during the current study are available from the corresponding author 
on reasonable request.
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