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The objective of this research project is the identification of a physiological prodrome of
post-traumatic stress disorder (PTSD) that has a reliability that could justify preemptive
treatment in the sub-syndromal state. Because abnormalities in event-related potentials
(ERPs) have been observed in fully expressed PTSD, the possible utility of abnormal ERPs
in predicting delayed-onset PTSD was investigated. ERPs were recorded from military
service members recently returned from Iraq or Afghanistan who did not meet PTSD
diagnostic criteria at the time of ERP acquisition. Participants (n=65) were followed
for up to 1 year, and 7.7% of the cohorts (n=5) were PTSD-positive at follow-up. The
initial analysis of the receiver operating characteristic (ROC) curve constructed using
ERP metrics was encouraging. The average amplitude to target stimuli gave an area
under the ROC curve of greater than 0.8. Classification based on the Youden index,
which is determined from the ROC, gave positive results. Using average target amplitude
at electrode Cz yielded Sensitivity=0.80 and Specificity=0.87. A more systematic
statistical analysis of the ERP data indicated that the ROC results may simply represent
a fortuitous consequence of small sample size. Predicted error rates based on the
distribution of target ERP amplitudes approached those of random classification. A leave-
one-out cross validation using a Gaussian likelihood classifier with Bayesian priors gave
lower values of sensitivity and specificity. In contrast with the ROC results, the leave-
one-out classification at Cz gave Sensitivity=0.65 and Specificity=0.60. A bootstrap
calculation, again using the Gaussian likelihood classifier at Cz, gave Sensitivity=0.59
and Specificity=0.68. Two provisional conclusions can be offered. First, the results can
only be considered preliminary due to the small sample size, and a much larger study will
be required to assess definitively the utility of ERP prodromes of PTSD. Second, it may
be necessary to combine ERPs with other biomarkers in a multivariate metric to produce
a prodrome that can justify preemptive treatment.

Keywords: post-traumatic stress disorder, prodromes, event-related potentials, delayed onset, traumatic brain
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INTRODUCTION

Historically, psychiatric practice has been reactive rather than
preemptive. It has been recognized that a transition to preemptive
psychiatry requires the identification of prodromes of psychiatric
disorders that have a predictive reliability that justifies interven-
tion in the absence of a fully expressed disorder. A prodrome is not
a risk factor. A prodrome is a physiological change antecedent to
a full expression of the disorder. Costello and Angold (1) provide
the following definition: “. . . a prodrome is a premonitory mani-
festation of the disease. It is not a characteristic of the individual
or their environment or a causal agent of the disease. A prodromal
symptom may or may not continue to be manifest once the full
disease appears. Conversely, the same disease may or may not
manifest prodromal symptoms in different episodes.” Emerging
genetic, epigenetic, and psychophysiological technologies offer
the possibility of identifying prodromes or combinations of pro-
dromes (where a combination of metrics may improve specificity)
that can warrant preemptive treatment (2, 3). Prior research has
investigated prodromes of several psychiatric disorders including
psychosis (4–7), depression (8), autism (9, 10), dementia (11),
alcoholism and substance abuse (1, 12), and post-traumatic stress
disorder [PTSD (13–15)].

The objective of this research project is the identification of a
physiological prodrome of PTSD that has a reliability that could
justify preemptive treatment in the sub-syndromal state. The
search for statistically reliable prodromes requires two things: a
sub-syndromal period where physiological changes prior to the
disease onset have been initiated, and a measure that can quantify
these changes. In the ideal case, a third element can facilitate the
search for prodromes: the identification of an at-risk population
because an enriched population (a population where incidence is
higher than the general population) will increase the statistical
likelihood of identifying a prodrome. In this contribution, we
address a specific question: can event-related potentials identify
individuals at risk of delayed-onset PTSD?As preceding questions
we must ask whether an at-risk population can be identified and
if there is evidence indicating that PTSD can, in some instances,
present with delayed onset? It is the period between trauma expo-
sure and the presentation of a fully expressed PTSD that provides
the window of opportunity for preemptive treatment.

Can a PTSD At-Risk Group Be Identified?
Military deployment is a risk factor for PTSD. The reported
incidence of PTSD in veterans varies greatly between studies. A
critical review found that PTSD incidence in US Iraq veterans
ranges from 4 to 17% (16). Reports of the incidence of PTSD
in the general population are similarly varied, but the National
Comorbidity Survey Replication Study (17, 18) estimated the life-
time prevalence of PTSD in adult Americans to be 6.8%. Current
past year prevalence was estimated at 3.5%. This suggests that
military service members (SMs) who have returned from deploy-
ment will provide a statistically enriched population increasing
the likelihood of identifying prodromes of PTSD. When making
this observation, it is recognized that it is possible that military-
related PTSD and PTSD in civilian populations may have distinct
pathophysiological etiologies. This would potentially limit the
general utility of results obtained with a military population.

Can PTSD Present with Delayed Onset?
Meta-analysis indicates that approximately 25% of PTSD cases
present with delayed onset, where delayed onset is defined as
meeting diagnostic criteria after a sub-syndromal or asymp-
tomatic period of at least 6months after the precipitating trau-
matic event (19, 20). In a military population, Grieger et al. (21)
found that the majority of individuals PTSD-positive 7months
after serious combat injury did not meet diagnostic threshold at
1month post-injury. In cases of PTSD following mild traumatic
brain injury (TBI), the fraction of cases presenting with delayed
onset can be higher. Bryant et al. (22) found that of those who met
PTSD criteria at 24months following a TBI, 44.1% reported no
PTSD at 3months. The analysis of Smid et al. (20) and Andrews
et al. (19) indicates that PTSD can present after a symptom-free
period, but it has been found to be more likely after a period of
sub-syndromal PTSD in which two or three of the symptom clus-
ters are endorsed (22). The factors contributing to delayed-onset
PTSD in the absence of mild TBI are incompletely understood
(15). On reviewing the trajectories of full and sub-syndromal
PTSD, Bryant et al. (22) reached the following conclusions: “The
present study demonstrates longitudinally that there is not a linear
relationship between acute trauma response and long-term PTSD
and highlights that PTSD levels fluctuate markedly in the initial
years after trauma exposure. This pattern can explain the modest
predictive capacity of acute markers to identify subsequent PTSD
status. The complexity of these trajectories is further indicated
by the delayed occurrence of PTSD responses, which appears
to result from a combination of the immediate stress response
and cumulative stress in the aftermath of the trauma.” These
clinical observations further encourage the search for reliable
physiological prodromes of PTSD.

Is There a Prior Literature Reporting
Alterations of Event-Related Potentials
in Fully Expressed PTSD?
As noted above, an additional requirement in the search for
prodromes is the identification of a measure that can quantify
physiological changes antecedent to disease onset. This search
can be informed by asking whether there are markers that show
alteration in the fully expressed disease, since it seems possible
that these alterations may have begun prior to reaching diagnostic
threshold. In the specific context of this investigation, this ques-
tion becomes is there a prior literature showing abnormalities in
event-related potentials in PTSD patients? An examination of the
prior literature summarized in Table 1 suggests that event-related
potentials can be altered in the fully expressed PTSD state.

The divergence of electrophysiological results across studies
is consistent with the emerging understanding that PTSD is not
a discrete clinical entity and that different pathophysiological
processes may be active in different individuals. The results do,
however, suggest that alterations of brain electrical behavior can
be associatedwith the disorder. As indicated inTable 1, alterations
in P300 are most frequently reported.

There is an emerging understanding of the neurological origin
of the empirical results reported in Table 1 that suggests why
alterations of P300 may be associated with both fully expressed
PTSD and the sub-syndromal state. P300 has been hypothesized
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TABLE 1 | Studies reporting ERP abnormalities in PTSD-positive partici-
pants.

Study Reported observation(s)

Araki et al. (23) Lower amplitude ERPs at Pz in an auditory oddball
task

Blomhoff et al. (24) Amplitudes to emotionally related words were
significantly related to CAPS scores

Charles et al. (25) P300 amplitude lower in PTSD-positive participants

Felmingham et al. (26) Auditory oddball, PTSD positive participants show
the following

Target stimuli: reduced P200 amplitude, reduced
P300 amplitude, increased N200 amplitude,
increased N200 latency, increased P300 latency

Standard stimuli: reduced P200 amplitude

Ghisolfi et al. (27) PTSD positive participants showed auditory P50
sensory gating deficits

Hansenne (28) Literature review includes PTSD

Javanbakht et al. (29) Literature review of 36 studies. Increased P300
response to trauma-related stimuli. P50 studies
suggest impaired gating

Johnson et al. (30) P300a, P300b amplitudes larger with trauma
related stimuli

P300b small with neutral stimuli

P300 working memory amplitudes smaller

Karl et al. (31) Reduced P50 suppression

Increase P300 amplitude to trauma-related stimuli

Kimble et al. (32) Significant P300 amplitude enhancements to
distracting stimuli

Kimble et al. (33) Larger frontal, smaller central, and parietal CNVs

McFarlane et al. (34) Delayed N200 P300 elicited by target and distracter
tones indistinguishable

Metzger et al. (35) Parietal P300 amplitude to target tones were
smaller in unmedicated PTSD positive participants

Metzger et al. (36) Modified Stroop task for personal traumatic,
personal positive, and neutral words. PTSD-positive
participants have reduced and delayed P300 across
word type

Metzger et al. (37) Contrary to previous results, the PTSD group had
larger P300b amplitude and increased P200
amplitude/intensity slopes

Neylan et al. (38) Impaired P50 gating to non-startle trauma-neutral
auditory stimuli

Neylan et al. (39) Nine of 24 P300 measures were significantly less
predictable over time in the PTSD-positive group

Shu et al. (40) mTBI only compared against mTBI+PTSD, larger
emotional face processing ERPs in mTBI+PTSD

Shu et al. (41) mTBI only compared against mTBI+PTSD, larger
inhibitory processing ERPs in mTBI+PTSD

Shucard et al. (42) PTSD group has longer P300 latency to NoGo
stimuli and greater P300 amplitude to irrelevant
non-target stimuli

CAPS, Clinician-Administered PTSD Scale; CNV, contingent negative variation; ERP,
event-related potential.

to reflect neural activity associated with attention and subsequent
memory processing (43), with larger P300 amplitude associ-
ated with greater attentional resources employed in the task (44,
45). The prior studies with PTSD positive participants reporting

reduced P300 amplitude to target stimuli in the PTSD group
compared to the control group, suggest impairment of attentional
processes which is consistent with clinical observation. In addi-
tion, a meta-analysis examining ERP components and PTSD
revealed that the P300 amplitude may also be sensitive to con-
textual cues such that information processing is modulated based
on the situation and environment (31). These dynamics are con-
sistent with functional changes of two reported neural genera-
tors of the P300 (46, 47): the anterior cingulate cortex (ACC)
and the hippocampus, which are also altered in individuals with
PTSD (48). The ACC is critical to attentional processing and fear
inhibition (49, 50) and the hippocampus is involved in memory
and contextual representations (51). Araki et al. (23) revealed
that lower P300 amplitude in patients with PTSD was associated
with smaller ACC volume, which linked the P300 abnormality to
underlying brain morphological abnormality.

It should be recognized that the results inTable 1were obtained
from participants who were diagnostically PTSD-positive at the
time of recording. The question of the utility of ERPs as a predictor
of a transition to PTSD is not addressed by these studies, but these
studies do suggest that altered ERPs may be present in the sub-
syndromal state. This possibility is investigated in this study. The
study was sponsored by the Department of Defense to investigate
the utility of using a reduced montage that could be implemented
in a military field hospital environment. Event-related potentials
can be elicited by visual, auditory, somatosensory, and olfac-
tory stimuli, with visual and auditory stimuli being the most
commonly used. Hearing and vision can be compromised after
blast exposure, but visual disturbances typically resolve faster. We
therefore used visual stimuli in this study. As indicated in Table 1,
several ERP components [P50, P200, N200, and contingent neg-
ative variation (CNV)] can be altered in PTSD-positive partici-
pants. Typically, however, the P300 is the most robust component.
Since the object of this research program is the development of a
robust technology that can be implemented in an austere medical
environment, we focused on the P300.

METHODS

Subjects
We recruited 85military SMswithin 2months of their return from
anOperation Enduring Freedom (OEF)/Operation Iraqi Freedom
(OIF) deployment of at least 3months’ duration in either Iraq
or Afghanistan. The Clinician-Administered PTSD Scale (CAPS)
(52) and the PTSDChecklist-Military Version (PCL-M) (53) were
administrated to assess PTSD. Patient Health Questionnaire-9
(PHQ-9) (54) and the International Classification of Diseases,
10th Clinical Modification (ICD-10) criteria for postconcussional
syndrome (PCS) were administrated to determine the presence
of depression and PCS, respectively. Exclusion criteria included
a history of head injury resulting in loss of consciousness for
60min or more; a current Glasgow Coma Scale less than 13;
visual acuity lower than 20/100 after correction; psychosis; active
suicidal, or homicidal ideation; pregnancy; a diagnosis of PCS
according ICD-10, PHQ-9 score greater than or equal to 10; and a
PCL-M score greater than or equal to 50, or a diagnosis of PTSD
made by an experienced psychologist using theCAPS based on the
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DSM-IV criteria. All subjects provided written informed consent
in accordance with the protocol approved by institutional review
boards at Uniformed Services University, Walter Reed National
Military Medical Center, and the National Institutes of Health.

Out of the 85 participants, 8 were excluded after baseline assess-
ment: 2 for PCL-M ≥50, 2 for PHQ-9 scores ≥10, and 4 for
problems with electroencephalogram (EEG) recording. Among
the remaining 77 participants, 65 completed at least one follow-
up psychological evaluation (52 at 3months, 33 at 6months, and
53 at 12months). On serial follow-up evaluations, 5 of the 65
participants developed PTSD as determined by PCL-M scores
(4 PTSD, 1 PTSD with depression). We therefore separated the
65 participants into 5 cases (referred to as Converters, mean age
35.6± 6.2 years, 4 men and 1 woman) and 60 controls (referred to
as Stables, mean age 30.5± 8.0 years, 54men and 6women). The 5
Converters and 60 Stables are the final set of subjects in this study.
In this paper, we focus on electrophysiological data from baseline
assessment as we are trying to identify neural markers that predict
the development of PTSD.

All participants in the group of 65 were exposed to relatively
severe traumatic experiences. The types of index trauma reported
by thosewho developed PTSD included experiencing a base attack
(e.g., mortar or rocket fire, n= 1), engaging in combat-related
violence (e.g., firefights, hit by improvised explosive device, IED,
killing enemy, n= 2), witnessing combat-related violence (e.g.,
watching truck in convoy hit by an IED, witnessing death n= 1),
and deployment bullying and abuse (n= 1). Those who did not
develop PTSD also reported experiencing base attacks (n= 24),
engaging in combat-related violence (n= 23), and witnessing
combat-related violence (n= 13). Two factors, however, preclude
a meaningful search for correlations between ERP abnormalities
and cause of trauma. The first is the small size of the study
population. The secondwould be applicable even in a larger study.
Many, if not most of these participants have received multiple
traumas from many causes.

Electrophysiological Recording
A visual oddball task was performed by subjects in an acoustically
and electrically shielded room. Visual stimuli were presented by
a digital tachistoscope of our own design and construction. The
tachistoscope is a 5× 5 square array of yellow, light-emitting
diodes. Each diode is 1 cm in diameter. Given spacing between
LEDs, the array is 6 cm× 6 cm. The standard visual stimulus
was a vertical stimulus which consists of the five vertical center
line LEDs illuminated simultaneously for 40ms. The target visual
stimulus was a horizontal stimulus which is composed of the five
horizontal center line LEDs illuminated simultaneously for 40ms.
Each subject received 125 stimuli in total, of which about 21%
(26± 1 trials) were target and 79% (99± 1 trials) were standard
stimuli. The subjects were instructed to maintain a silent count
of the number of target stimulus presentations and to report their
count at the end. The inter-stimulus onset time was varied ran-
domly between 1.4 and 1.8 s. The number of trials in the current
study is sufficient to elicit a valid P300 response. For example, a
classic P300 study by Pollich et al. (55) used 25 target trials. Cohen
and Polich (56) found that the P300 stabilized with approximately
20 trials.

The scalp EEG was recorded using the EPA6 amplifier (Sen-
sorium Inc.) and the Grass electrodes (Natus Neurology Inc.)
at Fz, Cz, Pz, Oz, C3, and C4 according to the standard 10-20
electrode system, with linked earlobes as reference and a forehead
ground. Electrode impedances weremaintained under 5 kΩ. EOG
was recorded from two electrodes placed below and above the
right eye. The sampling rate was 2,048Hz, and the analog filter
band-pass was 0.02–500Hz.

Data Processing of Electrophysiological
Data
Data processing was performed offline using custom scripts writ-
ten in MATLAB (www.mathworks.com). Channels contaminated
by artifacts were removed from analysis. This resulted in one
Fz channel (from the Stable group) and four Oz channels (one
from the Converter group and three from the Stable group) being
removed. EOG artifacts were corrected by using a regression
approach (57). The data after EOG correction were high-pass
filtered at 0.5Hz, low-pass filtered at 50Hz, and down sampled
to 256Hz. The analysis period was −200 to 1,000ms where time
zero denotes stimulus onset. Trials with peak potentials exceeding
75 μV or exhibiting abnormal trends were excluded from ERP
averaging. The overall trial rejection rate was 4.84%. Target trials
and standard trials were averaged separately. P300 amplitude was
measured as the voltage of the largest positive peak of target
ERP within 250–500ms. P300 latency was measured as the time
from stimulus onset to the maximum positive amplitude within
250–500ms.

Statistical Analyses
Differences between groups in demographics, psychological mea-
sures, and task performance (accuracy of target count) were exam-
ined by Student’s t-tests if data are numerical or Fisher’s exact tests
if data are categorical. Because the Oz channel was lost in some
recordings (including one in the Converter group), the statistical
analysis is limited to Fz, Cz, Pz, C3, and C4 electrode sites. Group
differences in P300 amplitude and latency at each electrode site
were tested by Student’s t-tests. Correlations between P300 ampli-
tude and the psychological measures were examined by Pearson’s
correlation coefficient. p-Values less than 0.05 were considered
statistically significant.

To examine the efficacy of using P300 amplitude as the predic-
tor for PTSD, we performed several statistical analyses including
approximate classification error rate, receiver operating character-
istic (ROC) curve, leave-one-out cross validation, and bootstrap-
ping. The detailed mathematical methods and equations can be
found in the Mathematical Appendices.

RESULTS

Subject Characteristics and Baseline
Psychological Measures
The subject characteristics and baseline psychological measures
were summarized in Table 2. Age, gender, handedness, and his-
tory of mild TBI (mTBI) were not significantly different between
the Converter and Stable groups. At the baseline assessment, the
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TABLE 2 | Subject characteristics and baseline psychological measures.

Variable Converter
(n=5)

Stable
(n= 60)

Group
comparisona

Mean SD Mean SD df t-Value p-Value

Age 35.6 6.2 30.5 8.0 63 1.37 0.18

Gender, male/female 4/1 54/6 0.36

Handedness, R/L 5/0 55/5 0.66

History of mTBI
<10 years, yes/no

2/3 18/42 0.33

Clinician-Administered
PTSD Scale total

30.6 15.4 18.7 12.5 63 2.02 0.047

Patient Health
Questionnaire-9 score

5.2 2.3 2.5 2.3 62 2.51 0.015

PTSD Checklist-Military
Version (PCL-M) score

33.4 11.0 25.9 7.4 63 2.10 0.040

aFisher’s exact tests were used for gender, handedness, and history of mTBI. Student’s
t-tests were used for other variables.

Converter group reported significantly higher CAPS, PHQ-9, and
PCL-M scores than the Stable group.

Behavioral Data
The accuracy of target count at baseline assessment was not signif-
icantly different between Converters and Stables. For Converters,
the mean accuracy of target count was 93.1% (SD 5.0%) and for
Stables the mean accuracy was 97.4% (SD 5.5%) The difference
was not statistically significant (t= 1.70, df= 63, p= 0.095).

P300 Data: Amplitude and Latencies of
Averaged Responses
We computed the approximate signal-to-noise ratios (SNRs) for
both target and standard trials within the P300 time window for
each subject. The SNR was calculated from the power of the ERP
during the P300 window (300–400ms) minus the power of the
ERPduring baseline (−200 to 0ms) and thendivided by the power
of the ERP during baseline window. The mean SNR for single
subject ERP for target trials at Pz is 145 (21.6 dB). The mean SNR
for single subject ERP for standard trials at Pz is 87 (19.4 dB).

The P300 waveforms of average responses to standard stimuli
do not have a well-defined single peak that can provide a unique
amplitude and latency measure that can be incorporated into
statistical analysis. Statistical analysis is therefore limited to the
average responses to target stimuli where well-defined P300 wave-
forms make precise measurements possible. Figure 1 displays the
grand average ERPs in response to target and standard stimuli
at the six electrodes in Converters and Stables. Because the Oz
channel was lost in some recordings, the statistical analysis is
further limited to Fz, Cz, Pz, C3, and C4 electrode sites. We
found that for all these electrode sites, the P300 amplitude was
significantly smaller (p< 0.05) for the Converter group compared
to the Stable group. The P300 latency was not significantly dif-
ferent (p> 0.05) between the two groups. The statistical results
for each electrode were summarized in Table 3. We also explored
the correlation between the P300 amplitudes and the psycholog-
ical measures (CAPS, PHQ-9, and PCL-M) across subjects. No
significant correlations were found (p> 0.05).

DIAGNOSTIC VALIDITY

Approximate Classification Error Rate
As summarized in Table 3, there was a statistically significant
difference in the target amplitude between the participants who
remained PTSD-negative throughout the study and those who
became PTSD-positive. A statistically significant between-group
separation does not, however, establish the efficacy of these mea-
sures as predictors. The most commonly applied quantitative
measure of between-group separation is the t-test. As shown
in Table 3, a naive calculation (a two-tailed t-test that assumes
unequal variances) suggests a significant separation between the
two participant groups. Two essential observations should be
made. First, the asymptotic assumptions of the t-test cannot
be meaningfully satisfied when NC = 5. Second, a separation
of means, which is what the t-test assesses, does not of itself
ensure a successful classification even in those instances where the
assumptions of the test are satisfied. An estimate of classification
error rates can be made by again assuming normality of the two
populations. The equations used are given in the Mathematical
Appendices. This estimate often results in a substantial under
estimate of the true error rate. This is particularly true when
population numbers are small (58). The results shown in Table 3
show that application of this admittedly optimistic error rate
estimate predicts that using target amplitude results in unaccept-
able classification error rates of PERROR = 0.29 to PERROR = 0.32,
where it should be remembered that random assignment results
in a 0.50 error if we assume that the two populations occur in
equal proportions. This negative conclusion will be supported by
the more reliable empirical determinations of classification error.
It should be noted, however, that the error rates are different
between the amplitudes and latencies, namely approximately 30%
for the amplitudes and 50% for the latencies.

ROC Curve
Predictionusing prodromes can be treated as a diagnostic problem
inwhich the disease-positive state corresponds to being amember
of the group that becomes PTSD positive. Calculation of the
ROC curve is a commonly employed method for characterizing
a diagnostic classification. The first row of Table 4 shows the area
under the curve (AUC), for the electrophysiological measures.
The mathematical methods used to determine the AUC and its
confidence intervals are given in the Mathematical Appendices. A
value of AUC >0.5 indicates better than random assignment. The
P300 amplitude at Cz showed the highest predictive power, with
an AUC of 0.85 (confidence interval of [0.67, 0.94]). The ROC
curve of the P300 amplitude at Cz is shown in Figure 2. While
the values of the AUC are encouraging, the very large confidence
intervals diminish confidence in the result.

Diagnostic Efficacy and Determination of
the Diagnostic Cut Score
The results of a diagnostic calculation (and by implication for
the present context the identification of a prodrome) can be
expressed in the canonical four element diagnostic matrix: true
positive, false positive, false negative, and true negative. There is
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FIGURE 1 | P300 waveforms in converters and stables. Grand average ERPs in response to target and standard stimuli at the six electrodes. Blue lines
represent waveforms for Stables. Red lines represent waveforms for Converters.

TABLE 3 |Baseline results from participants who remained PTSD-negative for one year after enrollment (N= 60) and those who converted to PTSD-positive
(N=5).

Baseline scores
individuals

Baseline scores
individuals

Between-group
separation

PERROR

PTSD-negative
at 1 year stables

PTSD-positive
at 1 year converters

T-test, two-tailed,
unequal variance

Equal priors

N= 60 (N= 59 for Fz) N=5 p

Average Fz amplitude response to target stimulus (μV) 9.87±4.25 5.98±2.38 0.0157 0.3193
Average Cz amplitude response to target stimulus (μV) 15.48±5.45 9.71±2.65 0.0038 0.2937
Average Pz amplitude response to target stimulus (μV) 16.18±5.27 11.13±3.71 0.0338 0.3130
Average C3 amplitude response to target stimulus (μV) 14.52±5.16 9.34±2.54 0.0054 0.3032
Average C4 amplitude response to target stimulus (μV) 14.72±5.23 9.07±2.67 0.0046 0.2898
Average Fz latency response to target stimulus (ms) 356.2±43.8 357.0±57.2 0.9760 0.4963
Average Cz latency response to target stimulus (ms) 359.7±39.0 357.3±57.6 0.9235 0.4868
Average Pz latency response to target stimulus (ms) 360.5±42.4 374.2±58.6 0.6345 0.4377
Average C3 latency response to target stimulus (ms) 359.4±37.3 352.3±68.2 0.8291 0.4646
Average C4 latency response to target stimulus (ms) 355.2±36.9 355.5±60.3 0.9928 0.4987
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TABLE 4 |Area under the receiver operating curve andmeasures of diagnostic efficacy computed using the smallest value of threshold giving themaximum
value of the Youden index.

Measure Average Fz amplitude
response to target

stimulus

Average Cz amplitude
response to target

stimulus

Average Pz amplitude
response to target

stimulus

Average C3 amplitude
response to target

stimulus

Average C4 amplitude
response to target

stimulus

Area under the curve 0.7864 [0.5616, 0.8960] 0.8533 [0.6708, 0.9347] 0.7833 [0.4737, 0.9108] 0.8233 [0.6170, 0.9185] 0.8433 [0.5980, 0.9390]
Max Youden Index 0.5763 0.6667 0.5500 0.6000 0.7000
TMAX (μV) 9.0140 10.4186 12.1866 12.4016 9.1688
Diagnostic accuracy 0.6094 0.8615 0.7538 0.6308 0.8923
Sensitivity 1.0000 0.8000 0.8000 1.0000 0.8000
Specificity 0.5763 0.8667 0.7500 0.6000 0.9000
Positive likelihood ratio 2.3600 6.0000 3.2000 2.5000 8.0000
Negative likelihood ratio 0.0000 0.2308 0.2667 0.0000 0.2222
Diagnostic odds ratio Undefined 26.0000 12.0000 Undefined 36.0000

FIGURE 2 | The receiver operating characteristic (ROC) curve of the
P300 amplitude at Cz. Horizontal axis is the false positive rate (1-specificity)
which equals the number of false positive divided by the sum of false positive
and true negative. Vertical axis is the true positive rate (sensitivity) which
equals the number of true positives divided by the sum of true positive and
false negative. The solid line represents the ROC curve for using the P300
amplitude at Cz as the diagnostic test. The dashed line represents the ROC
curve for a random test.

no single fully satisfactory summary measure for characterizing
the diagnostic matrix. Each has advantages and limitations. The
limitations are particularly evident in studies like this one where
disease prevalence is low. We will therefore examine six common
measures of diagnostic efficacy: diagnostic accuracy, sensitivity,
specificity, the positive likelihood ratio, the negative likelihood
ratio, and the diagnostic odds ratio. Their definitions are given
in the Mathematical Appendices.

The values of elements in the diagnostic matrix, and therefore
measures of diagnostic efficacy like sensitivity and specificity, are
critically dependent on the cut score used to assign individuals to
the disease-positive anddisease-negative groups. The choice of the
cut value is therefore a central problem in the implementation of
a diagnostic procedure. As outlined in the Mathematical Appen-
dices, more than one candidate procedure has been proposed. In
the calculations summarized in Table 4, the diagnostic threshold
was determined by the value of threshold that gave the maxi-
mum value of J, the Youden index (59). The value of sensitivity,
specificity, and other measures of diagnostic efficacy reported in
Table 4 are the values obtained when the threshold was set to the
smallest value of threshold giving the maximum J. Because the

results ofTable 3 indicate that target latencies cannot discriminate
between-groupmeans, the analysis is limited to target amplitudes.

Leave-One-Out Cross Validation
The results presented in Table 4 are encouraging particularly in
the cases of averageCz amplitude and averageC4 amplitudewhich
give sensitivity and specificity values in excess of 0.8. Measures
of diagnostic efficacy obtained by examination of the ROC can
be misleadingly optimistic if sample sizes are small. A fast, albeit
imperfect, reality check can be implemented by a leave-one-out
cross validation. In this calculation, one of the values is removed
from the sample. A between-group classifier is constructed from
the remaining data, and the omitted value is classified. It is then
replaced. Another value is removed and classified. This procedure
continues to exhaustion and the classification results are used
to populate the diagnostic matrix (true positive, false positive,
false negative, true negative). The measures of diagnostic efficacy
introduced in the previous section are then calculated.

In order to implement a leave-one-out cross validation the
choice of classifier must be addressed. In these calculations, a
classifier based on Gaussian populations with prior probabilities
was used. The mathematical structure of the classifier is given
in the Mathematical Appendices. Two sets of prior probabilities
were considered. In the first set of calculations, equal priors were
used. In the second, it was supposed that the prior probability of
delayed-onset PTSD was 0.25 which is the value derived from a
review of the clinical literature (19, 20).

With both sets of prior probabilities, the sensitivity and speci-
ficity values are considerably less encouraging (Table 5). In the
previous calculations, the sensitivity and specificity obtained at Cz
are 0.80 and 0.87, respectively. In the leave-one-out calculation
using equal priors, the corresponding values are 0.60 and 0.65.
Similarly, the previous sensitivity and specificity results obtained
at C4 were 0.80 and 0.90, respectively. The leave-one-out values
with equal priors are 0.80 and 0.62. This divergence counsels
interpretive caution when evaluating the results summarized in
Table 3.

Populating the Diagnostic Matrix by
Bootstrapping
A deficiency of the results presented in the previous section is
immediately apparent on examining Table 5. The sensitivities
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TABLE 5 | Classification based on average target amplitudes determined by a leave-one-out calculation.

Measure Average Fz amplitude
response to target

stimulus

Average Cz amplitude
response to target

stimulus

Average Pz amplitude
response to target

stimulus

Average C3 amplitude
response to target

stimulus

Average C4 amplitude
response to target

stimulus

Prior probabilities, Ps = 0.5, Pc = 0.5
Number of true positives 4 3 4 3 4
Number of false positives 25 21 25 24 23
Number of false negatives 1 2 1 2 1
Number of true negatives 34 39 35 36 37
Diagnostic accuracy 0.5938 0.6462 0.6000 0.6000 0.6308
Sensitivity 0.8000 0.6000 0.8000 0.6000 0.8000
Specificity 0.5763 0.6500 0.5833 0.6000 0.6167

Prior probabilities, Ps = 0.75 Pc = 0.25
Number of true positives 0 1 0 1 3
Number of false positives 6 7 3 7 8
Number of false negatives 5 4 5 4 2
Number of true negatives 53 53 57 53 52
Diagnostic accuracy 0.8281 0.8308 0.8769 0.8308 0.8462
Sensitivity 0.0000 0.2000 0.0000 0.2000 0.6000
Specificity 0.8983 0.8833 0.9500 0.8833 0.8667

TABLE 6 | Classification based on average target amplitudes determined by a bootstrap calculation.

Measure Average Fz amplitude
response to target

stimulus

Average Cz amplitude
response to target

stimulus

Average Pz amplitude
response to target

stimulus

Average C3 amplitude
response to target

stimulus

Average C4 amplitude
response to target

stimulus

Prior probabilities Ps = 0.5, Pc =0.5
Diagnostic accuracy 0.6288 [0.4348, 0.8261] 0.6719 [0.4500, 0.8621] 0.6087 [0.3333, 0.8462] 0.6431 [0.4500, 0.8261] 0.6954 [0.4286, 0.9091]
Sensitivity 0.6236 [0.0000, 1.0000] 0.5916 [0.0000, 1.0000] 0.6835 [0.0000, 1.0000] 0.5790 [0.0000, 1.0000] 0.6746 [0.0000, 1.0000]
Specificity 0.6325 [0.4118, 0.9048] 0.6802 [0.4211, 0.9444] 0.6068 [0.3158, 0.9444] 0.6513 [0.4211, 0.8846] 0.6996 [0.3913, 1.0000]
Positive likelihood ratio 1.6108 [0.4423, 3.2051] 1.8999 [0.5882, 4.6667] 1.6975 [0.3333, 3.8182] 1.5957 [0.4058, 3.3409] 2.6276 [0.7667, 7.0000]
Negative likelihood ratio 0.6720 [0.2174, 1.3889] 0.6592 [0.2121, 1.2857] 0.6695 [0.2069, 1.8254] 0.6992 [0.2114, 1.4457] 0.5572 [0.2100, 1.1613]
Diagnostic odds ratio 3.7930 [0.3176, 11.9231] 4.3037 [0.4667, 15.6154] 4.0970 [0.2000, 13.8889] 3.9384 [0.2870, 13.8889] 5.9901 [0.6863, 19.8000]

Prior probabilities Ps = 0.75, Pc = 0.25
Diagnostic accuracy 0.8282 [0.6364, 0.9583] 0.8159 [0.6400, 0.9545] 0.8647 [0.6818, 0.9615] 0.8023 [0.6190, 0.9565] 0.8562 [0.7143, 0.9583]
Sensitivity 0.1533 [0.0000, 1.0000] 0.3104 [0.0000, 1.0000] 0.1481 [0.0000, 1.0000] 0.2175 [0.0000, 1.0000] 0.3513 [0.0000, 1.0000]
Specificity 0.8887 [0.6667, 1.0000] 0.8622 [0.6667, 1.0000] 0.9269 [0.7200, 1.0000] 0.8542 [0.6522, 1.0000] 0.9030 [0.7273, 1.0000]
Positive likelihood ratio 4.0682 [0.5778, 12.5000] 3.3854 [0.6786, 12.0000] 5.5863 [0.7407, 15.7500] 3.0264 [0.4902, 12.0000] 4.9856 [0.9286, 16.5000]
Negative likelihood ratio 0.8286 [0.2949, 1.1667] 0.7378 [0.2660, 1.1111] 0.7963 [0.2805, 1.0811] 0.8170 [0.2838, 1.2069] 0.6722 [0.2000, 1.0135]
Diagnostic odds ratio 6.1093 [0.4921, 19.8000] 6.6509 [0.6104, 29.4000] 8.6072 [0.6863, 39.0000] 5.1757 [0.4026, 23.4000] 10.2212 [0.9184, 43.0000]

and specificities are reported without confidence intervals. This
deficiency can be addressed with a bootstrap calculation. The
procedure is outlined in theMathematical Appendices. Two thou-
sand bootstrap samples were used to estimate the bootstrapped
distribution. The results are shown in Table 6. The confidence
intervals provide an essential clarification to the preceding results.
The sample size precludes a dispositive response to the hypothesis
that the amplitudes of average ERPs can serve as a predictor of
delayed-onset PTSD.

The confidence intervals reported for sensitivity values, [0,1] in
all cases, are particularly telling. The definition of sensitivity is

Sensitivity = True Positive Ratio =
NTP

NTP + NFN

where NTP is the number of true positives and NFN is the number
of false negatives. There are only five elements in the Converter
set, and two of these elements are used to build the classifier.
Therefore,NTP is frequently zero, giving Sensitivity= 0. Similarly,

if in other cases NTP ̸= 0 and NFN = 0 giving Sensitivity= 1 as
another frequent value. This results in a bootstrapped confidence
interval of [0,1].

DISCUSSION

In this analysis, the identification of individuals who will present
delayed-onset PTSD is treated as a diagnostic process where the
diagnostic groups are Converters (those who present delayed-
onset PTSD) and Stables (those who do not). Sensitivity val-
ues based on average target stimulus amplitude range from 0.58
to 0.68. Specificity values range from 0.61 to 0.70, suggesting
that event-related potentials may be helpful in identifying at-risk
individuals.

The results in this study can only be considered preliminary
due to the small sample size of Converters. The limitations of the
sample size are indicated by the calculations presented in Table 6.
Suppose the objective is to know sensitivity to an accuracy of ±0.1
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with 95% confidence. A calculation given in the Mathematical
Appendices indicates that N ≥ 185 is required, where it must be
emphasized that thisN is the number of Converters. If Converters
are 10% of the population, then the projected requirement is for
1,850 participants in the study. The implications of this simple
calculation extend beyond the study of PTSD and generalize to
all of neuropsychiatry where conversion rates even in enriched
populations are low. Large participant numbers will be required.
Additionally, by definition, the search for prodromes requires a
longitudinal study extended, perhaps, over a period of years. The
challenges of supporting and implementing very large longitudi-
nal studies are formidable.

Further limitations should be acknowledged. Electrophysio-
logical abnormalities associated with neuropsychiatric disorders
are non-specific. For example, in addition to PTSD, alter-
ations in EEG synchronization have been observed in AD/HD,
alcohol abuse, alexithymia, autism, bipolar disorder, dementia,
depression, migraine, multiple sclerosis, Parkinson’s disease, TBI,
schizophrenia, and other psychotic disorders (60). The potential
loss of electrophysiological specificity is particularly likely in a
military population where PTSD is often associated with TBI and
is comorbid with depression and substance abuse. Additionally,
medications can alter event-related potentials and will complicate
diagnosis based on ERPs.

Statistical identification of individuals who will present with
PTSD might, however, be improved by two extensions to the
present analysis. First, the analysis of ERPs reported here was
limited to calculation of average ERPs. More recently, developed
methods of analysis, for example, information dynamics (61) and
network analysis of brain electrical activity (62) might improve
results. Second, specificity and sensitivity may be improved by
combining electrophysiological measures with other biomarkers
and clinical information. Incorporating scores from psycholog-
ical questionnaires with electrophysiological results in a mul-
tivariate discrimination would be an obvious possibility. The
psychological measures including CAPS, PHQ-9, and PCL-M
scores showed significant difference between Stables and Con-
verters at the baseline assessment, but none of the scores sig-
nificantly correlated with the P300 amplitude. The discordance
between neural responses and self-reported symptoms may be
partially a consequence of psychological defensive denial (63,
64). Some SMs recruited in this study may deny the presence
of their PTSD symptoms due to military training or concerns
that this may jeopardize their job, promotion, and self-image.
This defensive denial may be softened after a prolonged period.
Consistent with this possibility, a review by Andrews et al.
(19) reported that most delayed-onset PTSD cases occurred in
military samples rather than in civilian samples. If this is the case,
objective biomarkers would be fundamentally more favorable

than self-report psychological measures in identifying SMs at risk
of PTSD.

While additional forms of electrophysiological analysis in
combination with other classes of data may improve the like-
lihood of success, this will not eliminate the previously docu-
mented requirement for large sample sizes in a longitudinal study.
Such detection would be critical to the military because early
intervention to prevent PTSD has revealed a critical window for
fear activation and extinction of conditioned responses related to
traumatic memories (65).
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MATHEMATICAL APPENDICES

Estimating Classification Error
(Contents of Table 3)
For the case of a single discriminating variable, the Group
A–Group B between-group Mahalanobis distance is

D2
A,B =

(μ̂A − μ̂B)
2

σ̂2
AB

,

σ̂2
AB =

(NA − 1)σ̂2
A + (NB − 1)σ̂2

B
NA + NB − 2

,

μ̂A is theGroupA samplemean, and σ̂A is theGroupA sample SD.
μ̂B and σ̂B are defined analogously. PERROR(GA,GB) is the error
rate for the optimal classifier under the assumption of normality
for the two populations and provides an estimate classification
error when only means and SDs are known. It can give a serious
underestimate of true classification error. This is especially true
if group population numbers are low or the assumption of nor-
mality is violated. When full data sets are available, an empirical
calculation of error rate is preferred via either cross-validation or
bootstrapping. Let ρA and ρB be prior probabilities of Group A
and Group B membership. PERROR(GA,GB) is given by

PERROR(GA,GB) = ρAΦ

− 1
2

√
D2

A,B +
1√
D2

A,B

loge

(
ρB
ρA

)
+ ρBΦ

− 1
2

√
D2

A,B − 1√
D2

A,B

loge

(
ρB
ρA

)
where Φ(x) is the cumulative distribution function for a standard
normal random variable (75). For the case of equal priors, the
expression reduces to

PERROR(GA,GB) = 1 − Φ


√
D2

A,B

2

 = Φ

−
√
D2

A,B

2

.

Receiver Operating Characteristic Curve
(Contents of Table 4)
The area under an empirical receiver operating characteristic
curve is equal to the Mann–Whitney U statistic [Ref. (74), p. 65
following from a proof on p. 27] and thus the Mann–Whitney
U statistic provides an estimator for the population level AUC.
Random assignment results in AUC= 0.5. The following notation
is introduced:

NS number of longitudinally stable participants
NC number of converter participants
Si observed value for the i-th stable participant
Cj observed value for the j-th converter participant.

ÂUC =
1

NCNS

NS∑
i=1

NC∑
j=1

{
I(Cj < Si) +

1
2
I(Cj = Si)

}
where I(Z)= 1 if argument Z is true. It is important to note
that “less than” used in this application, contra textbooks where

“greater than” appears, because in this analysis a participant is
classed as positive if the observed value is less than the threshold
value.

There are several estimates of the variance of the AUC [listed
on p. 67 of Ref. (74)]. We use here the expression in Hanley and
McNeil (71).

s2( ÂUC) =
1

NSNC

{
ÂUC (1 − ÂUC) + (NC − 1)(Q1 − ÂUC 2)

+(NS − 1)(Q2 − ÂUC 2)
}

As in the equation for AUC, the definition of Q1 and Q2 uses
“less than” rather than “greater than” because a participant is
classed as a positive if the measure value is below threshold rather
than greater than threshold. Q1 is the proportion of all possible
triples composed of two sampled members from the Converter
group and one from the Stable group where the two Converter
scores are less than the Stable score

Q1 =
1

NSNCNC

NS∑
i=1

NC∑
j=1

NC∑
k=1

I(Cj < Si)I(Ck < Si)

Q2 is the proportion of all possible triples composed on one
member from the Converter group and two members from the
Stable group where the Converter score is less than both scores
from the Stable group.

Q2 =
1

NCNSNS

NC∑
i=1

NS∑
j=1

NS∑
k=1

I(Ci < Sj)I(Ci < Sk)

An expression for confidence intervals has been constructed
by (80), where with confidence 1− α, the true AUC lies in the
interval given by

1 − (1 − ÂUC) exp
{

± z1−α/2

√
s2(ÂUC)/(1 − ÂUC)

}
,

where z1−α/2 is the 1− α/2 quantile of a standard normal random
variable. Under this transformation/inverse transformation, the
upper and lower confidence intervals are always in the interval
[0,1].

An analysis of the ROC can be used to determine the optimal
cutoff value for a continuous, dichotomous diagnostic test. Glas
et al. (70) have endorsed the diagnostic odds ratio as a single
indicator of test performance and proposed using its maximum to
determine the cutoff value. Pepe et al. (76) have argued against this
practice and have provided examples that identify limitations of
the odds ratio. A fundamental limitation is immediately apparent
on examining the equation below for the ratio. It is undefined if the
number of false positive or the number of false negatives is 0. Böh-
ning et al. (66) have continued the analysis and recommend using
the maximum value of the Youden index (59) as an alternative
indicator of the best cutoff value. The Youden index, also called
the Youden J statistic is

J = Sensitivity + Specificity − 1.

It is reported as a function of threshold, and the recommended
value of threshold is the lowest threshold value giving the maxi-
mum of J.
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Measures of Diagnostic Efficacy
(Contents of Table 4)
Dichotomous diagnosis (two possible outcomes, disease positive
and disease negative), using a single continuous variable is consid-
ered here. The diagnostic utility of themeasure and classifier com-
bination is investigated by first populating the diagnostic matrix
and then computing standard measures of diagnostic efficacy.
Six measures are considered here diagnostic accuracy, sensitivity,
specificity, positive likelihood ratio, negative likelihood ratio, and
the diagnostic odds ratio, where it should be recognized that no
single measure of diagnostic effectiveness provides a complete
assessment of a measure’s ability to classify participants (76).
Additional measures are presented in Pepe (76) and in Portney
and Watkins (78).

Disease present Disease absent

Test positive True positive False positive
NTP NFP

Test negative False negative True negative
NFN NTN

Diagnostic Accuracy = (NTP +NTN)/(NTP +NFP +NFN +NTN)

Sensitivity = True Positive Fraction =
NTP

NTP + NFN

Specificity = True Negative Fraction =
NTN

NTN + NFP

Positive Likelihood Ratio = LR+ =
True Positive Fraction
False Positive Fraction

=
(

NTP

NTP + NFN

)/(
NFP

NFP + NTN

)
=

Sensitivity
1 − Specificity

Negative Likelihood Ratio = LR− =
False Negative Fraction
True Negative Fraction

=
(

NFN

NFN + NTP

)/(
NTN

NTN + NFP

)
=

1 − Sensitivity
Specificity

Diagnostic Odds Ratio = DOR =
LR+
LR− =

(
NTP · NTN

NFP · NFN

)
=

(
Sensitivity

1 − Sensitivity

) (
Specificity

1 − Specificity

)

Classification Based on Gaussian
Likelihood and Bayesian Priors
(Contents of Table 5)
The classifier is constructed from a single continuous variable,
in this case the amplitude of the average response to the target
stimulus. {Sj}NS

j=1 is the set of values obtained from clinically stable
participants. μ̂S is the sample mean and σ̂S is the corresponding
SD. {Cj}Nc

j=1 is the set of values obtained from participants who
became PTSD-positive and has mean μ̂C and SD σ̂C. Let x denote
the value of themeasure obtained from the individual who is to be
classified. The group specific density function for clinically stable
participants is

fS(x) =
1

(2πσ̂2
S)

1/2 exp
{

− 1
2
(x − μ̂S)

2/σ̂2
S

}

fC(x) is defined analogously. The posterior probabilities of group
membership are

P(G = S|x)
ρS fS(x)

ρS fS(x) + ρC fC(x)

and
P(G = C|x)

ρC fC(x)
ρS fS(x) + ρC fC(x)

where ρS and ρC are the prior probabilities of membership in
the healthy or disease-positive groups. The participant presenting
measure equal to x is classified into the group with the higher
posterior probability.

Populating the Diagnostic Matrix with a
Bootstrap Estimator (Contents of Table 6)
A bootstrap (67) can be used to determine the value of the diag-
nostic metrics, and the corresponding confidence intervals. The
procedure used here is similar to the bootstrap cross validation
scheme for small sample sizes implemented by Jiang et al. (73).
A procedure for finding the best estimate of Sensitivity from
the available data is described here. The procedure immediately
generalizes to other measures of diagnostic efficacy.

As before, this presentation describes a dichotomous classifi-
cation using a single continuous variable between two groups,
clinically stable participants and participants presenting delayed
onset PTSD. {Sj}NS

j=1 is the set of values of this measure obtained
from clinically stable participants. There areNS elements. {Cj}Nc

j=1
is the set of values obtained from participants who convert to the
PTSD-positive state. There are NC values. A single iteration of the
bootstrap proceeds as follows:

1. NC +NS elements are drawn randomly with replacement from
the combined set {Sj}NS

j=1 ∪ {Cj}NC
j=1. This set of randomly

drawn elements is denoted by {Bj}NS+NC
j=1 , the bootstrap sam-

ple. Typically, the bootstrap sample will contain repeated val-
ues. It is possible that the bootstrap sample does not contain
an element from either set {Sj}NS

j=1 or set {Cj}Nc
j=1. If this
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occurs, this iteration of the bootstrap is ignored. Additionally,
depending on the classifier used, a minimum number of dis-
tinct values from {Sj}NS

j=1 and {Cj}Nc
j=1 will be required to

construct the classifier. For example, the classifier based on
Gaussian population densities will require at least two distinct
elements from each set. If this minimum requirement is not
satisfied this iteration of the bootstrap is ignored and the
process returns to the beginning of Step 1. Also, if there is not
at least one element of {Sj}NS

j=1 and one element of {Cj}Nc
j=1 in

the set of elements that will be classified, the randomization is
rejected and the process returns to the beginning of Step 1.

2. The class membership of each element of {Bj}NS+NC
j=1 is known.

Use {Bj}NS+NC
j=1 to construct a classifier.

3. Use this classifier to classify all members of the combined
set {Sj}NS

j=1 ∪ {Cj}NC
j=1 not in {Bj}NS+NC

j=1 , namely {{Sj}NS
j=1 ∪

{Cj}NC
j=1}\{Bj}NS+NC

j=1 . The results of this classification are used
to calculate NTP, NFP, NFP, NTN specific to this bootstrap
sample. Though in the general case, it is possible, but unlikely,
that {{Sj}NS

j=1∪{Cj}NC
j=1}\{Bj}NS+NC

j=1 is the null set, this will not
occur in the present application because of the constraints on
the randomization put in place in Step 1.

4. Sensitivity and other measures of diagnostic efficacy for this
iteration of the bootstrap are then calculated using standard
formulas.

This process is repeated until NB values of Sensitivity are
obtained. This may require more than NB iterations of the boot-
strap if the requirements of the random sample outlined in Step 1
are not met.

The average value of sensitivity, computed from theNB success-
ful iterations of the bootstrap is the best available estimate from
{Sj}NS

j=1 and {Cj}Nc
j=1. The confidence interval of sensitivity can be

determined from the distribution of the NB values of sensitivity.
For example, suppose that sensitivities are calculated from 2,000
bootstrap samples and suppose that the 95% confidence interval is
to be determined. Rank order the values of sensitivity. The lower
bound of the confidence interval is the 50th element, and the
upper bound is element 1950th.

This leaves the specification of NB as an open question. This
is not a question that has a single answer (68, 69). The required
number of iterations will depend on what is being estimated
and the properties of the underlying distribution. A convention
in the community regards NB = 1,000 as a lower bound. As an
operational suggestion the estimate of sensitivity, for NB = 1,000
and NB = 2,000 can be compared. NB should be large enough to
give a stable value of sensitivity. NB = 2,000 was used in these
calculations.

This is a constrained randomization. At least two distinct ele-
ments of each class (Stables and Converters) must be in the set

used to construct the classifier (the Training Set, {Bj}NS+NC
j=1 ). At

least one element of each class must be in the set that is classified
(the Testing Set = {Sj}NS

j=1 ∪ {Cj}NC
j=1\{Bj}NS+NC

j=1 ). Because at
least one element of {Cj}Nc

j=1 is classified, there will be at least one
true positive (a converter assigned into the converter group) or
one false negative (a converter classified into the stable group).
Sensitivity may be 0 (NTP = 0), but it will not be singular because
NTP +NFN ̸= 0. Because there are only five elements of {Cj}Nc

j=1
and two are used to build the classifier, NTP is, however, fre-
quently 0, and Sensitivity= 0 is therefore a frequent result from
an iteration of the bootstrap. Additionally in many other cases,
NTP ̸= 0, but NFN = 0 giving Sensitivity= 1. This explains the
confidence interval of [0,1].

Because at least one element of {Sj}NS
j=1 will be classified, there

is at least one true negative or one false positive. Therefore,
since NTN +NFP ̸= 0, specificity will be defined at each iteration
of the bootstrap. In contrast with Sensitivity, because {Sj}NS

j=1
is a much larger set, Specificity typically shows values different
from 0 to 1.

The positive likelihood ratio is undefined if Specificity is equal
to 1. As noted in the preceding paragraph this is unlikely, but it is
possible. The negative likelihood ratio is undefined if Specificity is
equal to 1. This frequently occurs with these data. The diagnostic
odds ratio is undefined if either Specificity or Sensitivity is equal
to 1. Glas et al. [(70), p. 1131] suggests adding 0.5 to all four
elements of the diagnostic matrix in those applications where
undefined values of the diagnostic ratios are likely to occur. This
was done in these calculations.

Sample Size Requirements for Measures of
Diagnostic Efficacy
Sample size requirements for sensitivity and specificity assess-
ments can be computed using an argument based on Hoeffding’s
inequality [(72, 79), p. 65]. If α is the significance level for a
confidence interval of length 2Δ, we require

α ≤ 2e−2NΔ2

giving

N ≥ − ln(α/2)
2Δ2

The sample size required for a ±0.1 sensitivity estimate with 95%
(α = 0.05) confidence is seen to be N ≥ 185. It should be stressed
that this is an estimate of sensitivity. N in this equation is the
number of individuals in the sample who are disease positive. If
the prevalence of the disorder in the enrollment population is 10%,
then an enrollment ≥1,850 is required.
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