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ABSTRACT
RNA-protein interactions (RPIs) play a very important role in a wide range of post-transcriptional
regulations, and identifying whether a given RNA-protein pair can form interactions or not is a
vital prerequisite for dissecting the regulatory mechanisms of functional RNAs. Currently, expen-
sive and time-consuming biological assays can only determine a very small portion of all RPIs,
which calls for computational approaches to help biologists efficiently and correctly find candi-
date RPIs. Here, we integrated a successful computing algorithm, conjoint triad feature (CTF), and
another method, chaos game representation (CGR), for representing RNA-protein pairs and by
doing so developed a prediction model based on these representations and random forest (RF)
classifiers. When testing two benchmark datasets, RPI369 and RPI2241, the combined method
(CTF+CGR) showed some superiority compared with four existing tools. Especially on RPI2241, the
CTF+CGR method improved prediction accuracy (ACC) from 0.91 (the best record of all published
works) to 0.95. When independently testing a newly constructed dataset, RPI1449, which only
contained experimentally validated RPIs released between 2014 and 2016, our method still
showed some generalization capability with an ACC of 0.75. Accordingly, we believe that our
hybrid CTF+CGR method will be an important tool for predicting RPIs in the future.
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Introduction

RNA-Protein Interactions (RPIs) play significant
roles in various post-transcriptional regulation pro-
cesses, such as RNA splicing, RNA transport, RNA
replication, and mRNA translation [1–9]. A variety
of functional RNAs, such as microRNAs (miRNAs),
long non-coding RNAs (lncRNAs) and enhancer
RNAs (eRNAs), usually work biologically through
RNA-Protein Complexes (RPC) formed by the inter-
actions between RNA binding proteins (RBPs) and
these RNA macromolecules. Invalid interactions or
mispairing could lead to human disease [10,11] or
pathogen resistance in plants [12,13]. Therefore,
determining whether a given RNA and a given
RNA binding protein can form interactions or not
is an essential prerequisite for dissection of RNA
functions and regulatory mechanisms.

It is commonly believed that the best way to
identify PRIs is to obtain the crystal structure of
RPC by X-ray crystallography or Nuclear magnetic
resonance (NMR) spectroscopy [14,15]. Nowadays,
there are 1973 RPI complexes available in the Protein

Data Bank (PDB, as of March 2017), which contains
over 15,000 protein chains and more than 3,000
RNA chains. However, according to research using
high-throughput sequencing techniques (such as
RNA-Seq), at least 30,000 lncRNAs were identified
by 2013 [16]. This number will increase rapidly every
year, and specifically, studies have identified over
60,000 eRNAs in 2015 [17,18]. Obviously, the major-
ity of those are not partnered with their target pro-
teins (if they have partners), which calls for in silico
prediction of RPIs.

With the rapid development of both high-
throughput sequencing techniques and
machine-learning algorithms, an increasing
number of biological problems demand bioinfor-
matic methods to achieve satisfactory solutions.
However, in the area of RPI identifications, the
research history is brief, and there are not many
existing computational tools [19–28] because of
the scarcity of available data.

The earliest work came from Pancaldi and Bähler
in 2011 [19], who analysed the relationship between
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40 RBPs and their target mRNA for 11 properties
(more than 100 unique properties in total) and then
trained support vector machine (SVM) and random
forest (RF) classifiers using these properties to pre-
dict the interactions between RBPs and mRNA. In
the same year, Bellucci et al. [20] developed a tool,
called catRAPID, to give rapid predictions of RPIs by
training on 592 RNA-protein pairs from the PDB.
They used the physicochemical properties of
sequences as features and found three most predic-
tive features: secondary structure propensities,
hydrogen bonding, and van der Waals [20].
Thereafter, Muppirala et al. [21] employed an idea
from the Protein-Protein Interaction (PPI) predic-
tion area, called Conjoint Triad Feature (CTF), to
formulate protein sequences and then used normal-
ized 4-gram frequencies to encode RNA sequences.
They also constructed two benchmark datasets,
called RPI369 and RPI2241, from PRIDB (a database
of protein-RNA interfaces) [22] and achieved
remarkable prediction accuracies by using CTF and
4-gram features on these two datasets. Two years
later, Wang et al. [23] proposed a novel extended
naive-Bayes-classifier to predict RPIs using the simi-
lar features of Muppirala et al. [21] Similar to
catRAPID, Lu et al. [24] used the secondary struc-
ture, hydrogen-bonding, and the Van der Waals’
propensities as features and then employed matrix
multiplication to give a score for each protein-
lncRNA pairs obtained from the PDB database.

In 2015, Suresh et al. [25] integrated sequence
information and predicted structure together to pro-
duce an accurate prediction of non-coding RNA-pro-
tein pairs on a newly-constructed dataset, called
RPI1807. When tested on the RPI369 and RPI2241
datasets mentioned above, some improvements were
achieved on prediction accuracies. Recently, Corrado
et al. [26] developed a recommender system, named
RNAcommender, to suggest candidate mRNA targets
to the givenRBPs by considering the domain informa-
tion of proteins and predicted the structural informa-
tion of RNAon datasets from theAURA2, [27] which
is a comprehensive database of experimentally deter-
mined interactions between transcription factor and
human and mouse UTRs (untranslated regions in
mRNAs). In 2016, Akbaripour-Elahabad et al. [28]
integrated repetitive patterns and sequence motifs
together with other traditional sequence composition
features to predict RPIs, and the comparisons with

other methods showed improvements on several of
the datasets used previously.

Here, we propose a novel strategy by which
integration of the successfully used CTF features
and other important protein features, called
chaos game representation (CGR), provides an
accurate prediction of RPIs. To the best of our
knowledge, there have been no reports in the
area of RPI prediction that used the combination
of CTF + CGR. CTF is a fundamental group of
features to recognize the interaction of RNA and
proteins and was shown to be successful in the
majority of published prediction tools
[21,23,25,28]. Furthermore, CGR is an important
group of features for protein studies and
achieved remarkable results in many prediction
tools [29–33]. Detailed comparisons with existing
tools using RPI369 and RPI2241 demonstrated
that the combinations of these two features
indeed got achieved improvements, suggesting
that our prediction model will be an important
tool for RPI prediction.

Results

Predicting rpis with CTF and CGR

In this study, we focused on how to use CTF +
CGR methods for predicting RPIs. The first task
was to transform the raw protein and RNA
sequences into appropriate numerical vectors,
which can represent intrinsic properties of their
interactions. Here, we studied five different groups
of representations of protein and RNA sequences
and tried to determine which representation was
optimal for predicting RPIs. After that, another
important task was to choose a powerful
machine-learning algorithm or a classifier to dis-
criminate true RPIs and non-RPIs based on the
above representations. We employed random for-
est as our classifier, which had been proven as a
successful tool for predicting RPIs [21,24,28].
Additionally, the 10-fold cross validation test was
adopted for testing the prediction ability of five
different models.

For the first model, we used the fundamental
feature set, Amino Acid Composition (AAC, 20-
dimension), for protein combined with Nucleotide
Composition (NC, 4-dimension) for RNA as the
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background for comparisons. Then, four feature
sets (CTF, CGR, CTF + CGR and CTF + CGR +
AAC + NC) were run with RF to show the pre-
diction results. Note that for CTF, the feature set
contains 343 features of CTFprotein and 256 fea-
tures of CTFRNA (for details of these 256 features,
please see the subsection ‘Features of RNAs for
prediction-Conjoint triad feature’), which leads to
599 features (i.e., 343 + 256) in the total CTF
feature set. Similarly, for CGR, the feature set
contains 24 features of CGRprotein and 16 features
of CGRRNA (for details of these 16 features, please
see the subsection ‘Features of RNAs for predic-
tion- Chaos game representation’), which counts
40 features (i.e., 24 + 16) of CGR feature set.
Finally, CTF + CGR feature set simply takes the
CTF feature set and the CGR feature set together
to form a combined feature set which contains 639
features (599 + 40) in total, and CTF + CGR +
AAC + NC feature set takes the first three feature
set together, which leads to 663 features
(599 + 40 + 20 + 4) in all. Importantly, we used
RF classifier separately on each feature representa-
tion as the training matrix and evaluated the cor-
responding predicting performance of each feature
representation.

We listed the detailed prediction results for
RPI369 dataset in Table 1, from which the funda-
mental feature set AAC + NC clearly demon-
strated the highest prediction accuracy (ACC)
with 0.6965. The feature set CTF produced a satis-
factory result with ACC of 0.7954, which per-
formed much better than AAC + NC.
Interestingly, the prediction accuracy increases to

0.7995 with the combination of CTF + CGR,
which implies that CTF and CGR are two comple-
mentary feature sets.

Similarly, we listed the prediction results on
RPI2241 dataset in Table 2, from which we could
find analogous patterns: the prediction accuracy of
AAC + NC was lowest (ACC = 0.8134), and CTF
+ CGR + AAC + NC achieved better ACC of
0.8536. The encouraging result of CTF + CGR
showed that the combination got significant
improvement with ACC of 0.9520, which further
confirmed that CTF and CGR were a powerful
combinatory feature set for RPI prediction.

We generated the ROC curves for the five models
on RPI369 (Figure 1(a)) and RPI2241 (Figure 1(b)).
The resulting AUC values showed some interesting
results: on RPI369 dataset, the ACC value of a
combination of CTF + CGR was optimal with
0.7995, but the AUC value was only 0.7842, which
was smaller than that of CTF (0.8295). When turn-
ing to RPI2241 dataset, the AUC value of a combi-
nation of CTF + CGR achieved 0.9722, which was
much larger than that of CTF (0.9163). The conclu-
sion remains consistent comparing either AUC or
ACC value, and the relatively low value of the
combination of CTF + CGR can be explained by
fewer samples in the RPI369 dataset.

The two parameters (ntree and mtry) in the RF
models vary significantly between the different
datasets. For example, the value for mtry (the num-
ber of input variables randomly chosen at each
split) is 476 for CTF, 15 for CGR, and 442 for the
combination. Recall that the total dimensions of
CTF, CGR and the combination are 599, 40 and

Table 1. Results in predicting RPIs on RPI369 dataset (10-fold cross-validation test).
Feature set Dim Sens Spec ACC MCC AUC ntree mtry

AAC+NC 20 + 4 = 24 0.6856 0.7073 0.6965 0.3930 0.7011 372 17
CTF 343 + 256 = 599 0.8211 0.7696 0.7954 0.5916 0.8295 487 476
CGR 24 + 16 = 40 0.7019 0.7317 0.7168 0.4338 0.7559 338 15
CTF+CGR 599 + 40 = 639 0.8211 0.7778 0.7995 0.5995 0.7842 489 442
CTF+CGR +AAC+NC 599 + 40 + 20 + 4 = 663 0.7466 0.8010 0.7724 0.5500 0.8198 327 142

Table 2. Results in predicting RPIs on RPI2241 dataset (10-fold cross-validation test).
Feature set Dim Sens Spec ACC MCC AUC ntree mtry

AAC+NC 20 + 4 = 24 0.7964 0.8298 0.8134 0.6268 0.8791 437 10
CTF 343 + 256 = 599 0.8415 0.8568 0.8492 0.6984 0.9163 426 406
CGR 24 + 16 = 40 0.7964 0.8659 0.8316 0.6643 0.8867 422 9
CTF+CGR 599 + 40 = 639 0.9192 0.9848 0.9520 0.9060 0.9722 482 104
CTF+CGR +AAC+NC 599 + 40 + 20 + 4 = 663 0.8405 0.8667 0.8536 0.7073 0.9163 385 306
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639, respectively; the value of 476 of mtry in the
model CTF implies that 476 important features
among the total 599 features are selected as the
optimal feature set to reach the best prediction
result. RF selects 476 optimal features among all
the 599 features, which means the unselected fea-
tures are substitutable and the reasons might be the
high correlations between the selected features.
Interestingly, the value of mtry falls to 442 and
does not equal 491 (476 + 15) when we combine
CTF and CGR (the total number of features reaches
to 639). Note that the values of mtry of CTF and
CGR are 476 and 15 respectively, which means RF
selects 476 significant features fromCTF and selects
15 ones from CGR. Intuitively, one expect the value
of mtry of the combination will be 491 (476 + 15),
but the exact value of mtry is 442 that is much
smaller. The reason might be the correlations
between 476 selected features of CTF and 15
selected features of CGR, which makes RF select
representative 442 features of the combination.
Together with the best ACC of 0.7995 among all
the feature sets, this result implies that CTF and
CGR are truly complementary feature sets and that
the combination further compresses the redundant
information to reach the best prediction result.

Comparisons with existing methods

To show the superiority of our method, comprehen-
sive comparisons with four existing tools (Muppirala

et al [21]., Wang et al [23]., RPI-Pred [25], rpiCOOL
[28]) were listed in Table 3. Among existing predic-
tion methods, RPI-Pred [25] performed best of those
tested on the RPI369 dataset, and rpiCOOL [28]
performed better than others on the RPI2241dataset.
Table 3 shows that our method achieved the second
rank when testing on RPI369, and encouragingly, our
method ranked first when testing on RPI2241. As
RPI369 only contained 369 RNA-protein interaction
pairs, the models developed on this small sample size
will not guarantee generalization capability. In con-
trast, models developed on RPI2241 used more train-
ing samples and will be more reliable for prediction
on blind samples (the samples with no experiment
information). On this point, because our method
achieved the best prediction accuracy of 0.95 on
RPI2241, we believe that our method outperforms
the four existing prediction tools.

Discussion

To test the generalization ability of our model,
we constructed a new dataset, named RPI1449,

Figure 1. ROC curves of five groups of features on RPI369 (A) and RPI2241 (B).

Table 3. Comparisons with four existing tools.

Tools

RPI369 RPI2241

ACC MCC AUC ACC MCC AUC

Muppirala et al. [21] 0.76 – – 0.90 – –
Wang et al. [23] 0.77 0.46 – 0.76 0.42 –
RPI-Pred [25] 0.92 – 0.95 0.84 – 0.89
rpiCOOL [28] 0.80 0.60 0.88 0.91 0.81 0.97
Our method 0.80 0.60 0.78 0.95 0.91 0.97
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to test our model independently. Similar to pre-
vious strategies [24,25], we searched the PDB
database (http://www.pdb.org) for complexes
that only contains protein chains and RNA
chains; 1973 protein-RNA complexes were dis-
played during the search results. To avoid over-
laps between RPI369 and RPI2241, we chose
only a subset of those complexes that were
reported from 1 January 2014 to 31 December
2016. This way, 849 complexes were selected and
advanced to the next step. To achieve statistical
significance, we removed pairs of protein and
RNA chains that were simultaneously shorter
than 25 amino acids and 10 bases, respectively.
To correctly select RNA-protein pairs that have
real interactions, we employed the same strategy
as Suresh et al [25]. to confirm that a given
protein chain and RNA chain had physical inter-
actions by identifying at least two atoms, one
from protein and another from RNA, with an
intermolecular distance less than 3.4 Å. From
the above three criteria, 1449 RNA-protein
pairs (in dataset RPI1449) were considered as
the independent test dataset (see Table 4).

For a blind independent test, all the 1449 newly
built RNA-protein pairs were put into the prediction
model, which was previously developed based on
the RPI2241 dataset, and then recorded the corre-
sponding prediction accuracy. Note that RPI2241
was built in 2011, while 1449 RNA-protein pairs
were constructed based on the RNA-protein com-
plexes that were released between 2014 and 2016 in
the PDB database. Therefore, no overlap exists
between these two datasets, and the experiment is
called the blind independent test. We compared our
prediction result with the method of Muppirala et al
[21]. on the independent test using the measure-
ment of accuracy. The comparison results are
shown in Table 4, which indicate that 1092 out of
1449 RNA-protein pairs were correctly predicted in
the independent test, leading to a predicting

accuracy of 0.7536. This value is about 3% higher
than the accuracy rate produced using the method
of Muppirala et al., which implies that our predic-
tion model has generalization capability.

Materials and methods

Datasets

In this paper, we used two datasets for training
and testing. Now, RPI369 and RPI2241 are two
famous benchmark datasets that were used in
many previous studies [23–25,28] for comparison.
Here, we also use RPI369 and RPI2241 for training
and testing our method. To download RPI369 and
RPI2241 or inquire about detailed information,
one can refer to Muppirala et al [21].

Features of proteins for prediction

For feature extraction of protein sequences, each
protein chain was formulated as a numerical vec-
tor that would be input into RF for classification.
Here, we employed the following two methods for
representing the protein chains:

1. Conjoint triad feature
Conjoint triad feature (CTF) was a successful

method for PPI prediction for its powerful ability
to detect interaction interfaces [34] and was first
applied to predict RPI by Muppirala et al [21].,
which produced some satisfactory results. It is
noteworthy that almost all the subsequent studies
used CTF as sequence features, or at least a part of
features [23–25,28], and it has since become a
dominant method in RPI prediction.

Specifically, CTF divides all 20 amino acids into
seven groups ({AGV}, {ILFP}, {YMTS}, {HNQW},
{RK},{DE}, {C}) according to their physicochem-
ical properties and then considers all the amino
acids in the same group as identical. Then, CTF
considers all sets of three successive amino acids

Table 4. Independent testing dataset and predicting result.

Data
sources

RNA-protein complexes in PDB
database Independent testing dataset RPI1449

Comparisons of predicting results

Muppirala et al. [21] Our test result

2014 378 1449 RNA-protein pairs after
preprocessing

ACC: 1042/
1449 = 0.7191

ACC: 1092/
1449 = 0.75362015 221

2016 250
Total 849
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(triad) within a given protein sequence and counts
the triad frequencies by computing the occurrence
numbers of all 343 triads (7 × 7 × 7) (Figure 2).

Mathematically, we denote a protein sequence P
with length L as

P ¼ P1P2P3 � � � PL: (1)

Then, we consider all the successive three amino
acids in P, that is P1P2P3,P2P3P4, � � � P3P4P5, . . .,
PL�2PL�1PL, The CTFprotein is defined as the nor-
malized frequency of each triad in P, i.e.,

CTFprotein ¼ ½f1; f2; f3; � � � ; f343�T (2)

where fi ¼ mi
L�2 , and mi is the occurrence number

of the i-th triad μi with each iði ¼ 1; 2; � � � ; 343Þ.
As a result, CTFprotein encodes each protein
sequence into a 343-dimensional numerical vector.

2. Chaos game representation
Chaos game representation (CGR) is another

important method to formulate protein sequence
and was also successfully used in many protein
studies [29–33]. It originally applied the idea of
Iterated Function System (IFS) from the fractal
theory for generating CGR picture of DNA
sequence in 1990 [35], and then was employed to
generate CGR picture of protein sequence in 1997
[36]. Thereafter, several research studies have
focused on how to extract useful features from
CGR picture and showed that those extracted fea-
tures played important roles in some protein stu-
dies [29–33]. Here, we adopt one group of the
used features, called CGR-24, to formulate protein
sequences [31–33].

More precisely, we first draw a 12-sided regular
polygon with each vertex representing a specific
group of amino acids (Figure 3). Then, we set the
centre of polygon as the initial point, and when
we read an alphabet from a given protein
sequence with length L in order, a new point
was drawn half way between the initial point

and the vertex labelled by this alphabet. Next,
we set the point just drawn to be the new initial
point, and subsequently, L points can be drawn
with such iteration.

Mathematically, the coordinates of all 12 ver-
texes (Vkðx; yÞ; k ¼ 1; 2; � � � 12) can be computed
as (V1ð1; 0Þ as the first vertex of the polygon):

VkðxÞ ¼ cos k�1
6 π

VkðyÞ ¼ sin k�1
6 π

; k ¼ 2; 3; � � � 12:

�

The coordinates of L successively-drawn points
(CGRiðx; yÞ; i ¼ 1; 2; � � � ; L) can be given by:

CGRiðxÞ ¼ 1
2 ðCGRi�1ðxÞ þ ViðxÞÞ

CGRiðyÞ ¼ 1
2 ðCGRi�1ðyÞ þ ViðyÞÞ ; i ¼ 1; 2; 3; � � � L:

�

Finally, we divide the whole polygon into 24 segments
that are labelled in Figure 3, and CGR-24 counts the
point frequencies of all 24 segments. Under this pro-
cedure, CGR-24 transforms a given protein sequence
into a 24-dimensional numerical vector. For more
detailed information of CGR-24 features, one can
refer to some previous studies [31–33].

Features of RNA for prediction

In this section, we describe how to formulate RNA
chains by CTFRNA and CGR-16 methods.

1. Conjoint triad feature

Figure 2. CTF picture of protein.

Figure 3. CGR picture of protein. The segments labelled serially
with numbers 1-24.
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Similar to the algorithm of protein, CTF of a
RNA chain considers all the successive four bases
in a given RNA sequence and counts the occur-
rence frequencies of all 4 × 4 × 4 × 4 = 256 4-mer
types (Figure 4). Mathematically, we denote a
RNA sequence ω with N bases as

ω ¼ R1R2R3 � � � RN: (1)

Then, we consider all the successive four bases in ω,
that is R1R2R3R4,R2R3R4R5, � � � ;RN�3RN�2RN�1RN .
The CTFRNA features is defined as the normalized
frequency of each 4-mer in ω, i.e.,

CTFRNA ¼ ½f1; f2; f3; � � � ; f256�T; (2)

where fi ¼ ni
N�2 , and ni is the occurrence number

of the i-th 4-mer νi with each iði ¼ 1; 2; � � � ; 256Þ.
This way, CTFRNA encodes each RNA sequence
into a 256-dimensional numerical vector.

2. Chaos game representation
The drawing algorithm of CGR picture of

RNA is almost the same as that of protein,
and the only difference is that the 12-sided
regular polygon is replaced by a square with

four vertexes representing A, C, G, U
(Figure 5).

Mathematically, the coordinates of four vertexes
are denoted as V1ð0; 0Þ,V2ð1; 0Þ,V3ð1; 1Þ,V4ð0; 1Þ,
and the coordinates of successively-drawn points
can be given by:

CGRiðxÞ ¼ 1
2 ðCGRi�1ðxÞ þ ViðxÞÞ

CGRiðyÞ ¼ 1
2 ðCGRi�1ðyÞ þ ViðyÞÞ ; i ¼ 1; 2; 3; � � � N:

�

Finally, we divide the whole square into 16 seg-
ments, as is shown in Figure 5, and then CGR-16
counts the occurrence frequencies of all 16 seg-
ments. More precisely, all 16 segments are denoted
by Sk; k ¼ 1; 2; � � � ; 16, and also denote Lk; k ¼
1; 2; � � � ; 16 to be the number of points that fall
into Sk. Then set

Dk ¼ Lk
N
; k ¼ 1; 2; � � � ; 16; (3)

to be the occurrence frequencies of all 16 segments.
This way, CGR-16 encodes each RNA sequence as a
16-dimensional vectorðD1;D2; � � � ;D16Þ.

Random forest

Random forest (RF) is a popular machine-
learning method for classification or regression
tasks. There are two advantages of RF: 1) easy
training that requires researchers to tune only
two internal parameters, ‘ntree and mtry’ dur-
ing the training approach, and 2) powerful pre-
diction ability on various datasets when

Figure 4. CTF picture of RNA.

Figure 5. CGR picture of RNA. The segments labelled serially with numbers 1-16.

248 H. WANG AND P. WU



comparing other machine-learning or statistical
methods. These properties have helped make
RF become one of the most successful
machine-learning tools in the last two decades.
Actually, it is an ensemble machine learning
method whose prediction result is voted by a
certain number of decision trees. Each tree is
independently constructed with a bootstrap
sample of the training set. Additionally, com-
prehensive theory and wide applications of RF
can be found in a famous paper written by
Breiman [37]. Here, we adopt a MATLAB tool-
box of RF, which is available at http://code.
google.com/p/randomforest-matlab/, to train
and test our model. We chose the optimal
combination of the two parameters of ‘ntree’
in [300,500] and mtry in [1,n] (n is the number
of the total features in that dataset) and
adopted the grid optimization to find the
globe optimal solution.

Evaluation of the prediction performance

For evaluating the predicting performance, we
adopted 10-fold cross-validation [38] to examine
its’ effectiveness. Additionally, performance of our
predictor is quantitatively measured by the follow-
ing common-used indexes: sensitivity (Sens), spe-
cificity (Spec), accuracy (ACC) and Matthew’s
correlation coefficient (MCC) value, which are
calculated as:

Sens ¼ TP
TPþFN

Spec ¼ TN
TNþFP

ACC ¼ TPþTN
TPþFPþTNþFN

MCC ¼ TP�TN�FP�FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþFNÞðTPþFPÞðTNþFPÞðTNþFNÞ

p

8>>><
>>>:

(11)

Importantly, the ROC curves and the correspond-
ing area under the curve (AUC) is another impor-
tant index for testing the balance between true
positive and false positive rates. In total, we used
five indexes (Sens, Spec, ACC, MCC, AUC) for
comprehensively measuring the predicting perfor-
mance of a given predictor (see Tables 1 and 2).

Conclusion

In this paper, we integrated CTF and CGR to give
appropriate representations of RNA-protein

interaction pairs and developed a prediction
model of RPIs based on these representations
and random forest. A number of previous studies
all used CTF as representations of RNA-protein
pairs and achieved remarkable prediction perfor-
mances [21,23,25]; CTF was considered the most
important feature for RPI prediction. Up to this
point, our work has shown that prediction perfor-
mance can be significantly improved by adding
CGR representations, which is the most significant
finding of our current study.

For detailed information of prediction results,
when training and cross validating two benchmark
datasets, RPI369 and RPI2241, the combined repre-
sentation of CTF + CGR achieved the best predic-
tion performance. Compared with four existing
tools [21,23,25,28], the prediction model con-
structed from the combinatorial features of CTF +
CGR showed some improvements, especially on
RPI2241. Furthermore, a new independent testing
dataset, RPI1449, was built using new experimen-
tally validated RNA-protein interactions, and a
blind independent test was performed. The corre-
sponding prediction accuracy of 0.7536 demon-
strated that our method has some generalization
capability. In conclusion, the combinational repre-
sentation of CTF + CGR appears to be a powerful
method for RPI prediction, and our model based on
CTF + CGR and random forest may prove to be an
important tool for prediction of RPIs.
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Acronyms

• RNA-protein interactions (RPIs)
• prediction accuracy (ACC)
• RNA-Protein Complex (RPC)
• Conjoint Triad Feature (CTF)
• Chaos Game representation (CGR)
• RNA-Protein Complex (RPC)

BIOENGINEERED 249
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• RNA Binding Proteins (RBPs)
• long non-coding RNA (lncRNA)
• microRNA (miRNA)
• enhancer RNA (eRNA)
• Amino Acid Composition (AAC, 20-dimension)
• Nucleotide Composition (NC, 4-dimension)
• untranslated regions in mRNAs (UTRs)
• Nuclear magnetic resonance (NMR)
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