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A high incidence of secondary Klebsiella pneumoniae and Staphylococcus aureus infection
were observed in patients with severe COVID-19. The cause of this predisposition to infection
is unclear. Our data demonstrate consumption of complement in acute COVID-19 patients
reflected by low levels of C3, C4, and loss of haemolytic activity. Given that the elimination of
Gram-negative bacteria depends in part on complement-mediated lysis, we hypothesised
that secondary hypocomplementaemia is rendering the antibody-dependent classical
pathway activation inactive and compromises serum bactericidal activity (SBA). 217
patients with severe COVID-19 were studied. 142 patients suffered secondary bacterial
infections. Klebsiella species were the most common Gram-negative organism, found in 58
patients, while S. aureus was the dominant Gram-positive organism found in 22 patients.
Hypocomplementaemia was observed in patients with acute severe COVID-19 but not in
convalescent survivors threemonths after discharge. Sera from patients with acute COVID-19
were unable to opsonise either K. pneumoniae or S. aureus and had impaired complement-
mediated killing of Klebsiella. We conclude that hyperactivation of complement during acute
COVID-19 leads to secondary hypocomplementaemia and predisposes to
opportunistic infections.
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INTRODUCTION

Coronavirus disease 2019 (COVID-19), a predominantly respiratory disease caused by Severe Acute
Respiratory Syndrome-Coronavirus type 2 (SARS-CoV-2), is responsible for the current global
health pandemic, with a high rate of mortality, especially among the elderly and patients with
underlying medical conditions (1). Secondary bacterial infections with different microbial
org April 2022 | Volume 13 | Article 8417591
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pathogens such as Streptococcus pneumoniae, Klebsiella
pneumoniae, Haemophilus influenzae, Escherichia coli,
Staphylococcus aureus, and Aspergillus have been reported
during COVID-19 (2). The mechanisms involved in the
increased risk of secondary infection are likely multifactorial
including known underlying risk factors for infection such as
immune deficiency, gastric reflux/aspiration and gut ischaemia
associated with severe disease, and the use of catheters and lines
to support critical care management provides a portal for
infection and sustained colonisation. Lung tissue injury
through SARS-CoV-2 infection may facilitate bacterial
colonisation, resulting in airway dysfunction, cytopathology,
tissue destruction and damage to the protective mucosa in the
lung, exacerbating disease severity and increasing the risk of
septicaemia and admission to the intensive care unit (ICU) (3).
In the acute inflammatory phase of severe COVID-19, a
secondary innate and adaptive immune incompetence is likely
to increase the risk of secondary infections. It is well established
that sepsis can impair many aspects of immune functions (4) K.
pneumoniae is a Gram-negative opportunistic pathogen that
causes serious pathology such as pneumonia, septicaemia,
urinary tract infection (UTI) and pyogenic liver abscesses (5).
The incidence of Klebsiella infection is increasing, with the
highest incidence in older age groups, as has recently been
reported in England (https://assets.publishing.service.gov.uk/
government/uploads/system/uploads/attachment_data/file/
615375/hpr1817_klbsll.pdf).

The clinical management of secondary K. pneumoniae infections
became a serious issue during the COVID-19 pandemic because
Klebsiella strains (and possibly other opportunistic pathogens) have
developed mechanisms to resist a wide range of antimicrobial
agents, such as b-lactams, aminoglycosides, quinolones, and
polymyxins (6). Although antibiotic treatment of patients infected
with K. pneumoniae may reduce bacterial load, most antibiotics
offer insufficient protection from organ damage resulting from an
exaggerated immune response. K. pneumoniae produces a wide
range of virulence factors, such as capsular polysaccharides and
lipopolysaccharide (endotoxins), and leads to biofilm formation
(mucoid layer), all of which increase the pathogenicity of the
bacteria (7). The contribution of the mucoid layer to the
pathogenicity of K. pneumoniae strains has been reported to
increase the resistance to phagocytosis and serum killing activity
by preventing direct complement activation on the bacterial surface
(7). As such, an anti-capsular antibody is required to enable
complement fixation and optimal bacterial clearance of mucoid
strains. Mucoid strains of K. pneumoniae are normally responsible
for invasive disease and community-acquired pneumonia, whereas
non-mucoid strains of Klebsiella are less virulent (8).

Staphylococcus aureus is a Gram-positive opportunistic
bacterium causing infections that vary from superficial skin
infection to life-threatening invasive disease including
pneumonia and sepsis (9). The transition from an opportunistic
commensal to an invasive pathogen requires evasion from the
immune defence and the ability of the bacterium to exploit
different niches within the host. Secondary infections caused by
S. aureus and methicillin-resistant Staphylococcus aureus (MRSA)
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are commonly feared, especially among immunocompromised
and severely ill patients as they contribute to further morbidity
and mortality (10). The increased risk for S. aureus infections
during COVID-19 was reported in previous studies showing an
association between secondary infections with S. aureus and
MRSA and mortality (10, 11).

The complement system is a major component of innate
immunity and plays a pivotal role in the prevention of invasive
microbial infections (12). The complement activation cascade is
initiated via three different pathways: the classical (CP), the lectin
(LP), and the alternative (AP) pathways (13, 14). Initiation of
complement activation converges in the generation of enzyme
complexes that cleave the most abundant complement
component C3, generating the activation fragments C3b and
C3a. While C3a is an anaphylatoxin, C3b binds covalently to
activating surfaces, like the surface of bacteria, to enhance their
uptake and removal by phagocytic cells. C3b binds in close
proximity of the C3 convertase complexes C3bBb and C4bC2a,
switching their substrate specificity from C3 to C5. C5 is split
into the anaphylatoxin C5a and the larger fragment C5b, which
initiates the formation of the terminal pathway and results in the
formation of C5b-9, ultimately leading to the insertion of this
complex – the membrane attack complex (MAC) – in the cell
wall, forming a channel-like pore composed of polymers of C9.
Membrane penetrating C5b-C9 complexes cause osmotic leakage
and lyse bacteria (15).

The first indication that complement is likely to be involved
in the inflammatory pathology of severe acute respiratory
syndrome coronavirus (SARS-CoV) infection was published
before the emergence of SARS-CoV-2 in a mouse model of
SARS-CoV-1 where gene-targeted C3-deficient mice were
protected from the significant weight loss and respiratory
dysfunction seen in C56BL/6J wildtype control mice infected
with an equivalent viral load (16).

Following the emergence of SARS-CoV-2 in 2019, it became
clear that some infected individuals can develop moderate, to
severe, to life-threatening forms of COVID-19 presenting as an
acute respiratory distress syndrome (ARDS), and an early
histopathology study in the tissue of patients that succumbed
to COVID-19 provided strong evidence of an intrinsic
involvement of complement activation and microangiopathies
in the pathophysiology of COVID-19 (17). Many articles have
been published since reporting the involvement of complement
in the pathophysiology of COVID-19, but how and through
which initiation pathway a substantial activation of complement
occurs is still elusive (18, 19).

Several previous studies reported the essential role of
complement activation during K. pneumoniae and S. aureus
(20–23). This report demonstrates that hyperactivation of
complement seen in every COVID-19 patient serum assessed
in the acute phase of severe disease leads to a secondary loss of
complement-dependent opsonisation of K. pneumoniae and S.
aureus and complement–mediated lysis of K. pneumoniae. The
findings of this study provide an explanation for the frequent
occurrence of opportunistic secondary infections with K.
pneumoniae and S. aureus in patients with severe COVID-19.
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MATERIALS AND METHODS

Clinical Data and Serum Samples
SARS-CoV-2 infected patients referred to the Royal Papworth
Hospital, Cambridge, UK for critical care were recruited to the
study.Clinical assessment andWHOcriteria scoring of severitywas
conducted following the ‘COVID-19 Clinical Management: living
guidance’. (COVID-19 Clinical Management: Living Guidance.
Available at: https://www.who.int/publications/i/item/WHO-
2019-nCoV-clinical-2021-1. 217 patients included in our study
were classified as severely ill (scoring between 3 and 7 in the
WHO severity score, see above). Blood and sputum cultures were
collected and processed using standard microbiological techniques
as part of routine clinical care. Bacteria were identified according to
UK standards for Microbiological investigations https://assets.
publishing.service.gov.uk/government/uploads/system/uploads/
attachment_data/file/800451/B_57i3.5.pdf. Serum samples were
taken at defined time intervals from hospital admission up to
convalescence from 25 severely ill patients (scoring between 4-7).
In this 25-patient group, there are 10 females and 15 males with an
average age of 51 years (ranging from 30-73 years). All critically ill
patients are at risk of venous thromboembolism and
dissemminated intravascular coagulation (DIC). A high incidence
of venous and arterial embolism (25-30%) has recently been
reported in COVID-19 patients (24, 25). Patients with the more
severe form of COVID-19 pneumonia display high D-dimers, low
antithrombin, high fibrinogen and sometimes abnormal
prothrombin time and activated thromboplastin time consistent
with DIC. To manage the risk of thrombosis, all patients in our
cohort received anticoagulant treatment throughout ICU stay and
hospitalisation (either infusion with heparin [4500 IU/day] for all
patients on extracorporeal membrane oxygenation (ECMO) or
with low-molecular-weight heparin [LMWH] at intermediate
doses of 50-60mg/day. To assess the impact of therapeutic doses
of heparin or LMWH in the patients’ sera as a limiting confounding
factor that might affect complement functional activity, we
compared normal human serum (NHS), heparinised plasma and
EDTAplasma in a C3b orC4b deposition assay onK. pneumoniae-
coated ELISA plates. In addition, the CH50 of NHS, heparinised
plasma (10 IU heparin/mL) or EDTA plasma (10mM EDTA) was
determined. No difference in complement functional activity was
observed (Figure S1), an observation underlined by recent
literature reporting that SBA against K. pneumoniae was not
diminished in heparinised (5 IU/mL) blood (26).

The NHS control group is composed of sera from 6 females
and 8 males with an average age of 47 years (ranging from 32 to
54 years). All NHS blood donors were tested negative for SARS-
CoV-2 prior to blood collection.

The study was approved by Research Ethics Committee
Wales, IRAS: 96194 12/WA/0148. Amendment 5. All
participants or legal consent representatives provided written,
informed consent prior to enrolment in the study. Sera from
non-infected healthy volunteers were used as a control (NHS).

Bacterial Strains
Mucoid (ATCC 43816) and non-mucoid (Ecl8) strains were
kindly provided by Dr. Sebastian Bruchmann, Department of
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Veterinary Medicine, University of Cambridge, UK.
Staphylococcus aureus (S. aureus) Newman strain D2C
(ATCC® 25904™) was purchased from ATCC.

Measurement of Serum Levels of
Complement Proteins and Complement
Activation Products
Circulating C5a and sC5b-9 levels were measured using a
sandwich ELISA kit supplied by R&D systems (Cat. No.
DY2037) and (BD OptEIA Human C5b-9 ELISA set).
Complement C3 and C4 levels were measured using Abcam
C3 and C4 ELISA kits.

Haemolytic Assay
2mL of packed sheep erythrocytes were washed 3 times using GVB
buffer (10mM barbital, 145mM NaCl, 0.1%w/v bovine gelatine)
containing 10mM EDTA. The final concentration of RBCs was
adjusted to 1x109/mL in the same buffer. RBCs were sensitised by
incubation with 10mg/mL anti-sheep RBCs at 37°C with gentle
shaking for 30minutes. Finally,RBCswerewashedwithGVBbuffer
containing 2mM Ca2+ and 1mM Mg2+ (GVB++). Serum samples
were serially diluted inGVB++ buffer in 96well plates and 107 RBCs
were added to each well. Wells receiving water were used as a
positive control to achieve 100% lysis of RBCs. Wells containing
buffer only were used as a negative control. After 1 h incubation at
37°C, plates were centrifuged and released haemoglobin was
measured at 405 nm. % RBCs haemolysis was calculated as
previously described (27). In some experiments the haemolytic
assay was performed using sera from acute COVID-19 patients
reconstituted with purified human C4 (10mg/mL). C4 was purified
from plasma given by healthy donors as previously described (28).

Complement Activation Assay
Maxisorp polystyrene microtiter ELISA plates were coated with
10mg/mL mannan or formalin-fixed K. pneumoniae or S. aureus
(OD600 = 0.6) in carbonate buffer (15mM Na2CO3, 35 mM
NaHCO3, pH 9.6). The next day, wells were blocked with 1% BSA
in TBS buffer (10mM Tris-HCl, 140mM NaCl, pH7.4) for 2 hours
then washed with TBS buffer containing 0.05% (v/v) Tween 20 and
5 mM CaCl2. NHS were diluted in BBS++ buffer (4mM barbital,
145mM NaCl, 2mM CaCl2, 1 mM MgCl2, pH 7.4) (starting from
1:100), added to the plate and incubated for 1 hour at 37°C then
washed. Deposition of C3b, C4b and C5b-9 was detected using
either rabbit anti-C3c (Dako), rabbit anti-C4c (Dako)or rabbit anti-
C5b-9 (Abcam), respectively, followed by peroxidase-conjugated
goat anti-rabbit IgG. After 1 hour, wells were washed and 100mL of
1-Step Ultra TMB Solution (Thermo Fisher Scientific) was then
added to each well and incubated for 5 minutes at room
temperature. The reaction was stopped by the addition of 2M
H2SO4 and the optical density at 450 nm was immediately
measured. To assess complement deposition via the alternative
pathway, ELISA plates coated with K. pneumoniae and S. aureus
were incubated with serial dilutions of NHS in EGTA buffer (4mM
barbital, 145mM NaCl, 5mM MgCl2, 20mM EGTA, pH 7.4)
starting from 1:5. The plate was incubated at 37°C for 1 hour then
washed. C3b deposition was detected as described above.
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LP and CP Specific Complement
Deposition Assay
To assess LP-mediated C4b deposition on the surface of K.
pneumoniae and S. aureus, sera were diluted in MBL binding
buffer (20mM Tris-HCl, 1 M NaCl, 10mM CaCl2, 0.05% (v/v)
Triton X-100 pH 7.4) then incubated with ELISA plates coated
with the bacteria for 1 hour at 37°C. After three washing steps,
100mL of 1mg/mL purified human C4 (Comp Tech, USA) in
BBS++ was added to each well then incubated (29). After 1-hour
incubation, plates were washed and bound C4b was detected as
previously mentioned. To assess for CP activation, C1q-depleted
serum (Comp Tech, USA) was serially diluted in BBS++ then
incubated for 1 h at 37°C with ELISA plates coated with K.
pneumoniae. As a control, C1q-depleted serum was reconstituted
with 10mg/mL of purified human C1q. Complement C3b
deposition was detected as described before. To inhibit the CP-
mediated C3b deposition we used a potent monospecific anti-
human C1s antibody (TNT003), which is a potent CP inhibitor
(30). In this experiment, 2% NHS was incubated with different
concentrations of monospecific anti-human C1s antibody
(TNT003) at room temperature for 15 minutes then incubated
with an ELISA plate coated with the bacteria for 15 minutes at
37°C. After several washing steps, complement C3b deposition
was detected as described before.

Complement Deposition From Acute and
Convalescent COVID-19 Patients’ Sera on
K. pneumoniae and S. aureus
ELISA plates coated with K. pneumoniae and S. aureus were
incubated at 37°C with sera from acutely ill and convalescent
COVID-19 patients (diluted 1:100) in BBS++. NHS was used as a
control. After 1 hour, plates were washed and C3b, C4b or C5b-9
were detected using either rabbit anti-C3c, rabbit anti-C4c or
rabbit anti-C5b-9, respectively, followed by peroxidase-
conjugated goat anti-rabbit IgG as described before (31).

Serum Bactericidal Assay (SBA)
K. pneumoniae isolates were grown in nutrient broth at 37°C for
overnightwith gentle shaking.The next day, 10mLoffresh nutrient
broth were seeded with 100 mL of overnight bacterial culture and
incubated at 37°Cwith gentle shaking until mid-logarithmic phase.
Bacterial cultures were collected, washed twice using BBS++ and
then adjusted to a final concentration of 1×107 CFU mL−1. 1×104

CFU were incubated with 75% serum NHS or sera from acute/
convalescent in BBS at 37°C with gentle shaking. After 2 hours,
samples were taken and plated out on nutrient agar plates then
incubated overnight at 37°C. Serum bactericidal activity was
calculated by measuring the decrease in the viable bacterial count
after 2 h incubation with each serum compared to heat-inactivated
normal human serum (HI-NHS) (32).

Determination of Antibody Titer Against
K. pneumoniae in Patients’ Sera
Nunc Maxisorp microplates coated with K. pneumoniae and
blocked using 1% BSA in TBS buffer as described above were
used in this experiment. Wells were incubated at room
Frontiers in Immunology | www.frontiersin.org 4
temperature with different serum dilutions from SARS-CoV-2
or convalescent patients. Sera from non-COVID-19 volunteers
were used as controls. After 1 h incubation, wells were washed
with wash buffer and 100mL of peroxidase-conjugated goat anti-
human IgG were added to each well. After 1 h, wells were washed
and 100mL of 1-Step Ultra TMB Solution (Thermo Fisher
Scientific) was then added to each well and incubated for 5
minutes at room temperature. The reaction was stopped by the
addition of 2 M H2SO4 and the optical density at 450 nm was
immediately measured. Antibody titre was calculated as the
highest serum dilution that gave positive results (33).
RESULTS

K. pneumoniae and S. aureus Secondary
Bacterial Infections Are High Among
COVID-19 Patients
An unusually high rate of secondary bacterial infection was
observed in patients admitted with severe symptoms of
COVID-19 infection. Our analysis showed that, in our cohort
of 217 severely ill COVID-19 patients, 142 presented with a
secondary bacterial infection. A wide range of pathogens was
isolated from sputum, BAL or blood, and the most common
Gram-negative bacterial isolates were Klebsiella species
(Figures 1A, B). Gram-positive bacteria were also identified in
blood and respiratory cultures where Staphylococcus species were
the dominant bacteria (Figures 1C, D).

K. pneumoniae and S. aureus Activate
Complement via the LP, CP, and the AP
In a set of preliminary experiments, we assessed complement
deposition on the surface of mucoid and non-mucoid strains of
K. pneumoniae using pooled sera from healthy volunteers. High
levels of C3b, C4b and C5b-9 deposition were observed on the
surface of the bacteria under conditions that allow activation of
both the LP and CP, i.e., where serum was diluted in BBS with
Ca+2 and Mg+2 (Figures 2A–C). Activation of the complement
system was also observed on the surface of S. aureus where high
levels of complement C3b, C4b and C5b-9 deposition were
detected (Figures 2E–G).

Involvement of the AP in complement-mediated opsonisation
was assessed by measuring C3b deposition under conditions that
allow only activation of the AP, i.e., where serum samples were
diluted inEGTAbufferwithMg+2.High levels ofC3bdeposition via
the AP were detected on both K. pneumoniae and S. aureus
(Figures 2D, H).

To evaluate complement activation on the surface of the
bacteria by either the LP or the CP we used pathway-specific
assay conditions. Sera diluted in MBL-binding buffer were
incubated on ELISA plates coated with K. pneumoniae or S.
aureus to measure the LP-dependent deposition of C4b
(Figures 3A, D). The high salt content of the MBL-binding
buffer dissociates the CP initiation complex C1 while it leaves the
LP-initiation complexes intact (29). In an additional series of
experiments, the contribution of the LP towards the deposition
April 2022 | Volume 13 | Article 841759
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of C3b on the surface of bacteria was shown by rendering the CP
inactive either by using C1q-depleted serum or by using an
inhibitory antibody directed against the CP effector enzyme C1s.
Reconstituting C1q-depleted serum with purified human C1q (10
mg/mL) restored CP-mediated C3b deposition (Figures 3B, E). In
addition, inhibition of the CP using the anti-C1s inhibitory
antibody TNT003 significantly reduced C3b deposition on the
surface of K. pneumoniae and S. aureus. Under the chosen
conditions, the residual C3b deposition is most likely the result
of LP functional activity (Figures 3C, F).
Secondary Loss of Complement
Functional Activity Was Observed
In Acute Severe COVID-19
We investigated the activity of the complement system in sera
from acute and convalescent COVID-19 patients using a
haemolytic assay with antibody-sensitised sheep erythrocytes.
Frontiers in Immunology | www.frontiersin.org 5
This assay provides an end-to-end measurement of complement
activation via the CP and is sensitive to the reduction, absence
and/or inactivity of any component of the CP and components
involved in the formation of the lytic membrane attack complex.

Sera were taken from 25 survivors of severe COVID-19 on
admission to the ICU (acute sera) and 3 months after discharge
(convalescent sera).All sera ofpatientswithacute severeCOVID-19
(on admission to ICU) showed little or no complement-mediated
lysis,while convalescent sera fromthe samepatients showednormal
complement-mediated lysis 3 months after release from hospital
(Figure 4A). The serum levels of C3 and C4 were also significantly
lower in acute-phase sera compared to the convalescent sera of the
same patients and significantly lower than in the NHS controls,
supporting the hypothesis that acute-phase sera are
hypocomplementaemic due to complement consumption in the
early phase of severe COVID-19 (Figures 4B, C). Reconstitution of
acute-phase sera with purified complement C4 restored the
defective haemolytic activity, indicating that low levels of C4 in
A B

C D

FIGURE 1 | Prevalence of secondary bacterial infection among severely ill COVID-19 patients. 217 patients were recruited in this study. 142 patients developed
secondary bacterial infections. The microbiology analysis showed that different microbial species were isolated either from blood or respiratory cultures. The majority
of infections were caused by Gram-negative bacteria, and Klebsiella species were the most common organism detected either in blood or respiratory cultures (A, B).
High incidences of Gram-positive bacteria were also identified and coagulase-negative staphylococcus species were the dominant Gram-positive bacteria in blood
cultures, and S. aureus was the predominant organism in respiratory cultures (C, D). In several occasions, multiple microorganisms were isolated from one patient.
April 2022 | Volume 13 | Article 841759
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these sera at least contribute to defective CP and LP functional
activity (Figure 4D). The hypothesis that hypocomplementaemia is
resulting from hyperactivation of the complement system in the
early phase of severe COVID-19 patients is supported by the
detection of high levels of the complement activation markers C5a
and sC5b-9 in acute patient sera compared to the levels seen in
convalescent sera (Figure 5). To assess whether complement
activation on the surface of K. pneumoniae is compromised
during COVID-19 infection, we measured complement
deposition on the surface of a mucoid strain (ATCC 43816) and a
non-mucoid strain (Ecl8) using longitudinal serum samples of our
studygroupof25patientswith severeCOVID-19.The levels ofC3b,
C4b and C5b-9 deposition were significantly lower in sera taken
during the acute phase of the disease when compared to
convalescent sera and NHS (Figures 6A–C). Similar results were
obtained when the ELISA plates were coated with the non-mucoid
strain Ecl8 (data not shown).

In addition, we assessed and compared complement
deposition from acute and convalescent sera on the surface of
S. aureus (the most common Gram-positive bacterium isolated
in this study). As described for K. pneumoniae, all sera taken at
the acute phase of severe COVID-19 were significantly
compromised in their ability to deposit complement activation
Frontiers in Immunology | www.frontiersin.org 6
products, such as C3b, C4b and C5b-9, on the surface of S.
aureus when compared to the degree of complement
opsonisation seen in parallel when using NHS and
convalescent sera of the same patients taken 3 months after
release from hospital (Figures 6D–F).
Serum Bactericidal Activity Against
K. pneumoniae Is Impaired During
Acute Severe COVID-19
Having shown that serum from patients with acute severe
COVID-19 is compromised in its ability to opsonise K.
pneumoniae with complement C3b and C4b, we tested
whether the bactericidal activity of the serum was similarly
affected. Mucoid and non-mucoid strains of K. pneumoniae
were incubated with sera from acute or convalescent patients
and the number of viable bacteria after 2 hours was determined.
Significantly lower levels of bacterial killing were observed when
using sera from acute patients compared to sera from the same
patients after recovery or to control NHS sera. Heat-inactivated
serum (HI-NHS) was used as a negative control (Figures 7A, B).
The presence of high antibody titres against mucoid and non-
mucoid K. pneumoniae (Figures 7C, D) was also detected.
A C DB

E G HF

FIGURE 2 | Complement is activated on the surface of Klebsiella pneumoniae and Staphylococcus aureus. ELISA plates were coated with mucoid or non-mucoid
strains of K. pneumoniae or with S. aureus. Wells coated with zymosan were used as a control. Plates were incubated with NHS in BBS with Ca+2 and Mg+2 (A–C,
E–G) or EGTA buffer (D, H). Complement C3b, C4b and C5b-9 deposition were detected using specific antibodies. C3b, C4b and C5b-9 deposition were observed
on the surface of K. pneumoniae (A–C) and S. aureus (E–G) in conditions permissive for both the CP and the LP pathways. High levels of C3b via the AP were also
detected on the surface of the bacteria (D, H). Results are means of duplicates ± SD.
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FIGURE 3 | Complement activation pathway-specific assay conditions demonstrate that both LP and CP are activated on the surface of K. pneumo
control), mucoid, non-mucoid strains of K. pneumoniae or S. aureus were incubated with NHS diluted in MBL-binding buffer for 1 h at 37°C then was
another 1 h at 37°C. After washing steps, C4b deposition was detected. High levels of LP-mediated C4b deposition were observed in the surface of
depleted serum resulted in a significant reduction of C3b deposition. In absence of CP functional activity, only LP-dependent C3b deposition was me
Reconstitution of C1q-depleted serum with purified human C1q restored CP-mediated C3b deposition. No C3b deposition was observed when using
(B, E). Using the C1s inhibitory antibody TNT003 blocked CP-mediated C3b deposition on the surface of immune complexes and all CP-mediated C
chosen assay conditions, the residual deposition of C3b on Klebsiella and S. aureus is LP-mediated (C, F). Results are means of duplicates ± SD.
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DISCUSSION

High rates of bacterial co-infection during previous outbreaks of
pandemic and epidemic respiratory viral infection caused by
H1N1, SARS-CoV-1 and MERS were associated with a high
morbidity and mortality among infected patients (34, 35).
Secondary infections with respiratory pathogens in COVID-19
patients have been reported in several previous studies (36–38).
The upper respiratory tract hosts a wide range of commensal
microorganisms, some of which are potential opportunistic
pathogens including Legionella pneumophila, Streptococcus
pyogenes, Neisseria meningitidis, Moraxella catarrhalis, S.
pneumoniae, H. influenzae, S. aureus, Pseudomonas aeruginosa
Frontiers in Immunology | www.frontiersin.org 8
and K. pneumoniae (39). Infection with opportunistic bacteria
and fungi in patients with severe COVID-19 is not surprising
since studies from previous pandemic viral infections reported
co-infection with opportunistic bacteria, fungi, and even other
viruses (40).

It has been established that secondary bacterial infections in
acute COVID-19 patients are associated with greater severity of
COVID-19 and poorer outcome (41, 42) with a high incidence of
Gram-negative infections, especially K. pneumoniae (43, 44). A high
incidence of Gram-positive bacterial infections was also reported in
COVID-19, mostly with Staphylococcus species (34). Co-infections
with Gram-negative pathogens such as Pseudomonas aeruginosa,
Escherichia coli, and enterobacteriaceae were also observed, yet
A B

C D

FIGURE 4 | At hospital admission, sera of severely ill COVID-19 patients lack complement functional activity. Sheep RBCs were coated with anti-sheep erythrocyte
antibodies and incubated with different serum concentrations. The serum dilution required to lyse 50% of RBCs (CH50) was calculated. The haemolytic activity of sera
from acute COVID-19 patients (n= 25) is significantly impaired compared to sera from the same patients after recovery or to those of control NHS (n=14) (A). Serum
levels of complement C3 and C4 were also significantly lower in acute sera compared to convalescent sera and control sera (NHS) (B, C). Results were analysed
using 1-way ANOVA, with Dunnett’s correction for multiple comparisons. ****p < 0.0001, **p < 0.01. Reconstitution of sera taken during the acute phase of severe
COVID-19 with 10 mg/mL of purified C4 restored the deficient haemolytic activity (D). Results were analysed using 2-way ANOVA with Sidak’s multiple
comparison test.
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Klebsiella species dominated and were identified in approximately
27% of patients infected with Gram-negative bacteria.

The prevalance of Klebsiella species was recently attributed to
the ability of these bacteria to release several virulence factors
that can overcome host immune defences, as well as the
emergence of multi-drug-resistant strains of K. pneumoniae
(45). The critical role of complement in fighting bacterial
infections has been established in numerous animal studies as
well as in clinical studies of inherited or acquired complement
deficiencies (46, 47). Immune complex-mediated activation of
the CP is recognised as an important mechanism in the control
of Klebsiella infection (48, 49). In the presence of antibodies,
Klebsiella species are generally kept in check by antibody and
complement-mediated lysis and/or opsonophagocytosis (8),
which makes them non-pathogenic commensals for most
individuals, but the loss of complement functional activity
poses a significantly increased risk for invasive infection.

Our present report showed a loss of complement functional
activity in all acute-phase sera of patients assessed with severe
COVID-19. Sera from these severely ill patients showed low
CH50 and low levels of C3 and C4 (Figure 4). At the same time,
complement activation products C5a and sC5b-9 were detected
in abundance, suggesting that complement activation is a
hallmark of the early phase of severe COVID-19 as previously
postulated (50). Reconstitution of these sera with purified
human C4 restored the defective complement-mediated
haemolytic activity to levels seen in NHS. This supports the
hypothesis that consumption of complement components
during the early phase of severe COVID-19 leads to
secondary hypocomplementaemia and impairs complement
functional activity. The molecular events driving substantial
complement activation in the early phase of severe COVID-19
Frontiers in Immunology | www.frontiersin.org 9
are presently unknown. The reconstitution of haemolytic
activity in acute-phase sera through the addition of purified
C4 indicates involvement of either the lectin or the classical
activation pathway, or both. A deficient alternative pathway
functional activity seen in all acute-phase sera suggests that all 3
complement activation pathways may be involved. The high
consumption of complement leading to hypocomplementaemia
in blood taken at ICU admission implies that substantial
complement activation occurs at an early phase of severe
COVID-19, a time point that needs to be further defined.

A connection between complement activation and disease
severity of COVID-19 was recently established by showing that
the ratio between high levels of the complement activation
product C3a and serum levels of C3 correlates with disease
severity and might serve as a predictive marker of disease
outcome (51, 52). Sinkovits et al. additionally described a low
CH50 in sera of patients with severe COVID-19 (51). A loss of
complement functional activity in sera of patients with severe
COVID-19 has also been reported by Charitos et al. (53),
showing a correlation between COVID-19 severity and a loss
of complement functional activity via the classical and the
alternative pathway. A study by Defendi et al. reported similar
results demonstrating a significant reduction of total haemolytic
activity in sera of a cohort of patients with severe COVID-19
compared to sera in a cohort of patients with a milder course of
disease (54).

Whilst all patient sera in our study were positive for
antibodies against K. pneumoniae, both SBA and complement
opsonisation of K. pneumoniae (including deposition of C3b,
C4b, and C5b-9) were compromised in sera of acute COVID-19
patients due to a loss of complement functional activity. This
phenomenon is likely to increase the susceptibility not only to
A B

FIGURE 5 | Complement system is activated during acute COVID-19 infection. Anaphylatoxin C5a levels in patients sera increase during acute disease and return to
normal on recovery (n = 25) (A). sC5b-9 levels were also significantly increased during the acute phase (n = 25) of severe COVID-19 and returned to levels seen in
NHS (n = 14) of healthy blood donors and sera taken from convalescent patients (B). Results were analysed using 1-way ANOVA, with Dunnett’s correction for
multiple comparisons. ****p < 0.0001.
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same patients taken 3 months after discharge (n = 25) or to
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FIGURE 6 | Complement deposition on the surface of K. pneumoniae and S. aureus is impaired during acute severe COVID-19. A significant reduction
mucoid K. pneumoniae (A–C) and on the surface of S. aureus (D–F) were detected when using sera from acutely ill patients compared to sera from the
control sera ( n= 14). Results were analyzed using 1-way ANOVA, with Dunnett’s correction for multiple comparisons. ****p < 0.0001.
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secondary infections with K. pneumoniae but also to other
opportunistic pathogens that are usually held in check through
complement-driven immune defense mechanisms.

In order to assess this, we measured complement deposition
through each of the three complement activation pathways on a
laboratory strain of Staphylococcus aureus, the most frequent
Gram-positive opportunistic pathogen we detected in our group
of severely ill COVID-19 patients. Again, complement
deposition was highly impaired in sera of patients in the acute
phase of severe COVID-19 and recovered in convalescent patient
sera taken 3 months after hospital release. Acquired complement
deficiency and low levels of C3, C4 and CH50 were previously
reported to increase the risk of infection caused by S. aureus
infection (55). A defect in complement opsonisation of S. aureus
in sera of patients with acute severe COVID-19 may be a
contributing factor to the previously reported high increase of
Frontiers in Immunology | www.frontiersin.org 11
nosocomial Staphylococcus aureus and methicillin-resistant
Staphylococcus aureus (MRSA) infections in these patients (10).
CONCLUSION

Our results support the hypothesis that secondary
hypocomplementemia caused by complement consumption in
the early phase of severe SARS-CoV-2 infection is a key risk
factor for secondary microbial infections.
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Supplementary Figure 1 | Heparin has no effect on complement activation at a
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with K. pneumoniae. Complement C3b (A) and C4b (B) deposition were measured
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the degree of C3b and C4b deposition on K. pneumoniae when using NHS or
plasma collected in heparin or EDTA tubes. The haemolytic activity of NHS and
heparin or EDTA plasma was measured as described in materials and methods (C).
This assay provides an end-to-end measurement of complement activation via the
CP, including components that are shared in all three pathways. No significant
difference was observed in the haemolytic activity between serum and heparinised
plasma used in this experiment.
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