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Mazumdar, A.; Szűcs, Z.; Borbás, A.;

Herczegh, P.; Novotna, G.B. Two

Novel Semisynthetic

Lipoglycopeptides Active against

Staphylococcus aureus Biofilms and

Cells in Late Stationary Growth

Phase. Pharmaceuticals 2021, 14, 1182.

https://doi.org/10.3390/ph14111182

Academic Editor: Gill Diamond

Received: 8 October 2021

Accepted: 17 November 2021

Published: 19 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Institute of Microbiology, Czech Academy of Sciences, Průmyslova 595, 25250 Vestec, Czech Republic;
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Abstract: The increase in antibiotic resistance among Gram-positive bacteria underscores the urgent
need to develop new antibiotics. New antibiotics should target actively growing susceptible bacteria
that are resistant to clinically accepted antibiotics including bacteria that are not growing or are
protected in a biofilm environment. In this paper, we compare the in vitro activities of two new
semisynthetic glycopeptide antibiotics, MA79 and ERJ390, with two clinically used glycopeptide
antibiotics—vancomycin and teicoplanin. The new antibiotics effectively killed not only exponentially
growing cells of Staphylococcus aureus, but also cells in the stationary growth phase and biofilm.

Keywords: antibiotic resistance; glycopeptide antibiotics; Staphylococcus aureus; teicoplanin pseudoaglycon

1. Introduction

For many years, the glycopeptide antibiotics vancomycin (VAN) and teicoplanin (TEI)
(Figure 1) were the only glycopeptide antibiotics used clinically to treat severe infections
caused by methicillin-resistant Staphylococcus aureus (MRSA), currently recognized by the
World Health Organization as one of the greatest threats to world health [1]. These antibi-
otics bind to the D-alanyl-D-alanine (D-Ala-D-Ala) terminus of the cell wall peptidoglycan
precursor of the actively dividing bacterial cell. This interaction inhibits peptidoglycan
polymerization, resulting in the disruption of cell wall synthesis. While vancomycin binds
to the nascent peptidoglycan chain in a dimerized form, teicoplanin has been proposed
to bind to the cell membrane lipid II substrate via its lipophilic acyl side chain, bringing
the antibiotic in close proximity to the nascent peptidoglycan [2–4]. Vancomycin and
teicoplanin are not active against non-dividing cells. Nonetheless, the transition of S. aureus
from active growth to the non-dividing state induces the expression of a variety of virulence
factors that facilitate bacterial invasion, local spread of infection [5], and biofilm formation;
therefore, it is important to develop antibiotics that can act on non-dividing S. aureus cells.

Recently, we introduced a new group of glycopeptide derivatives in which the pri-
mary amino function of the teicoplanin pseudoaglycone was replaced [6–8]. Figure 1
shows maleimido teicoplanin pseudoaglycone with two propylthiol groups (MA79) and
teicoplanin pseudoaglycone derivative with a lipophilic n-decyl chain (ERJ390), both of
which exhibited in vitro activity against clinical isolates of S. aureus, coagulase-negative
staphylococci (CoNS): Staphylococcus epidermidis and Staphylococcus haemolyticus (including
biofilm-producing strains) [9].

The new glycopeptide antibiotics MA79 and ERJ390 were effective against vancomycin-
intermediate S. aureus (VISA) and against CoNS resistant to teicoplanin. They also showed
good efficacy against vanA- and vanB-type vancomycin-resistant enterococci (VRE). The
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vanA- and vanB-type resistance is mediated by the conversion of D-Ala-D-Ala-containing
peptidoglycan precursors to D-alanine-D-lactate, which reduces the affinity of vancomycin
and teicoplanin [4]. The preservation of MA79 and ERJ390 activity against VRE strains
suggests that the binding of MA79 and ERJ390 to D-Ala-D-Ala is not the main antibiotic tar-
get [9]. The comparison of the potential of MA79 and ERJ390 to compete with fluorescently
labeled vancomycin and teicoplanin bound to the cell wall of the S. aureus ATCC29213
strain confirmed that MA79 and ERJ390 are bound to the bacterial cell wall not only via
D-Ala-D-Ala residues of the nascent peptidoglycan, but that the lipophilic substituents of
MA79 and ERJ390 also enhanced the interaction of the antibiotics with the cell [9].
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Figure 1. Chemical structures of the antibiotics: vancomycin (VAN), teicoplanin (TEI), MA79, and ERJ390. Lipophilic
moieties are highlighted in red.

We hypothesized that the enhanced interaction of MA79 and ERJ390 with the bacterial
cell wall could kill S. aureus cells even in the non-dividing state. Therefore, we compared
the bacteriolytic properties of the antibiotics against S. aureus at different growth stages as
well as in biofilm.

2. Results
2.1. MA79 and ERJ390 Are Bactericidal against Exponential and Stationary-Phase S. aureus

To investigate the bacteriolytic activity of the new lipoglycopeptide antibiotics MA79
and ERJ390, S. aureus strain 8325 was grown to the exponential or late stationary growth
phase (see Figure S1) and then treated with either MA79, ERJ390, VAN, or TEI.

Firstly, we tested the ability of the antibiotics at concentrations 5, 10, and 50 times
higher than the MIC (see Section 4) to kill S. aureus 8325 cells in one hour of incubation
(see Figure 2a). MA79 and ERJ390 killed exponentially growing cells at concentrations
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that exceeded the MIC of the antibiotics by 5-fold (see Figure 2a). However, concentra-
tions of VAN and TEI 10-fold higher than the corresponding MICs were required to kill
exponentially growing cells in one hour (see Figure 2a).

Secondly, we tested the ability of the antibiotics at concentrations five times higher
than the MICs to kill S. aureus 8325 cells after 1, 4, and 24 h of incubation with the antibiotics.
MA79 and ERJ390 at concentrations five times higher than their MICs killed the cells in the
exponential phase after one hour, while VAN and TEI could not completely sterilize the
growth medium even after 24 h (see Figure 2b).
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Figure 2. Killing of S. aureus 8325 cells in exponential phase by antibiotics vancomycin (VAN), teicoplanin (TEI), MA79, and
ERJ390 at one hour after treatment of the bacteria with the antibiotics at various concentrations exceeding the MIC (a); or at
time points after treatment of the bacteria with the antibiotics at a concentration exceeding the MIC 5-fold (b).

MA79 and ERJ390 were also more active than VAN and TEI in killing cells of S. aureus
8325 in the late stationary phase (see Figure 3). ERJ390 and MA79 killed approximately
80% and 40% of cells, respectively, within one hour at concentrations 50-fold higher than
the MIC (see Figure 3a), whereas VAN and TEI were nearly inactive. After 24 h, both MA79
and ERJ390 at concentrations 50-fold higher than the MIC had completely sterilized the
growth medium (see Figure 3b).

Antibiotics MA79 and ERJ390 were also bactericidal against the exponential and
stationary phase cells of vancomycin-susceptible S. aureus Newman and vancomycin-
intermediate S. aureus Mu50 strains (see Figure 4). ERJ390 was the most active compound
against all S. aureus strains tested.

Pharmaceuticals 2021, 14, x FOR PEER REVIEW 4 of 12 
 

 

  

(a) (b) 

Figure 3. Killing of S. aureus 8325 cells in stationary phase by antibiotics vancomycin (VAN), teicoplanin (TEI), MA79, 

and ERJ390 at one hour after treatment of the bacteria with the antibiotics at various concentrations exceeding the MIC 

(a) and at time points after treatment of the bacteria with the antibiotics at a concentration exceeding the MIC 50-fold (b). 

 

(a) (b) 

Figure 4. Killing of cells of different S. aureus strains during one hour of treatment by antibiotics vancomycin (VAN), 

teicoplanin (TEI), MA79, and ERJ390 pre-grown to exponential (a) or stationary (b) growth phases. The antibiotics were 

used at a concentration exceeding the MIC 5-fold and 50-fold against S. aureus cells in exponential or stationary growth 

phases, respectively. 

2.2. MA79 and ERJ390 Do Not Induce S. aureus Biofilm Formation 

Antibiotics at subinhibitory concentrations can induce biofilm formation in bacteria 

[10]. Therefore, the ability of MA79 and ERJ390 to induce biofilm formation in S. aureus 

strains 8325, Newman, and Mu50 was investigated. Under our experimental conditions, 

biofilm formation was not induced or abrogated at subinhibitory concentrations of VAN 

[11]. On the contrary, TEI strongly induced biofilm formation in 8325 and to a lesser ex-

tent in Newman (Figure 5). Mu50 did not form biofilm under our growth conditions. 

MA79 and ERJ390 inhibited biofilm formation at subinhibitory concentrations. Thus, 

MA79 and ERJ390 did not induce S. aureus biofilm formation but prevented it at subin-

hibitory concentrations. 

Figure 3. Killing of S. aureus 8325 cells in stationary phase by antibiotics vancomycin (VAN), teicoplanin (TEI), MA79, and
ERJ390 at one hour after treatment of the bacteria with the antibiotics at various concentrations exceeding the MIC (a) and
at time points after treatment of the bacteria with the antibiotics at a concentration exceeding the MIC 50-fold (b).



Pharmaceuticals 2021, 14, 1182 4 of 12

Pharmaceuticals 2021, 14, x FOR PEER REVIEW 4 of 12 
 

 

  

(a) (b) 

Figure 3. Killing of S. aureus 8325 cells in stationary phase by antibiotics vancomycin (VAN), teicoplanin (TEI), MA79, 

and ERJ390 at one hour after treatment of the bacteria with the antibiotics at various concentrations exceeding the MIC 

(a) and at time points after treatment of the bacteria with the antibiotics at a concentration exceeding the MIC 50-fold (b). 

 

(a) (b) 

Figure 4. Killing of cells of different S. aureus strains during one hour of treatment by antibiotics vancomycin (VAN), 

teicoplanin (TEI), MA79, and ERJ390 pre-grown to exponential (a) or stationary (b) growth phases. The antibiotics were 

used at a concentration exceeding the MIC 5-fold and 50-fold against S. aureus cells in exponential or stationary growth 

phases, respectively. 

2.2. MA79 and ERJ390 Do Not Induce S. aureus Biofilm Formation 

Antibiotics at subinhibitory concentrations can induce biofilm formation in bacteria 

[10]. Therefore, the ability of MA79 and ERJ390 to induce biofilm formation in S. aureus 

strains 8325, Newman, and Mu50 was investigated. Under our experimental conditions, 

biofilm formation was not induced or abrogated at subinhibitory concentrations of VAN 

[11]. On the contrary, TEI strongly induced biofilm formation in 8325 and to a lesser ex-

tent in Newman (Figure 5). Mu50 did not form biofilm under our growth conditions. 

MA79 and ERJ390 inhibited biofilm formation at subinhibitory concentrations. Thus, 

MA79 and ERJ390 did not induce S. aureus biofilm formation but prevented it at subin-

hibitory concentrations. 

Figure 4. Killing of cells of different S. aureus strains during one hour of treatment by antibiotics vancomycin (VAN),
teicoplanin (TEI), MA79, and ERJ390 pre-grown to exponential (a) or stationary (b) growth phases. The antibiotics were
used at a concentration exceeding the MIC 5-fold and 50-fold against S. aureus cells in exponential or stationary growth
phases, respectively.

2.2. MA79 and ERJ390 Do Not Induce S. aureus Biofilm Formation

Antibiotics at subinhibitory concentrations can induce biofilm formation in bac-
teria [10]. Therefore, the ability of MA79 and ERJ390 to induce biofilm formation in
S. aureus strains 8325, Newman, and Mu50 was investigated. Under our experimental
conditions, biofilm formation was not induced or abrogated at subinhibitory concentra-
tions of VAN [11]. On the contrary, TEI strongly induced biofilm formation in 8325 and
to a lesser extent in Newman (Figure 5). Mu50 did not form biofilm under our growth
conditions. MA79 and ERJ390 inhibited biofilm formation at subinhibitory concentrations.
Thus, MA79 and ERJ390 did not induce S. aureus biofilm formation but prevented it at
subinhibitory concentrations.
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2.3. ERJ390 Eradicates S. aureus Biofilm

The treatment of S. aureus biofilms is challenging because even the most potent
antibiotics have little effect on established biofilms [12–14]. In the present study, biofilms
of S. aureus 8325 established overnight were treated with MA79, ERJ390, VAN, or TEI and
cell viability was monitored by MTT staining (see Figure 6). MTT assay was employed
for the quantification of biofilm biomass and metabolic activity [15]. MTT is a yellowish
aqueous solution and yields a water-insoluble violet-blue formazan that is formed due to
reduction by dehydrogenases and reducing agents present in metabolically active cells.
Biofilm metabolic activity has been previously shown to be proportional to the production
of formazan by measuring absorbance at A450nm [15].
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While VAN and TEI were unable to kill the bacteria in the biofilm, MA79 killed about
30% of the bacteria at a concentration 50 times higher than the MIC, and ERJ390 killed
almost all the cells in the biofilm after four hours of incubation with the antibiotic (see
Figure 6a). After extending the antibiotic treatment to 24 h, all bacterial cells in the biofilm
were killed by ERJ390 and 60% of the cells were killed by MA79 (see Figure 6b). Therefore,
this result shows the potential of the novel glycopeptide antibiotics to eradicate biofilms.

2.4. MA79 and ERJ390 Do Not Cause Resistance Selection

The development of resistance to commonly used antibiotics is the major drawback of
antibiotic use [16]. We investigated the potential of MA79 and ERJ390 to select resistant
mutants in S. aureus. No colonies appeared on plates containing MA79 or ERJ390, regardless
of whether the bacteria were pre-incubated with sub-inhibitory concentrations of the
respective antibiotics (see Figure 7a,b). No mutants with elevated MICs of MA79 or ERJ390
were selected even after 10 days of bacterial growth in the presence of subinhibitory
concentrations of the antibiotics.
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3. Discussion

In the last decade, the modification of the glycopeptide antibiotics vancomycin, te-
icoplanin, and ristocetin with different side chains, including hydrophobic and lipophilic
moieties, have yielded new antibiotics that exhibit enhanced antibacterial activity and, in
certain cases, high and broad-spectrum antiviral activity [17]. Three semi-synthetic lipogly-
copeptide antibiotics, namely, telavancin, dalbavancin, and oritavancin, were approved for
clinical use. Nevertheless, research has been conducted to further improve glycopeptide an-
tibiotics [18]. Maleimido teicoplanin pseudoaglycone with two propylthiol groups, MA79,
and teicoplanin pseudoaglycone derivative with a lipophilic n-decyl chain, ERJ390 (see
Figure 1), have both been reported as effective antibiotics against various Gram-positive
bacteria, including bacteria highly resistant to vancomycin and teicoplanin [9]. However, a
more detailed review of the antimicrobial activity of these antibiotics was lacking.

Our present experimental data demonstrate the bactericidal activity of MA79 and
especially ERJ390 against S. aureus cells in the exponential and late stationary phase.
The semisynthetic lipoglycopeptide antibiotic oritavancin, recently approved for clinical
use, kills nondividing S. aureus cells, whereas VAN and dalbavancin do not [19,20]. The
bacteriolytic activity of oritavancin against S. aureus cells in the stationary growth phase
was effective at a concentration that exceeded the MIC by more than 100–200-fold. This is a
much higher concentration than in the case of MA79 and ERJ390. Thus, the bacteriolytic
activity of MA79 and ERJ390 appears to be equal to or even higher than that demonstrated
for oritavancin [19]. Moreover, ERJ390 is more efficient than MA79 (Figures 2 and 3).

The killing of S. aureus cells in biofilm has been demonstrated for telavancin, orita-
vancin, and dalbavancin [12,21,22]. However, none of the antibiotics were able to com-
pletely kill the bacterial cells within the biofilms, even at concentrations exceeding 100 times
the MIC. In comparison, ERJ390 was more efficient in killing bacterial cells within the
biofilm and was able to kill all bacterial cells in the biofilm within 24 h at concentrations
greater than 50 times the MIC (see Figure 6).

The observed activity of ERJ390 and MA79 against S. aureus cells in the stationary
growth phase and in biofilms can be explained by the ability of the antibiotics to bind to the
membrane. For oritavancin and telavancin, it has been demonstrated that their lipophilic
side chains can anchor the antibiotics to bacterial membranes, leading to membrane de-
polarization and disruption, thus facilitating the bacteriolytic activity of glycopeptide
antibiotics against non-dividing bacterial cells [17,23–25]. ERJ390 possessed a stronger
killing activity than MA79. The interaction of ERJ390 with the membrane could be stronger
than that of MA79, which was supported by the increased ability of ERJ390 to supplant
fluorescently labeled teicoplanin from the cells [9]. This could explain the high killing
efficiency of ERJ390.
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The increased activity of ERJ390 may also be explained by the self-aggregation of the
glycopeptide antibiotic [7]. It is known that self-aggregation enhances the interaction of ori-
tavancin with the membrane and increases the bacteriolytic activity [26]. Self-aggregation
of MA79 was not reported, which partly explains the lower activity of MA79 in killing
non-dividing cells.

It is known that VAN, TEI, and dalbavancin can select S. aureus mutants with 16–128-fold
increased resistance by multiple incubation steps with the antibiotics [27,28]. The resistance
selection potential of MA79 and ERJ390 was not observed, suggesting that these antibiotics
may be safe in terms of resistance development. The only reduction in susceptibility to
MA79 and ERJ390 reported to date was observed in S. aureus expressing the membrane
protein VanZ [29]. The expression of VanZ reduced the susceptibility of S. aureus to all
lipoglycopeptide antibiotics. The acquisition and spread of VanZ genes in S. aureus may
become a problem in the future. The encoding vanZ gene, as part of the vanA gene
cluster, has occasionally been transferred to S. aureus by transposons from enterococci,
resulting in highly vancomycin-resistant strains [30]. Although the frequency of such an
event appears to be low due to the high fitness cost of vanHAX-mediated resistance in
S. aureus, vancomycin-resistant staphylococcal strains may be precursors for the generation
of vanZ-bearing mobile genetic elements that can interfere with the action of semisynthetic
lipoglycopeptide antibiotics.

4. Materials and Methods
4.1. Strains

S. aureus strains 8325, Mu50, and Newman were kindly provided by Dr. Malcolm J Hors-
burgh. S. aureus strain 8325 [31] is considered as the reference genome in the NCBI database
(MICVAN = 1 µg/mL; MICTEI = 2 µg/mL; MICMA79 = 0.5 µg/mL; MICERJ390 = 0.25 µg/mL).
Mu50 was the first MRSA strain with vancomycin resistance isolated in 1997 [32]
(MICVAN = 4 µg/mL; MICTEI = 4 µg/mL; MICMA79 = 0.5 µg/mL; MICERJ390 = 0.25 µg/mL).
S. aureus strain Newman [33] (MICVAN = 0.5µg/mL; MICTEI = 0.25µg/mL; MICMA79 = 0.5 µg/mL;
MICERJ390 = 0.25µg/mL) was isolated in 1952 from a human infection and displays robust virulence
properties in animal models of disease and has already been extensively analyzed for its molecular
traits of staphylococcal pathogenesis. The absence of drug resistance genes reflects the general
antibiotic-susceptible phenotype of S. aureus Newman. S. aureus strains were pre-grown
overnight on brain–heart infusion (BHI) agar plates at 37 ◦C prior to the experiments.

4.2. Antibiotics

Vancomycin (V2002) and teicoplanin (T0578) were bought from Sigma-Aldrich®

(St. Louis, MO, USA). MA79 and ERJ390 were synthesized as previously described [6,7].
For each experiment, new stock solutions of antibiotics were prepared.

The MA79 synthesis protocol is shown in Figure 8.
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A. Maleimide bis-n-propylsulfide (2)

To a stirred solution of 2,3-dibromomaleimide (1) (510 mg, 2.0 mmol) in CH2Cl2
(30 mL), Et3N (4.0 mmol) and propyl mercaptane (380 µL, 4.2 mmol) were added under
argon atmosphere and stirred for 3 h at room temperature. The reaction mixture was
evaporated, and the crude product was purified by flash silica gel chromatography in
n-hexane:ethyl acetate = 9:1 to give 2 (430 mg, 87%) as a yellow syrup. 1H NMR (400 MHz,
CDCl3) δ 7.77 (1H, s, NH), 3.28–3.25 (4H, m, 2 × SCH2), 1.73–1.66 (4H, m, 2 × CH2),
1.06–1.02 (6H, m, 2 × CH3); 13C NMR (100 MHz, CDCl3) δ 166.3 (2C, 2 × C=O), 137.2 (2C,
C=C), 33.6 (2C, 2 × CH2), 23.8 (2C, 2 × SCH2), 13.1 (2C, 2 × CH3); Analysis Calculated for
C10H15NO2S2 C 48.95, H 6.16, N 5.71, O 13.04, S 26.14. Found: C 48.18, H 5.70, S 26.01.

B. N-Ethoxycarbonyl maleimide bis-n-propylsulfide (3)

To a stirred solution of maleimide bis-sulfide 2 (1.0 mmol) in dry acetone (20 mL),
K2CO3 (1.2 mmol) and ethyl chloroformate (1.2 mmol) were added under argon atmosphere
and stirred for 3 h at room temperature. The reaction mixture was diluted with CH2Cl2,
filtered through a pad of Celite, and evaporated. The crude product was used for further
steps without purification.

C. MA79

To a stirred solution of teicoplanin pseudoaglycone (140 mg, 0.1 mmol) in dry DMF
(5 mL), N-ethoxycarbonyl maleimide bis-sulfides 3 (40 mg, 0.14 mmol) and Et3N (0.1 mmol)
were added under argon atmosphere and stirred overnight at room temperature. The reac-
tion mixture was evaporated, and the crude product was purified by silica gel chromatog-
raphy in toluene:methanol = 9:1 to give 8d (110 mg, 66%) as a yellow powder. MALDI-TOF
MS: [M+Na]+ = 1651.02 m/z. Calculated for C76H70Cl2N8O25S2Na 1651.32 m/z.

See Figure 9 for the ERJ390 synthesis protocol.
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To a stirred solution of teicoplanin pseudoaglycone azide (140 mg, 0.1 mmol) in
dry DMF (5 mL), n-decyl propargyl ether 6 (24 mg, 0.13 mmol), Et3N (1.0 equiv.), and
Cu(I)I (20–30 mol%) were added under an argon atmosphere and stirred for overnight
at room temperature. The reaction mixture was concentrated, and the crude product
was purified by flash chromatography in toluene: MeOH = 1:1. (+1.0 v/v% acetic acid).
Yield: 115 mg, 71%.

4.3. Susceptibility Testing

Minimum inhibitory concentrations (MICs) were determined by the microbroth dilu-
tion method in Mueller–Hinton (MH) medium according to the EUCAST guidelines (ISO
20776). Overnight cultures of S. aureus pre-grown on BHI agar at 37 ◦C were resuspended
in 0.9% NaCl solution to McFarland = 0.5. Five microliters of the resuspended S. aureus
cells were pipetted into each well of a 96-well plate (Thermo Scientific™ 130188 BioLite
96 Well Multidish, Waltham, MA, USA) containing MH medium with concentration of an-
tibiotics. Ranges of antibiotic concentrations tested were 0.0156–1024 µg/mL. Absorbance
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was measured at A600nm, using a BioTek® Synergy HT spectrophotometer after 24 h of
bacteria incubation in MH medium in 96-well plates at 37 ◦C. Each MIC test was performed
three times in triplicate. Bacterial growth was considered to be completely inhibited by the
antibiotic if the absorbance value was lower than the highest absorbance value of the wells
containing only growth medium.

4.4. S. aureus Killing in Exponential and Late Stationary Growth Phases by the Antibiotics

S. aureus 8325 was pre-grown in MH medium at 37 ◦C to A600nm = 0.6 or grown for 18 h
until stationary phase was reached (see Figure S1). Glycopeptide antibiotics were added to
the pre-cultured bacteria at concentrations 5, 10, and 50 times higher than the respective
MICs and incubated at 37 ◦C for 1 h. Incubated bacteria without antibiotic were used as
negative controls. The number of colony-forming units (CFUs) in antibiotic-treated or
untreated samples was determined by spreading 10 µL of cultures diluted 101–108-fold in
0.9% NaCl on brain–heart infusion (BHI) agar plates. The number of CFUs in the untreated
sample was set as 100% of the surviving bacterial cells. Each experiment was performed
in triplicate and repeated three times. The time course of killing S. aureus 8325 in the
exponential or stationary growth phase was performed at concentrations 5 and 50 times
higher than the MIC, respectively, and analyzed after 0, 1, 4, and 24 h of incubation at
37 ◦C. Killing of S. aureus 8325, Newman, and Mu50 by antibiotics was analyzed after 1 h
of incubation of the bacteria at 5 and 50-fold higher MICs for bacteria in the exponential
and stationary growth phases, respectively.

4.5. S. aureus Biofilm Formation in the Presence of Glycopeptide Antibiotics

Biofilms of S. aureus were established in 96-well plates after 24-h bacterial growth
in tryptic soy broth (TSB) at 37 ◦C [34] in the presence of the antibiotics: MA79, ERJ390,
VAN, and TEI at concentrations of 0, 0.125, 0.25, 0.5, 1, 2, 4, and 8 µg/mL. After 24 h of
incubation, the plates were carefully rinsed with water 3 times to remove non-adherent
cells. Cells remaining in the wells were stained with 50 µL of 1% crystal violet for 15 min,
then carefully rinsed with water 5 times and air dried. Crystal violet was recovered from the
stained cells by adding 100 µL of a 96% ethanol solution. The absorbance of the plate was
then measured at A590nm using a TECAN Infinite Pro spectrophotometer. Each experiment
was performed three times in triplicate.

4.6. Bacteria Killing in S. aureus Biofilm

The biofilm of S. aureus 8325 was established in 96-well plates after 24 h of bacterial
growth in tryptic soy broth medium (TSB) at 37 ◦C (TSB) [34]. The biofilms were washed
3 times with 0.9% NaCl. Then, 100 µL of fresh TSB medium without or with antibiotics at
concentrations 5, 10, and 50 times higher than the MICs was added to the biofilms. After
incubating the biofilm with the antibiotics at 37 ◦C for 4 h, the biofilms were washed three
times with 0.9% NaCl and then stained with 0.2% MTT for 1 h at 37 ◦C. The MTT assay
was used to quantify biofilm biomass and metabolic activity [15]. The absorbance was
measured at A450nm using TECAN Infinite® Pro spectrophotometer. Absorbance values of
biofilms not treated with antibiotics were set as 100% of surviving cells. Each experiment
was performed three times with four replicates each time. Killing of bacteria in the biofilm
occurred at 1, 4, and 24 h when antibiotic concentrations were 50-fold higher than MICs.

4.7. Selection of Resistance

S. aureus strains 8325, Newman, and Mu50 were grown at 37 ◦C in 2 mL of MH
medium to A600nm = 0.6 in the absence or presence of half of MIC of MA79, ERJ390, VAN,
or TEC. A total of 100 µL of pre-grown cells was plated on BHI agar plates with antibiotics
at concentration 0, 1, or 2 times exceeding MICs. Colonies were counted after 24 h of
incubation at 37 ◦C. The logarithmic values of numbers of appeared colonies (CFU) were
compared. The experiment was repeated three times. Since we have not selected MA79- and
ERJ390-resistant mutants by this approach, we increased the time of S. aureus incubation
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with half MIC of MA79 and ERJ390 for 10 days, diluting bacteria 100 times into fresh BHI
medium with half MIC of the antibiotics every 12 h. MICs of the antibiotics against colonies
that appeared on the plates in the presence of the highest antibiotic concentration were
determined (see Table S1).

5. Conclusions

MA79 and ERJ390 are novel semisynthetic glycopeptides with improved activity
against Gram-positive bacteria compared to VAN and TEC. They can overcome multiple
glycopeptide resistance mechanisms and are significantly less susceptible to the develop-
ment of resistance. The antibacterial activity of MA79 and ERJ390 is not solely dependent
on interaction with D-Ala-D-Ala and could involve binding to the bacterial cell membrane.
The mechanism of binding of the new glycopeptides to the cell membrane might be differ-
ent from that of teicoplanin and dalbavancin. Further studies are required to discover the
exact mechanisms of action of MA79 and ERJ390.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ph14111182/s1, Figure S1: Growth curves of Staphylococcus aureus strains used in the study,
Table S1: MICs of the antibiotics against wild-type (WT) Staphylococcus aureus strains and mutants
selected in resistance selection experiments.
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