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Fetal behavioral states are defined by fetal movement and heart rate variability (HRV).
At 32 weeks of gestational age (GA) the distinction of four fetal behavioral states
represented by combinations of quiet or active sleep or awakeness is possible. Prior to
32 weeks, only periods of fetal activity and quiesence can be distinguished. The increasing
synchronization of fetal movement and HRV reflects the development of the autonomic
nervous system (ANS) control. Fetal magnetocardiography (fMCG) detects fetal heart
activity at high temporal resolution, enabling the calculation of HRV parameters. This
study combined the criteria of fetal movement with the HRV analysis to complete the
criteria for fetal state detection. HRV parameters were calculated including the standard
deviation of the normal-to-normal R–R interval (SDNN), the mean square of successive
differences of the R–R intervals (RMSSD, SDNN/RMSSD ratio, and permutation entropy
(PE) to gain information about the developing influence of the ANS within each fetal
state. In this study, 55 magnetocardiograms from healthy fetuses of 24–41 weeks’
GA were recorded for up to 45 min using a fetal biomagnetometer. Fetal states were
classified based on HRV and movement detection. HRV parameters were calculated
for each state. Before GA 32 weeks, 58.4% quiescence and 41.6% activity cycles were
observed. Later, 24% quiet sleep state (1F), 65.4% active sleep state (2F), and 10.6%
active awake state (4F) were observed. SDNN increased over gestation. Changes of
HRV parameters between the fetal behavioral states, especially between 1F and 4F,
were statistically significant. Increasing fetal activity was confirmed by a decrease in PE
complexity measures. The fHRV parameters support the differentiation between states
and indicate the development of autonomous nervous control of heart rate function.

Keywords: fetal behavioral states, heart rate variability (HRV), fetal magnetocardiography (fMCG), fetal matura-
tion, autonomic nervous system (ANS)

Abbreviations: ANS, autonomic nervous system; Bpm, beats per minute; CTG, cardiotocogram, cardiotocography, fECG,
fetal Electrocardiography; fHRV, fetal heart rate variability; fHRP, fetal heart rate pattern; fMCG, fetal magnetocardiography;
GA, gestational age; HRV, heart rate variability; IUGR, intrauterine growth restriction; mHR, mean heart rate; PE, permu-
tation entropy; RMSSD, root mean square of successive differences of the R–R intervals; SDNN, standard deviation of the
normal-to-normal R–R intervals; SQUID, superconducting quantum interference device.
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Introduction

Nijhuis et al. (1982) classified fetal behavior after 32 weeks of
gestation into four states (quiet sleep 1F, active sleep 2F, quiet
awake 3F, active awake 4F, seeTable 1), based on fHRV, eye move-
ment and body movement measured by CTG, and ultrasound
(Prechtl, 1985; Drogtrop et al., 1990; Nijhuis et al., 1999). Prior
to 32 weeks of GA, it is possible to distinguish activity and resting
cycles (Pillai and James, 1990b). Fetal heart rate and movement
is a common obstetrical marker of fetal well-being and health.
Starting in the 1980s, fetal behavioral states were introduced as a
concept based on fetal heart rate andmovement classification and
information was discovered about the development of the ANS
during pregnancy.

Fetal magnetocardiography uses SQUID biomagnetometry to
non-invasively record fetal heart function through the maternal
abdomen. This method detects the fetal cardio electrophysiol-
ogy with high temporal resolution (1 ms) superior to CTG and is
less susceptible to artifacts than fECG (Peters et al., 2001). Thus,
an exact detection of the fetal HRV is possible. Several research
groups have confirmed the usefulness of fMCG as a new and
safe technique for prenatal evaluation of fetal well-being and neu-
rovegetative development by fHRV analysis (Van Leeuwen, 2004;
Schneider et al., 2008). Most of the prior fMCG studies were con-
ducted with small-array biomagnetometer systems, using visual
classification of the data to identify fetal behavioral states. In
2008, a fetal magnetography system was installed at the MEG
Center Tuebingen, dedicated for fetal monitoring. The system
succeeds an earlier fetal system and provides improved signal
acquisition for fetal assessment with enhanced detection of fetal
signals (Lowery et al., 2006), making it possible to record fetal
heart signals fMCG with high temporal resolution and fetal brain
activity fMEG with high detection rates (Preissl et al., 2004). The
characterization of normal fetal behavior is fundamental to neu-
rodevelopmental research and clinical fetal evaluation. Fetal heart
rate is influenced by the ANS, which matures during pregnancy.
In addition several HRV parameters express the maturing influ-
ence of both ANS branches (sympathetic and parasympathetic).
The SDNN measures the overall variability of the neurovege-
tative system. The RMSSD represents the short-term variability
associated with vagal function. The SDNN/RMSSD ratio reflects
sympathovagal balance (Schneider et al., 2008), and PE represents

the complexity of heart beat intervals (Frank et al., 2006). Due
to the high temporal resolution of the MCG, these parame-
ters can be reliably estimated and could improve HRV analysis
to enable the monitoring of the current fetal neurovegetative
state, as shown in an earlier fMCG study (Schneider et al.,
2008).

The focus of this study was the inclusion of fetal movement
data according to the original Nijhuis criteria for fetal state clas-
sification. Additionally, HRV parameters (SDNN, RMSSD, ratio
SDNN/RMSSD, PE) were simultaneously studied to gain infor-
mation about the developing influence of the ANS within each
fetal state. This was done by adapting the design of an earlier
fMCG study (Schneider et al., 2008). An algorithm was used
for an automatic fetal behavioral state detection – in order to
provide a reproducible and objective approach, visual state detec-
tion was used to control and verify the results. Further interest
should focus on the combination of the neurodevelopmental
information obtained by both fMCG and fMEG, measuring fetal
brain activity in utero, for the future, clinical applications of fetal
magnetography.

Materials and Methods

Subjects
The study was performed with the fetal biomagnetometer
installed at the fMEG Center in Tuebingen, Germany (Kiefer-
Schmidt et al., 2013; Sonanini et al., 2014). The Ethics Committee
of the Medical Faculty of the University of Tuebingen, Germany,
approved the study. Written informed consent was obtained
from all subjects. Fifty-five fetal magnetography recordings
were obtained between 24 and 41 weeks of GA from women
with uncomplicated, healthy singleton pregnancies. Subjects
were divided into three GA groups: group 1 (GA 24+0
to 32+0 weeks), group 2 (GA 32+1 to 35+0 weeks), and
group 3 (GA 35+1 to –41 weeks). Chromosomal abnormali-
ties, fetal infections, and maternal diseases with negative effects
on the unborn child were excluded. Only fetuses with esti-
mated weights between the 10th and 90th percentiles for GA
as determined by ultrasound were included in this study.
Neonatal outcome was obtained after delivery to confirm a health
child.

TABLE 1 | Criteria of the automatic state classification based on the original Nijhuis criteria.

State/fHRP 1F/fHRP1 quiet sleep 2F/fHRP2 active sleep 4F/fHRP4 active awake

Original criteria • Quiescence which can be regularly
interrupted by brief body movements
(startles)

• Stable heart rate, small oscillation
• Isolated accelerations occur strictly

related to movement

• Frequent gross body movement
Heart rate with wider bandwidth than 1F

• Frequent accelerations during movement

• Vigorous activity with many trunk rotations
• Unstable heart rate
• Large and long lasting accelerations

fused into sustained tachycardia

Criteria for automatic state detection

Baseline <160 bpm <160 bpm >160 bpm possible

Oscillation bandwith <±7.5 bpm ±7.5–±15 bpm >±15 bpm

Accelerations No >15 bpm/>15 s >30 bpm/>30 s

Movement No Yes Yes
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A CTG was routinely performed before every fMCG record-
ing to confirm fetal heart rate and activity as normal for GA.
Furthermore, the fetal position in relation to the sensor array
was checked by ultrasound (Logiq 500 MD, GE Healthcare,
Little Chalfont, Buckinghamshire, UK) prior to the record-
ing. The study was performed in a magnetically shielded room
(Vakuumschmelze, Hanau, Germany). The sensor array con-
sisted of 156 SQUIDs (first order gradiometers) and 29 ref-
erence channels for noise detection (CTF MEGTM System,
VSM Med. Tech, Coquitlam, BC, Canada). Subjects were seated
comfortably in an upright position and asked to lean for-
ward against the concave sensor array, modeled especially for
the pregnant abdomen. Four coils fixed on elastic belts were
positioned around the maternal abdomen to mark fetal head
position with respect to the sensor array and to detect mater-
nal movement during the measurement. The mothers were
asked to relax during the recording and to move as little as
possible. A choice of relaxing music was offered and trans-
ferred via air-conducting lines from a music player outside the
room to a headphone. The duration of the recording depended
on maternal comfort and was set to a maximum of 45 min.
Subsequently, the ultrasound examination was repeated to check
fetal position.

Data Acquisition
The recordings were performed at a sampling rate of 1220.7 Hz.
Datasets with low signal-to-noise ratios for fetal heart signals
and data with more than 3% artifacts or missed heartbeats were
excluded from the analysis. All data were filtered with a bandpass
of 1–80 Hz using the 8th order Butterworth filter with zero-phase
distortion. Maternal heart signals were attenuated using a signal
space projection technique and the fetal R-waves were identi-
fied using the Hilbert transform technique. The time between
two R-waves was defined as a beat-to-beat interval and used to
calculate fetal mHR. Classical parameters of fHRV representing
the time domain (SDNN, RMSSD, SDNN/RMSSD ratio) and a
non-linear fHRV measure (PE) were calculated for each state,
1F through 4F, and each gestational group in a moving win-
dow of 256 bpm. As a preprocessing step, a shifting window
with a fixed size of 256 heartbeats was standardized in accor-
dance with recommended standards (Malik, 1996; Grimm et al.,
2003). The HRV parameters calculated were: SDNN – the stan-
dard deviation of normal-to-normal beats – representing the
overall variability of sympathetic and vagal oscillations in the

short data windows; RMSSD – the root mean square of suc-
cessive differences, reflecting vagal control; the SDNN/RMSSD
ratio – relating overall variability to its short-term variability
shared in the time domain as a measure of sympathovagal bal-
ance (Schneider et al., 2008); and PE, representing the complexity
of heart rate series (Frank et al., 2006). Fetal heart rate over
time was plotted in bpm as a cardiogram in a CTG-like fash-
ion. The fMCG signal measures fetal movement as changes in
the orientation of fetal heart vectors with respect to the sensor
array. This detection of fetal movement is orientated solely on
the fetal heart vector and therefore only gross fetal movements
such as trunk rotations are discernible. The resulting variation in
signal amplitude was plotted as an actogram showing the fluc-
tuation of the baseline over time. Any deviation >25% from
baseline was considered to represent fetal movement. The car-
diogram and the actogram were recorded simultaneously and
plotted together as an actocardiogram, plotted in Figure 1. We
developed an algorithm for automatic state classification based on
the Nijhuis criteria (Table 1), taking into account the occurrence
of fetal movement and the fHRP. All datasets were addition-
ally classified by visual inspection of the actocardiograms by an
observer with experience in the analysis of CTG and actocardio-
grams. A second observer with experience further independently
analyzed the actocardiograms. If disagreement occurred, consen-
sus was achieved by revision. Due to the low occurrence of the 3F
state (Schneider et al., 2008), only the 1F, 2F, and 4F states were
included in the present analysis. Prior to GA 32 weeks (group
1), only active and quiet states were distinguished, corresponding
to the algorithm criteria of 1F for quiescence and 2F for activity
(Pillai and James, 1990b).

Statistics
Statistics were performed with SPSS 18.0 for Windows (IBM,
Armonk, NY, USA). A one-way ANOVA was used for the sta-
tistical analysis of fetal behavioral states (independent variable)
and parameters of HRV (dependent variable; Figures 3 and 4). To
improve the design of Figures 3 and 4, all data were plotted on a
logarithmic axis. A value of p < 0.05 was considered statistically
significant. Post hoc analysis of the difference between the indi-
vidual states and three age groups employed the Mann–Whitney
U test. After correction for multiple comparisons (Bonferroni),
p < 0.0167 was considered significant for the post hoc analysis.
The correlation of fHRV parameters with GA was analyzed by
Spearman’s rank correlation.

FIGURE 1 | Example of an actocardiogram in 38 weeks of GA measured over 45 min (first line: cardiogram in bpm; second line: actogram).
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FIGURE 2 | Distribution of the fetal behavioral states in percent of total recording time per GA group. Group 1: GA 24+0 to 32+0 weeks), Group 2: GA
32+1 to 35+0 weeks, and Group 3: GA 35+1 to 41 weeks.

FIGURE 3 | (A–E) Box-and-whiskers plots of the HRV parameters by fetal behavioral state (1F, 2F, 4F) and GA group (group 1–3).
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FIGURE 4 | (A–E) Box-and-whiskers plots of the distribution of the individual HRV parameter per fetal behavioral state (1F, 2F, 4F).

Results

Starting at 24 weeks of GA, we performed measurements in 55
pregnant women (mean age 33 years) with a mean recording time
of 32.5 min (range 10–45 min) divided into three groups by GA
(group 1, n = 18; group 2, n= 15; and group 3, n = 22) as seen in
Figure 2. State detection was possible in all 55 datastets (auto-
matic state classification: n = 49; visual classification: n = 6).
In 89% of all cases automatic state classification was used suc-
cessfully. Only in 11% (n = 6) the algorithm failed and visual
inspection was needed for classification. In this visual classifi-
cation the two observers disagreed in two cases an a consensus
was achieved by revision. In group 1 (GA < 32 weeks), fetuses
were in the resting state and in activity cycles during 58.4 and
41.6% of the recording time, respectively. Group 2 (GA 32–
35 weeks), exhibited 1F, 2F, and 4F during 16.2, 72, and 11.8% of
the recording time. In the late gestation group 3, the occurrence
of 1F increased to 31.8%, 2F decreased to 58.8% and 4F remained
almost unchanged at 9.4% (Figure 2).

Parameters of fHRV and GA
Mean heart rate was stable between group 1 (144 bpm) and
group 2 (145 bpm), but decreased to 141 bpm in group 3 (corr:
−0.363, p < 0.001), as demonstrated in Figure 3A. This shift was
significant (χ2 = 12.48; p < 0.005) between the GA groups in
general and between group 1 and 3 in the post hoc analysis.

The SDNN showed an increasing trend with GA for state
2F and 4F, as seen in Figure 3B, but did not attain statistical
significance between the age groups in general (χ2 = 5.43,
p = 0.066). The increase was significant from group 1 to group

2, but not between the other age groups. There was no signifi-
cant correlation between GA and SDNN in general (corr: 0.181;
p = 0.081).

The RMSSD showed no clear decrease or increase across the
GA groups, nor was the correlation between RMSSD and GA
statistically significant (corr: 0.103; p = 0.323; Figure 3C).

The SDNN/RMSSD ratio (Figure 3D) showed a decreasing
trend between group 1 and 2, group 2 and 3, and group 1 and
3 (corr: 0.026; p = 0.805).

PE did not show any significant changes between the GA
groups (corr: 0.179; p = 0.059; Figure 3E). The decrease did not
attain statistical significance as an overall main effect between all
three groups (χsup2 = 3.52, p = 0.172).

Table 2 indicates the results of the post hoc analysis for each
fHRV parameter between the age groups. Figures 3A–E shows
the distribution of the HRV parameters by GA group. Table 3
indicates the distribution of the fHRP parameter in the age
groups.

Parameters of fHRV and Fetal Behavioral
States
Classical fHRV parameters were calculated for each recording
in relation to the different fetal behavioral states. Figures 4A–E
shows the distribution of the HRV parameters by fetal behavioral
state. As shown inTable 4, mHR increased from 1F to 2F, from 1F
to 4F, and from 2F to 4F in each GA group. This main effect was
statistically significant between the states for all fetuses in gen-
eral (χ2 = 31.87, p < 0.001) and for the changes in behavioral
state from 1F to 4F and from 2F to 4F. The SDNN increased sig-
nificantly with the fetal behavioral state (χ2 = 95.42, p < 0.001).
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TABLE 2 | Post hoc analysis (U = Mann–Whitney test) of the HRV parameters and the age groups.

Group mHR SDNN RMSSD SDNN/RMSSD ratio PE

1–2
1–3
2–3

0.032 (U = 199.0)
0.001(U = 350.0)
0.400(U = 373.0)

0.009 (U = 174.0)
0.101 (U = 517.0)
0.941 (U = 425.0)

0.217 (U = 246.0)
0.306 (U = 573.0)
0.931 (U = 415.0)

0.041 (U = 0.707)
0.330 (U = 0.902)
0.990 (U = 1.5)

0.165 (U = 225.0)
0.080 (U = 506.5)
0.831 (U = 394.5)

Statistically significant p-values are in bold type.

TABLE 3 | Distribution of the measured parameters of fHRP divided in
groups regarding GA [Mean (STD)].

Group 1 Rest: Active:

Mean HR 142.76 (5.10) 148.72 (7.36)

SDNN 7.48 (0.82) 18.77 (4.38)

RMSSD 3.23 (1.13) 13.15 (9.78)

Ratio SDNN/RMSSD 2.55 (0.82) 1.99 (1.26)

Perm. entropy 0.93 (0.03) 0.92 (0.03)

Group 2 1F: 2F: 4F:

Mean HR 136.34 (6.80) 141.02 (6.77) 156.92 (10.63)

SDNN 8.84 (1.22) 22.59 (3.93) 26.99 (10.39)

RMSSD 4.57 (1.44) 7.82 (3.57) 6.99 (2.04)

Ratio SDNN/RMSSD 2.10 (0.58) 3.33 (1.04) 4.06 (1.17)

Perm. Entropy 0.95 (0.02) 0.94 (0.02) 0.93 (0.03)

Group 3 1F: 2F: 4F:

Mean HR 134.21 (7.45) 137.83 (6.03) 150.82 (4.97)

SDNN 7.43 (1.57) 25.43 (4.87) 34.04 (10.83)

RMSSD 4.29 (1.14) 8.83 (3.46) 7.29 (4.55)

Ratio SDNN/RMSSD 1.84 (0.59) 3.28 (1.28) 5.41 (2.21)

PE 0.95 (0.02) 0.94 (0.02) 0.90 (0.03)

From 1F to 2F and from 1 F to 4F the increase attained statistical
significance (Figure 4B). The RMSSD increased significantly with
the behavioral state in general (χ2 = 54.19, p < 0.001) and from
1F to 2F and 1F to 4F, as seen in Figure 4C. The SDNN/RMSSD
ratio increased significantly in general as a main effect (χ2 = 1.76,
p < 0.001) and from 1F to 2F and 1F to 4F (Figure 4D). PE
decreased significantly from 1F to 4F and 2F to 4F, but not from
1F to 2F (Figure 4E).

Discussion

Fetal Behavioral States
Behavioral states in mature normal fetuses were primarily inves-
tigated by ultrasound relating to the original Nijhuis criteria,
namely fHRPs, eye movement, and general body movement
(Nijhuis et al., 1982). Between 36 and 42 weeks of GA, fetal behav-
ioral states 1F, 2F, and 4F were reported as occurring 30.2, 57.5,
and 9.5% of the time (Pillai and James, 1990a), respectively. This
is in good agreement with our findings for the corresponding
GA group 3 with 31.8% 1F, 58.8% 2F, and 9.4% 4F. Relating to
the same gestational period, a fMCG study (Lange et al., 2009)
visually classified fHRPs and found respective relative durations

of 27.5, 42.5, and 20% for 1F, 2F, and 4F. The remaining 10%
for 3F and the fact that the study used only fetal heart rate to
classify fetal behavioral states without taking fetal movement into
account might explain the differences in findings compared with
our current study. Another fMCG study (Schneider et al., 2008)
investigated fHRPs in the same GA groups as we did in our
study and detected more 1F and 4F, but less 2F compared to our
results in fetuses over 32 weeks of GA. Nevertheless, that study
reported changes in fetal behavioral states with increasing GA
from group 2 to group 3 that were similar to those observed
in our present study, i.e., an increase in 1F (28–43.9% vs. 16.2–
31.8% in our study) and decreases in 2F (50–42.1% vs. 72–58.8%
in our study) and 4F (22.4–14% vs. 11.8–9.4% in our study).
We aimed to describe fetal behavioral states more accurately by
additionally taking into account fetal movement as one of the
original Nijhuis criteria defining these states. The strong concor-
dance between the behavioral state frequencies in mature fetuses
beyond 36 weeks of GA and traditional studies of fetal behav-
ioral state based on all Nijhuis criteria support our approach
(Pillai and James, 1990a; Nijhuis, 1993). This indicates that this
is a valid approach for fetal state detection. The advantage of
an automatic state detection is to be objective and reproducible.
As this algorithm was newly applied but not established yet, we
double-checked the data visually and preferred in case of dis-
crepancy the visual detected state. More data of a comparison
between both methods is necessary to validate the automatic state
detection.

During early gestation, only quiet vs. active states were dis-
tinguishable, representing the premature fetus. With progressing
gestation, heart rate patterns became more defined, and matched
fetal movement. The frequencies of fetal behavioral states devel-
oped as expected (Pillai and James, 1990a; Schneider et al., 2008).
These results confirm that, as the ANS matures, the fetus devel-
ops the ability to synchronize HRV and body movement and to
develop fetal behavioral states.

Heart Rate Variability
Our further goal was to assess neurovegetative modulation by
comparing established parameters of fetal HRV, namely SDNN,
RMSSD, SDNN/RMSSD ratio, and PE, with the fetal behav-
ioral states 1F, 2F, and 4F across three GA groups. The total
values of the HRV parameters were in accordance with an
MCG study based on visual classification of fHRPs to identify
behavioral states (Schneider et al., 2008), although the individ-
ual values were spread out over a wide range and clustered
more clearly within the three GA groups as demonstrated in
Figure 3. In our study, the SDNN showed an increasing trend
with GA, indicating the increasing modulation of autonomous
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TABLE 4 | Post hoc analysis (U = Mann–Whitney test) of the HRV parameter and the fetal behavioral states.

State changes mHR SDNN RMSSD SDNN/RMSSD ratio PE

1F–2F 0.057 (U = 1444.0) 0.000 (U = 1.00) 0.000 (U = 406.0) 0.000 (U = 0.002) 0.721 (U = 1717.0)

1F–4F 0.000 (U = 37.0) 0.000 (U = 13.0) 0.000 (U = 128.0) 0.000 (U = 0.101) 0.016 (U = 206.0)

2F–4F 0.000 (U = 67.0) 0.030 (U = 314.0) 0.713 (U = 466.0) 0.042 (U = 0.674) 0.009 (U = 273.5)

Statistically significant p-values are shown in bold type.

nervous control. Schneider et al. (2008) confirmed a slight
increase based on higher values for 2F and 4F in fetuses over
32 weeks of GA. Moreover, as previously reported (Zhuravlev
et al., 2002; Schneider et al., 2008), the SDNN/RMSSD ratio
showed a decreasing trend with GA, indicating that the level
of vegetative control increased toward term. However, both
RMSSD and PE showed no clear changes with progressing ges-
tation either in our data or in previous studies (Schneider et al.,
2008). However, there were changes in parameters between the
behavioral states. We observed increases in SDNN and RMSSD
between the quiet sleep state (1F) to the two active states (2F
and 4F; Figures 4B–C). Whereas the SDNN reflects the overall
increase in variability in vegetative function with fetal activity,
the RMSSD represents the progressive vagal influence on short-
term-variability. Maturation of the ANS more strongly empha-
sized the sympathetic branches, as indicated by the increase in
SDNN/RMSSD ratio with fetal state. The changes in RMSSD
from 2F to 4F were inverse to the changes in SDNN; a slight
decrease was visible but not statistically significant. This find-
ing was confirmed by prior studies showing the same shift in
fetuses over 35 weeks of GA (Schneider et al., 2008; Lange
et al., 2009). Moreover, earlier studies also reported an inverse
change in SDNN/RMSSD ratio and PE, with the lowest ratio in
the 1F state being observed for the linear parameters and the
highest for PE. Notably, our data revealed differences in SDNN
and RMSSD between the 1F and 2F states and in PE between
the 2F and 4F states. All parameters showed significant shifts
between 1F and 4F. These changes are in agreement with earlier
reports of high linear fHRV parameters and low complexity
measures in high fetal activity (Frank et al., 2006; Schneider et al.,
2008).

The fHRV parameters may help to differentiate between fetal
behavioral states and indicate the neurovegetative modulation
within each state, thus offering greater insight into the vegeta-
tive development in utero. This confirms other studies pointing
to the SDNN as a distinguishing parameter (Frank et al., 2006;
Lange et al., 2009), including a more recent study indicating
large state-dependent changes in SDNN (Wallwitz et al., 2012).
mHR declined from the youngest to the oldest GA group, which
reflects the known decrease in baseline heart rate toward term.
MHR clearly increased with fetal activity as seen toward 4F, the
behavioral state characterized by long lasting heart rate accelera-
tions and possibly sustained tachycardia (Nijhuis et al., 1982). We
conclude that developmental changes in HRV indicate how the
autonomous nervous systemmatures the fetus’s ability to develop
behavioral states. These findings were evident for fetal age itself
from the clear findings between the states but not with GA in our

study. The findings from our data are in agreement with earlier
studies in this field (Schneider et al., 2008; Lange et al., 2009). In
contrast, studies investigating parameters over the course of preg-
nancy (Van Leeuwen et al., 1999; Lange et al., 2005) revealed an
increase in linear parameters and complexity measures with GA,
but it remains unclear whether the underlying state development
is a bias influencing this change in parameters. However, in our
study there was no subdivision into age groups for the analy-
sis of the parameter changes between the behavioral states nor
did we perform a subanalysis of the behavioral states across age
groups due to the limited number of cases. Schneider et al. (2008)
showed changes for SDNN, RMSSD, and PE that were similar to
those in our study in general, but they were able to further elu-
cidate that the shifts in the parameters from 1F to 2F concerned
all fetal age groups, whereas the changes from 2F to 4F or from
1F to 2F became evident only during the later stages of gesta-
tion, mostly after 35 weeks. According to the standard criteria
for fetal behavioral states, the increasing maturation of the fetal
ANS causes fetal heart rate and movement to become increas-
ingly synchronized. This synchronization is a known marker of
fetal well-being and is used in the clinical monitoring of preg-
nant women. It is well known that fetal HRV can be affected by a
number of factors, including GA, maternal medication, or fetal
pathology (Van Leeuwen et al., 1999; Lange et al., 2005, 2009;
Lowery et al., 2008). Cases of high-risk pregnancy, e.g., IUGR or
preeclampsia, showed lower levels of fetal movement, absence of
fetal heart rate synchronization, and movement, or decelerations
in fetal heart rate (Schneider et al., 2006, 2009). Therefore, the
combination of fetal actocardiogram and HRV parameters could
be helpful in indicating fetal distress with the aid of fetal magne-
tography. The use of fHRV parameters enhances the possibilities
to monitor fetal autonomous nervous development making the
combination of fMCG and fMEG expedient in future neurode-
velopmental studies. This could serve as a starting point for the
implementation of fetal magnetography as a multimodal tool for
fetal assessment.
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