
Jiang et al. Journal of Translational Medicine          (2024) 22:978  
https://doi.org/10.1186/s12967-024-05782-8

RESEARCH Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 
International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if 
you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or 
parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To 
view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by-​nc-​nd/4.​0/.

Journal of 
Translational Medicine

Exploring potential therapeutic targets 
for asthma: a proteome‑wide Mendelian 
randomization analysis
Yuhan Jiang1,2†, Yifan Wang1,2†, Ju Guo3†, Zixuan Wang1, Xuelin Wang2, Xueming Yao3, Hongxi Yang4* and 
Yingxue Zou1,2* 

Abstract 

Background  Asthma poses a significant global health challenge, characterized by high rates of morbidity and mor-
tality. Despite available treatments, many severe asthma patients remain poorly managed, highlighting the need 
for novel therapeutic strategies. This study aims to identify potential drug targets for asthma by examining the influ-
ence of circulating plasma proteins on asthma risk.

Methods  This study employs summary-data-based Mendelian randomization (MR) and two-sample MR methods 
to investigate the association between 2940 plasma proteins from the UK Biobank study and asthma. The analysis 
includes discovery (FinnGen cohort) and replication (GERA cohort) phases, with Bayesian colocalization used to validate 
the relationships between proteins and asthma. Furthermore, protein–protein interaction and druggability assess-
ments were conducted on high-evidence strength protein biomarkers, and candidate drug prediction and molecular 
docking were performed for proteins without targeted drugs. Given the complexity of asthma pathogenesis, the study 
also explores the relationships between plasma proteins and asthma-related endpoints (e.g., obesity-related asthma, 
infection-related asthma, childhood asthma) to identify potential therapeutic targets for different subtypes.

Results  In the discovery cohort, 75 plasma proteins were associated with asthma, including IL1RAP, IL1RL1, IL6, 
CXCL5, and CXCL8. Additionally, 6 proteins (IL4R, LTB, CASP8, MAX, PCDH12, and SCLY) were validated through co-
localization analysis and validation cohort. The assessment of drug targetability revealed potential drug targets 
for IL4R, CASP8, and SCLY, while candidate drugs were predicted for LTB and MAX proteins. MAX exhibited strong 
binding affinity with multiple small molecules indicating a highly stable interaction and significant druggability 
potential. Analysis of the 75 proteins with 9 asthma-related endpoints highlighted promising targets such as DOK2, 
ITGAM, CA1, BTN2A1, and GZMB.

Conclusion  These findings elucidate the link between asthma, its related endpoints, and plasma proteins, advancing 
our understanding of molecular pathogenesis and treatment strategies. The discovery of potential therapeutic targets 
offers new insights into asthma drug target research.
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Background
Asthma is a chronic respiratory disease that affects mil-
lions of people around the world, which is one of the 
major global public health problems, with high morbidity 
and mortality rates and a heavy economic burden [1–3]. 
Despite the availability of several therapeutic options, 
a subset of patients with severe asthma remains refrac-
tory to conventional treatments [4, 5]. In addition to 
traditional pharmacological methods, there have been 
efforts to investigate the potential of natural products 
and traditional Chinese medicine for treating asthma and 
other diseases [6–9]. However, the clinical applications 
of these approaches are limited [10]. In recent years, the 
introduction of biologics has provided new therapeutic 
options for asthma management. By specifically target-
ing the inflammatory pathways involved in the disease’s 
pathogenesis, biological therapies have demonstrated 
effectiveness in controlling exacerbations, reducing side 
effects, and improving the quality of life for selected 
patients [11]. For instance, real-world evaluations for 
children, adolescents, and young adults show that mono-
clonal antibodies like Omalizumab significantly enhance 
asthma control, nearly eliminating seasonal acute attacks 
and reducing dependence on additional medications [12].

However, targeted therapies for asthma face significant 
challenges. Currently, FDA-approved biologics primarily 
target downstream pathways of type 2 (T2) inflamma-
tion, with many of these drugs mainly benefiting adult 
patients [11]. Moreover, there is a lack of effective treat-
ment for non-eosinophilic asthma [13]. Furthermore, the 
mechanisms underlying neutrophilic inflammation asso-
ciated with non-T2 pathways, as well as their relation-
ship with interleukin (IL) 17 (IL-17) and IL-8 in asthma, 
are not yet well understood, leading to the unsuccessful 
development of relevant biologics [14]. Therefore, there 
is an urgent need to identify new potential therapeutic 
targets for asthma.

In recent years, with the development of sequencing 
technologies, genome-wide association studies (GWAS) 
have identified genetic variants associated with plasma 
protein levels, known as protein quantitative trait locus 
(pQTLs) [15]. These findings provide an opportunity 
to use Mendelian randomization (MR) to study the 
causal impact of potential drug targets on the phenome 
of human diseases, including asthma. To minimize 
confounding factors and examine potential causal 
associations between risk factors (such as plasma 
proteins) and disease outcomes (such as asthma), MR 
uses genetic variants as instrumental variables to infer 
causality [16, 17]. Additionally, colocalization methods 
can help identify potential functional variants and 
regulatory elements, further revealing the associations 
between genomic variation and phenotype [18].

In this study, we analyzed 2940 plasma proteins from 
the UK Biobank (UKBB) alongside asthma GWAS 
data from the FinnGen cohort. MR and colocaliza-
tion analysis were employed, with validation using the 
GERA cohort, to identify potential therapeutic targets. 
Considering the complexity of asthma pathogenesis, 
the study also explored the association between pro-
teins and different asthma subtypes, aiming to provide 
new insights for drug target development in asthma 
treatment.

Methods
As illustrated in Fig. 1, the study design aims to investi-
gate the association between protein pQTLs and asthma. 
The study establishes causal relationships by using 
summary-data-based MR (SMR) and two-sample MR 
methods, including discovery and replication phases. 
Bayesian colocalization is used to validate the relation-
ships between protein biomarkers and asthma. Subse-
quently, to investigate the interactions of the identified 
protein biomarkers and assess whether the target pro-
teins have the potential to serve as drug targets, pro-
tein–protein interaction (PPI) analysis, and druggability 
evaluations will be conducted. Lastly, to precisely iden-
tify potential therapeutic targets for different subtypes, 
we will analyze the relationships between pQTLs and 
asthma-related endpoints using the previously described 
methods, following the identification of relevant proteins 
associated with asthma.

Study population and data resource
The protein data utilized in this study were sourced from 
participants enrolled in the UKBB. Employing the anti-
body-based Olink Explore 3072 PEA [19], protein pro-
filing was performed on plasma samples collected from 
54,306 UKBB participants. This comprehensive analysis 
encompassed 2,923 unique proteins. The discovery and 
validation of GWAS summary data about asthma were 
derived from the independent FinnGen cohort (46,684 
cases, 219,734 controls) [20] and the GERA cohort 
(9,209 cases, 47,428 controls) [21]. Additionally, GWAS 
results for asthma-related endpoints were sourced from 
FinnGen. Importantly, there is no overlap between these 
cohorts. It is significant to note that all GWAS partici-
pants were of European ancestry and provided informed 
consent, with the study receiving ethical approval from 
the relevant authorities. Detailed information regarding 
these datasets can be found in Table S1.
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Proteome‑wide MR analysis
This study utilized the "TwoSampleMR" package for MR 
analysis, as with all MR analyses, there are three core 
assumptions, including relevance, independence, and 
exclusion restriction [22]. The selection of instrumental 
variables followed these steps: (1) Selection of cis-pQTLs, 
where the SNP is located within 1 Mb of the transcription 
region of the protein-coding gene. (2) Selection of SNPs 
associated with protein (P ≤ 5 × 10−8). (3) LD clumping 
was performed to determine independent pQTLs for 
each protein (r2 < 0.001), using reference data from the 
1000 Genomes Project of European ancestry.

A variety of analytical methods were employed in this 
study. The inverse-variance weighted (IVW) method 
was used for proteins with multiple instruments to 
estimate MR effects. For proteins with only one instru-
ment, the Wald ratio method was used to calculate the 
log odds change in risk per standard deviation increment 
of circulating protein levels. Additionally, other methods 
such as simple mode, weighted mode, weighted median, 
MR-Egger, and IVW multiplicative random effects were 
applied. The MR-Egger method was used to address hori-
zontal pleiotropy when indicated by the intercept [19]. In 
the presence of heterogeneity, IVW multiplicative ran-
dom effects were employed for evaluation. Results were 
deemed valid if they showed consistent effect directions 
across all methods.

Furthermore, SMR analysis was used as a complemen-
tary method to explore the causal relationship between 
proteins and asthma. Unlike traditional MR, the SMR 

and HEIDI methods utilize summary-level data from 
GWAS and pQTLs studies to test whether the protein 
and phenotype are correlated due to shared causal vari-
ants [23]. To combine the findings from MR and illus-
trate the causality of the results, positive results from 
either two-sample MR or SMR were considered indica-
tive of causal effects. SMR software (SMR v1.3.1) was 
used for SMR and HEIDI tests. The false discovery rate 
(FDR) based on the Benjamini–Hochberg method with 
a threshold of α = 0.05 was used for multiple testing cor-
rections [24].

Bayesian colocalization analysis
To assess the concordance of two associated signals with 
a shared causal variant, Bayesian colocalization analysis 
was conducted using coloc.abf and coloc.susie functions 
from the "coloc" package [25, 26]. This approach allows 
the assessment of hypotheses for single and multiple 
causal variables. We tested five hypotheses, with particu-
lar emphasis on the fourth hypothesis (PH4) which sug-
gests a shared causal variant for both the protein and the 
GWAS (asthma). Default parameters were used for the 
analysis. High support for colocalization was defined as 
PH4 ≥ 0.8, medium support as 0.5 < PH4 < 0.8, and low 
support as PH4 ≤ 0.5 [27].

PPI analysis
After identifying numerous causally related proteins 
through MR, we conducted a comprehensive PPI analysis 
and functional enrichment analysis to explore the direct 

Fig. 1  Study design illustrating the investigation of the association between protein pQTLs (protein quantitative trait locus) and asthma
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(physical) and indirect (functional) interactions between 
the identified proteins and verify their functional rel-
evance in the pathogenesis of asthma. Bioinformatics 
tools and databases, such as STRING [28] (https://​string-​
db.​org/), were used to systematically construct and ana-
lyze the PPI networks of the relevant proteins. To ensure 
the reliability of the interactions, we applied a stringent 
threshold, setting the combined PPI score above 0.7 to 
prioritize high-confidence protein interactions.

Druggability evaluation
Several databases, including DrugBank [29], PubChem 
[30], Therapeutic Target Database [31], and ChEMBL 
[32], were queried to assess the current status of existing 
therapies targeting the identified proteins with co-local-
ization evidence. The drugs were categorized into three 
groups: approved, investigational/experimental, and not 
found. Detailed information regarding drug names and 
their developmental stages targeting the identified pro-
teins was compiled for comprehensive analysis.

Candidate drug prediction and molecular docking
After evaluating the current status of drug development 
for the target proteins, the study used the Drug Signa-
tures Database (DSigDB) [33] to predict potential drug 
candidates for the identified proteins lacking targeted 
therapies. Subsequently, molecular docking analyzed 
binding affinity and interaction patterns between poten-
tial drug candidates and therapeutic targets, aiming to 
identify ligands with high binding affinities and favora-
ble interaction patterns for potential therapeutic candi-
dates and pharmacological targets [34]. Autodock 4.2.6 
was employed for this analysis. Drug structural data were 
obtained from PubChem, and protein structural informa-
tion was retrieved from the Protein Data Bank [35]. To 
further validate the robustness of this method, we con-
ducted docking experiments involving classical asthma 
protein targets, including the beta-2 adrenergic recep-
tor, glucocorticoid receptor, adenosine receptor A1, and 
muscarinic acetylcholine receptor M1, along with their 
corresponding existing therapeutic drugs, such as for-
moterol, hydrocortisone, theophylline, and methacholine 
to compare the binding energies between our predicted 
drugs and their targets.

Results
Associations between plasma proteins and asthma
This study systematically investigated the causal rela-
tionship between 2940 proteins and asthma risk using 
MR analysis. In the discovery cohort (FinnGen cohort), 
MR analysis covered 1997 proteins after excluding 
plasma proteins lacking genetic instruments. Two-
sample MR and SMR were employed for the analysis. 

All instrumental variables had F-values exceeding 30, 
indicating their reliability and effectiveness in captur-
ing genetic associations. After FDR correction, it was 
found that 301 proteins were genetically associated with 
asthma, including interleukin-1 receptor accessory pro-
tein (IL1RAP), interleukin-1 receptor-like 1 (IL1RL1), 
IL6, C-X-C motif chemokine 5 (CXCL5), and C-X-C 
motif chemokine (CXCL8). Detailed results are provided 
in Fig. 2A and Table S2, offering a comprehensive under-
standing of the identified relationships.

To ensure the robustness and validity of these find-
ings, validation was conducted using the GERA cohort, 
as outlined in Table S3. In this validation cohort, a broad 
assessment was conducted on 1797 proteins after exclud-
ing pQTLs lacking instrumental variables, with 392 pro-
teins demonstrating significance. Among the proteins 
identified in the discovery cohort, 75 were successfully 
validated, indicating their reproducibility and reliability 
(P < 0.05). The results are shown in Fig. 2B. Subsequently, 
co-localization analysis was performed for these 75 vali-
dated proteins, revealing the relationships of shared 
causal variations among the 6 proteins associated with 
asthma. The effects of these 6 proteins are detailed in 
Fig. 2C. Specifically, we found 5 proteins with high-level 
co-localization support, namely interleukin-4 receptor 
subunit alpha (IL4R), lymphotoxin-beta (LTB), caspase 
8 (CASP8), protein max (MAX), and protocadherin 12 
(PCDH12). The sum of the single effects (SuSiE) method 
also provided strong evidence of colocalization for the 
associations of IL4R and MAX. Additionally, the sele-
nocysteine lyase (SCLY) protein displayed medium-level 
co-localization support, while the remaining 69 proteins 
all showed low-level evidence of co-localization support. 
Further details can be found in Table S4 and Table S5.

PPI evidence
The PPI network revealed high-confidence interactions 
among the 75 proteins associated with asthma, includ-
ing co-expression and protein homology, as illustrated 
in Fig. 3A, these proteins are involved in multiple shared 
biological functions. KEGG pathway enrichment analysis 
further demonstrated that these proteins are significantly 
enriched in pathways such as hematopoietic cell lineage, 
phagosome, complement, and coagulation cascades. This 
suggests that they play crucial roles in immune cell devel-
opment and function, inflammatory responses, blood 
coagulation, and cellular phagocytosis. Please refer to 
Table S6 for specific results.

Druggability evaluation
We then conducted a drug database search for six pro-
teins with moderate to high co-localization support from 
the shared co-localization analysis with asthma, aiming 

https://string-db.org/
https://string-db.org/
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to evaluate their therapeutic development status. Our 
search revealed that IL4R has two targeted drugs for 
asthma. Dupilumab, a monoclonal antibody, is already 
on the market for treating asthma in adolescents and 
adults. Additionally, AER001, an IL4/13 receptor antago-
nist used to treat severe asthma and eczema, is currently 
in phase 2 studies. Targeting the drug of CASP8 is pri-
marily used for cancer treatment while targeting the drug 
of SCLY is mainly utilized for various supplements and 
vitamin supplements. However, no targeted drugs were 
found for PCDH12, LTB, and MAX in the searched drug 
database. Please refer to Table S7 for specific results.

Candidate drug prediction
The DSigDB database was used in this study to predict 
potentially effective intervention drugs for the proteins 
PCDH12, LTB, and MAX, for which no targeted drugs 
were found. The top 10 potential chemical compounds 
were identified based on adjusted P values, as shown in 

Table  S8. Due to the unresolved macromolecular struc-
ture of LTB, Autodock was employed to determine the 
binding sites and interactions between the 6 drug candi-
dates and the proteins encoded by MAX. Subsequently, 
we generated the corresponding binding energies for 
each interaction, as detailed in Table  S9 and Fig.  3B-G. 
Notably, the MAX-digitoxigenin interaction exhibited 
the lowest binding energy of − 8.24 kcal/mol, reflecting a 
highly stable affinity.

To verify the stability of MAX and its predicted small 
molecule drugs, we docked classical asthma targets 
along with their corresponding small molecule drugs 
and calculated their binding energies. For instance, 
formoterol binds to the beta-2 adrenergic receptor 
with a binding energy of − 5.54 kcal/mol, while hydro-
cortisone interacts with annexin A1 at − 6.54  kcal/
mol and the glucocorticoid receptor, demonstrating 
a strong affinity of − 11.94  kcal/mol, among others. 
These results indicate similar strong binding affinities, 

Mendelian Randomization and colocalization results of the proteins

Protein
LTB
    SMR
PCDH12
    SMR
IL4R
    Inverse variance weighted
    IVW (multiplicative random effects)
    MR Egger
    Simple mode
    Weighted median
    Weighted mode
MAX
    Wald ratio
    SMR
CASP8
    Inverse variance weighted
    IVW (multiplicative random effects)
    MR Egger
    Simple mode
    Weighted median
    Weighted mode
    SMR
SCLY
    Inverse variance weighted
    IVW (multiplicative random effects)
    MR Egger
    Simple mode
    Weighted median
    Weighted mode
    SMR

OR(95%CI)

1.39[1.30,1.48]

1.11[1.06,1.16]

0.86[0.82,0.91]
0.86[0.82,0.91]
0.88[0.78,0.98]
0.89[0.79,1.00]
0.86[0.81,0.91]
0.83[0.75,0.90]

0.66[0.48,0.85]
0.66[0.46,0.87]

1.15[1.11,1.19]
1.15[1.11,1.19]
1.15[1.08,1.21]
1.12[1.03,1.21]
1.16[1.11,1.21]
1.15[1.09,1.20]
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1.09[1.04,1.13]
1.09[1.04,1.13]
1.09[1.00,1.18]
1.11[1.02,1.20]
1.10[1.04,1.16]
1.11[1.05,1.18]
1.18[1.09,1.27]

Pvalue

6.5e−12

1.1e−04

5.2e−09
5.2e−09
1.6e−02
3.9e−02
7.9e−10
6.6e−07

1.5e−05
7.0e−05

1.1e−13
1.1e−13
9.7e−05
9.9e−03
6.0e−10
2.7e−06
1.1e−04

2.5e−04
2.5e−04
6.8e−02
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Fig. 2  A A volcano plot illustrating the proteome-wide Mendelian randomization (MR) results in the asthma discovery cohort (FinnGen cohort). 
The x-axis represents the odds ratio of MR results, while the y-axis represents the -log10P of MR results. Gray points represent non-significant 
results (P > 0.05, after FDR correction), light green points indicate pleiotropic loci (P < 0.05, after FDR correction, but with pleiotropy), blue points 
indicate significant loci (P < 0.05, after FDR correction), and red points indicate proteins validated in the validation cohort and after colocalization 
validation. B A Volcano plot illustrating the proteome-wide Mendelian randomization (MR) results in the asthma validation cohort (GERA cohort). 
The x-axis represents the odds ratio of MR results, while the y-axis represents the -log10P of MR results. Gray points represent non-significant results 
(P > 0.05, after FDR correction), light green points indicate pleiotropic loci (P < 0.05, after FDR correction, but with pleiotropy), green points indicate 
significant loci (P < 0.05, after FDR correction), and red points indicate proteins that are significant in both the discovery and validation cohorts 
and after colocalization validation. C The forest plots for 6 proteins in Mendelian randomization analysis of asthma. Each forest plot represents 
the effect size of different proteins under each method. The horizontal line represents the 95% confidence interval, reflecting the credibility range 
of the effect size. The point represents the effect size of the gene (odds ratio). PP.H4 represents a certain confidence level, possibly the posterior 
probability of hypothesis 4, indicating the probability that a locus simultaneously affects two features
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consistent with the binding energies for other medica-
tions predicted by MAX (ranging from − 4.2 kcal/mol 
to − 8.24  kcal/mol). Detailed results can be found in 
Table S10 and Supplementary Figure.

Associations between plasma proteins and asthma‑related 
endpoints
We conducted a series of detailed analyses on asthma-
related endpoints following the identification of key 
asthma-associated proteins. Figure  4A summarizes the 
MR analysis results of 75 plasma proteins associated with 
asthma-related endpoints as detailed in Table  S11. The 
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Fig. 3  A The network of protein–protein interactions (PPI) results. A stringent threshold was set, with the comprehensive PPI score above 0.7. 
The network nodes represent proteins, while the edges indicate protein–protein associations. These associations are specific and meaningful, 
as the proteins collectively contribute to shared functions. B–G Docking results of MAX protein with small molecules. B MAX docking 
with digitoxigenin, C MAX docking with zoledronic acid D. MAX docking with deptropine E. MAX docked with methyl 4-methoxycinnamate, F MAX 
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Fig. 4  A Heatmap of Mendelian randomization results of 75 proteins with asthma and asthma-related endpoints. The color mapping represents 
the odds ratio, and asterisks indicate significant results. B Heatmap of colocalization results of 75 proteins with asthma and asthma-related 
endpoints. The color mapping represents the PH4, with one asterisk indicating medium colocalization support (0.8 > PH4 > 0.5), and two asterisks 
indicating high colocalization support (PH4 ≥ 0.8)



Page 7 of 10Jiang et al. Journal of Translational Medicine          (2024) 22:978 	

study found a general consistency between the direction 
of association of these proteins with asthma and their 
association with asthma-related endpoints.

Further co-localization analysis, as depicted in Fig. 4B, 
showed that IL4R and MAX are moderate to strongly 
associated with most asthma-related endpoints, includ-
ing allergic asthma, asthma-related acute respiratory 
infections, and asthma-related infections, as detailed in 
Table  S12 and Table  S13. In contrast, proteins such as 
docking protein 2 (DOK2), integrin alpha-M (ITGAM), 
and carbonic anhydrase 1 (CA1) exhibit moderate to 
strong co-localization evidence with childhood asthma in 
different methods, which differs from asthma. Addition-
ally, granzyme B (GZMB) shows high co-localization 
evidence with obesity-related asthma. We found robust 
evidence that the following target proteins are associated 
with infection-related asthma: butyrophilin subfamily 2 
member A1 (BTN2A1), and GZMB.

Discussion
In this study, proteome-wide MR and colocalization 
analysis were conducted using large-scale pQTLs data 
to investigate the roles of 2,940 circulating proteins in 
asthma. The results were replicated in an independ-
ent cohort to ensure robustness, identifying 75 asthma-
associated proteins, including IL1RAP, IL1RL1, and IL6. 
Colocalization analysis further validated the associa-
tions between asthma and 6 proteins: IL4R, LTB, CASP8, 
MAX, PCDH12, and SCLY. Moreover, the relationships 
among these proteins were explored through protein–
protein interactions, which revealed key functional con-
nections. For proteins lacking targeted drugs such as 
LTB and MAX, potentially effective intervention drugs 
were predicted, and molecular docking. The results indi-
cate that the binding energies of MAX and the predicted 
drugs are similar to those of classical asthma targets and 
their corresponding small molecule drugs, demonstrat-
ing significant potential for drug development. Addition-
ally, MR and colocalization analysis results for these 75 
proteins with 9 asthma-related endpoints were demon-
strated, identifying proteins with strong evidence, includ-
ing DOK2, ITGAM, CA1, BTN2A1, and GZMB.

The pathogenesis of asthma involves several aspects: 
airway inflammation (high T2 and low T2), airway 
hyperresponsiveness, and airway remodeling [36–39]. 
Our findings identified key proteins, including IL1RAP, 
IL1RL1, IL6, CXCL5, and CXCL8, which align with 
numerous previous studies [40–44]. Although these 
proteins were not replicated or colocalized in our study, 
their discovery remains significant for asthma drug tar-
get development. IL1RAP plays a critical role in high 
T2 inflammation, forming a complex with IL-33 and 
ST2 that activates T2 cytokine release, facilitates B-cell 

differentiation into IgE-producing cells, and promotes 
eosinophil proliferation, thereby establishing a T2 
inflammatory environment in the lungs or other tissues 
[45]. Regarding low T2 inflammation, CXCL8 drives neu-
trophilic airway inflammation, likely a primary pathway 
for non-Th2 asthma inflammation. Inhibiting CXCL8/
IL-8 may aid in treating virus-induced asthma exacerba-
tions [46]. Furthermore, mouse studies have shown that 
a monoclonal antibody targeting IL-6 effectively treats 
airway inflammation and remodeling in severe asthma 
patients [44].

Additionally, we identified and validated associations 
between IL4R and MAX with asthma, along with sev-
eral asthma-related endpoints, including allergic asthma, 
asthma-related acute respiratory infections, and asthma-
associated infections. IL-4 has been extensively studied 
and is considered the primary switch for Th2 cells, driving 
these cells to produce other pro-allergic cytokines such as 
IL-5 and IL-13 [47, 48]. Therefore, interrupting the cas-
cade reaction initiated by IL-4 is a therapeutic approach 
for asthma. Monoclonal antibodies targeting IL4R, such 
as Dupilumab, have been approved for asthma treatment 
[49, 50], confirming the therapeutic potential of this 
pathway in our study. MAX is a helix-loop-helix protein 
with limited pathway-related studies, but our molecu-
lar docking identified its strong druggability. Moreover, 
tissue-specific analysis shows high expression of MAX 
in the lungs [51], perhaps indicating its complex associa-
tion with asthma pathogenesis, warranting further explo-
ration. Furthermore, some strong evidence for potential 
targeted proteins was identified. A study revealed that 
LTBR expressed in airway smooth muscle cells can acti-
vate sustained signaling pathways involved in smooth 
muscle remodeling, lung function impairment, and anti-
gen-induced airway hyper-responsiveness [52]. Further 
research is needed to elucidate the molecular actions of 
LTB due to its unresolved structure. In addition, CASP8 
was found to be associated with severe asthma, includ-
ing severe T2-high and non-T2-high asthma phenotypes 
[53]. It may be a potential target for severe asthma treat-
ment. Studies further indicate differences in gender dis-
tribution, exacerbating factors, associated complications, 
severity, and disease progression mechanisms among 
distinct asthma phenotypes [54, 55]. Therefore, results 
regarding protein associations with various asthma sub-
types can guide the development of specific targeted 
therapies. Our results indicate a strong colocalization sig-
nal between GZMB and obesity-related asthma. Genetic 
deletion of granzyme B in mice can alleviate the sever-
ity of contact dermatitis and improve impaired wound 
healing associated with calorie and diabetes-related inju-
ries, demonstrating developmental potential for GZMB 
in obesity-related asthma. Additionally, our analysis 
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revealed an association between childhood asthma and 
the proteins DOK2, ITGAM, and CA1. ITAM integrin 
ITGAM/ITGB2 is associated with various adhesive inter-
actions of monocytes, macrophages, and granulocytes, 
mainly manifested in skin and mucosal involvement [56]. 
This finding may support the view that childhood asthma 
is caused by impaired skin and other epithelial surface 
barrier functions [57, 58].

However, our study has some limitations. Despite 
excluding biases caused by cascade imbalance through 
colocalization analysis, MR analysis is susceptible to 
unmeasured factors and pleiotropy [59, 60]. Additionally, 
the whole-genome association study data for exposures 
and outcomes we used are from European populations. 
Although limiting the study population can reduce 
population structure bias, it also limits the generaliz-
ability of our results to other populations. Furthermore, 
this study primarily focused on circulating proteins in 
plasma, potentially overlooking the effects of alternative 
treatments. Despite these limitations, our study provides 
a reliable analysis of large-scale plasma proteins associ-
ated with asthma. Future research could further explore 
the exact roles of these proteins in asthma pathogen-
esis and the expression differences in different asthma 
subtypes. Moreover, the feasibility of these proteins as 
potential drug targets and more experimental validation 
could be explored. Integrating other omics data (such 
as transcriptomics and metabolomics) and clinical data 
could provide a more comprehensive understanding of 
asthma pathogenesis and personalized treatment strate-
gies. Ultimately, we hope these efforts may contribute to 
the development of personalized asthma treatment and 
precision medicine.

Conclusions
These findings illuminate the connection between 
asthma, its related endpoints, and plasma proteins, 
advancing our understanding of the molecular pathogen-
esis and treatment strategies for asthma. This provides 
unique insights into exploring potential drug targets for 
asthma and offers ideas for future research on personal-
ized treatment approaches and precision medicine.
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