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Recent advances in understanding the role of metabolic 
heterogeneities in cell migration

1 Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA

Abstract

Migration is an energy-intensive, multi-step process involving cell adhesion, protrusion, and detachment. Each of these steps 
require cells to generate and consume energy, regulating their morphological changes and force generation. Given the need for 
energy to move, cellular metabolism has emerged as a critical regulator of both single cell and collective migration. Recently, 
metabolic heterogeneity has been highlighted as a potential determinant of collective cell behavior, as individual cells may play 
distinct roles in collective migration. Several tools and techniques have been developed and adapted to study cellular energetics 
during migration including live-cell probes to characterize energy utilization and metabolic state and methodologies to sort cells 
based on their metabolic profile. Here, we review the recent advances in techniques, parsing the metabolic heterogeneities inherent 
in cell populations and their contributions to cell migration.
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Introduction
Cellular bioenergetics play a significant role in many essential  
biological processes including growth and proliferation, allow-
ing cells to adapt to a changing environment1. Cellular energy  
utilization and metabolic plasticity can improve cell fitness  
and regulate disease progression by maximizing energy pro-
duction and providing the necessary intermediates for  
biosynthetic processes2–7. However, it has only recently been 
reported that cell metabolism may play an important role in 
migration8,9, with intracellular energy generation still being  
explored.

Recent evidence suggests that cells have distinct energetic  
needs depending on their mode of migration3. Cells can move 
both as individual cells and as collective cohorts, adopting a 
variety of migratory modes, ranging from Rac1-dependent  
mesenchymal10–13 to RhoA-mediated amoeboid migration14–16.  
In addition to plasticly switching between these migratory 
modes or adopting intermediate characteristics of each11,16–21, 
migratory cells are also able to switch between two main 
metabolic pathways: glycolysis or oxidative phosphorylation  
(OXPHOS)22. Energy requirements depend on cell morphol-
ogy, physical properties of surrounding environments, and  
cell–environment interactions and are therefore determining  
factors in cell migration3.

Collective migration is characteristic of a number of biologi-
cal processes, including development, wound healing, and 
invasive diseases like cancer, where energy utilization and 
efficiency have recently been shown to play a significant  
role23–26. It has been reported that both single and collective  
cell migration may demand that certain energetic require-
ments be met during migration9,27–30. In single cells, the more  
energy-efficient, mitochondrial ATP generation occurs at 
the leading edge of cells8, whereas during collective migra-
tion, there is no consensus in the current literature on energy  
production at the leading edge of the cell front compared to the  
central follower cells31,32. Cell metabolic pathways and 
energy sources are of key interest in the context of cancer, as a  
better understanding of these processes could provide efficient  
targets for treating cancer and inhibiting cell invasion. There-
fore, newly developed tools and techniques available for  
studying cell metabolism during migration have enabled further 
investigation of cellular energetic needs and the mechanisms  
by which energy is generated.

Molecular probes for studying cell metabolism 
during migration
Cell metabolism has primarily been characterized using bulk  
techniques analyzing metabolic genes and proteins and 
with tools such as the Seahorse Analyzer XF that reports  
oxygen consumption and extracellular acidification rates of cell  
populations33–36. However, as more is learned on the heterogene-
ity of cell populations and migratory ability, it becomes clear 
that understanding individual cell energetics can shed light 
on these complex and intricate processes. Molecular probes  
that can be stably expressed in multiple cell lines are able to  
map these minute changes on a cell-by-cell basis to study single 

cell energetics in the context of larger cell populations. Many  
fluorescent biosensors thus exist to interrogate cell metabo-
lism in real time, including those measuring the metabolic  
intermediates lactate37 and pyruvate38 or mitochondrial membrane  
potential39. Here, we have focused on just a few of the many  
probes used to investigate cell migration and metabolism.

PercevalHR probe: visualizing ATP:ADP ratios
Adenosine triphosphate (ATP) and adenosine diphosphate  
(ADP) are two key components of energy transfer in cells, with 
ATP being essential in multiple migratory mechanisms including 
actomyosin contractility40, actin polymerization41, and cytoskel-
etal remodeling42,43. ATP:ADP ratios are useful in reporting  
the availability of these metabolic intermediates. The  
PercevalHR probe boasts the ability to track real-time ATP:ADP 
ratios and localization as cells migrate, providing substantial 
insight about the relationship between cell energy utilization and  
migration in various cell microenvironments44. PercevalHR 
combines a fluorescent protein with the bacterial regula-
tory protein GlnK1 that competitively binds to active ATP and  
ADP44,45. The probe has two distinct excitation wavelengths  
for ATP and ADP binding and has been successfully used to  
measure a ratio of these values in yeast cells46, HeLa cells47,  
pancreatic beta cells48,49, neuronal cells50, fibroblasts51, meta-
static breast cancer cells9,30, and many others to report cell energy  
status.

By quantifying ATP:ADP in individual live cells, it is  
possible to probe the role of cell metabolism in migration. The  
Warburg effect postulates that glycolysis is preferred over mito-
chondrial respiration in energy production52, generating interest  
in how this altered energy dynamic regulates migration and 
interaction with the extracellular matrix (ECM)53. In dense,  
more-challenging environments, ATP:ADP ratios in cancer 
cells are elevated, likely to meet the higher energetic demands 
of cells navigating the ECM9 (Figure 1A). When presented with 
fewer impediments in aligned matrices, that ratio significantly 
drops, suggesting that cells can specifically tune energy levels  
to meet the demands of the surrounding matrix architecture.  
Additionally, PercevalHR has been utilized to explore the  
relationship between confinement and bioenergetics during 
migration, where increased confinement typically imposes a 
higher energetic demand on cells30 (Figure 1B–E). Moreover, 
cells tend to follow the path of least resistance in these energy  
requirements, as cells preferentially migrate into less confined,  
potentially less energy-intensive pathways. The ability to 
monitor ATP:ADP levels in single cells and correlate those  
with migration metrics like velocity has been a powerful 
tool in demonstrating that cells adapt energy levels based on  
their migration behavior and microenvironment.

In addition to modulating ATP:ADP levels during migration, 
cells exhibit changes in energy localization in response to mito-
chondrial positioning that can significantly affect migratory  
ability51. Recent data suggest that intracellular energy distri-
bution, mapped using PercevalHR, modulates migration and  
controls features such as protrusive and adhesive activity and,  
consequently, migration speed in embryonic fibroblasts. When 
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ATP:ADP ratios are reduced at the cell periphery and mito-
chondria become restricted to the perinuclear space, decreased 
membrane dynamics and adhesion stability mediated by the  
Rho-GTPase Miro-1 attenuate migration in both single and  
collective cells. Evidence suggests that Miro-1 is required for 
migration and wound healing during injury of epithelial cells54,  
highlighting the importance of mitochondrial function in  
mediating cell migration.

PercevalHR has proven a useful, viable tool not only in vitro  
but also ex vivo50. PercevalHR-transduced cells were injected 
into the subventricular zone of adult mice, and brain tissue  
sections were removed and time-lapse imaged. Cells actively 
and dynamically changed ATP:ADP ratios, promoting autophagy 
to regulate the pace of migratory and stationary phases in the 
cell. This work lays the foundation for both further use of  
probes in highly relevant, ex vivo and in vivo environments 
as well as understanding how energy consumption is essen-
tial in key migratory processes. Since so few techniques for 
investigating cell migration are applicable to in vivo studies,  
molecular probes hold the potential to further elucidate more 
relevant and useful therapeutic targets for many aggressive  
diseases.

Visualizing NADH:NAD+ redox state
The cytosolic NADH:NAD+ redox state is an important  
indicator of bioenergetics that drives the flow of electrons  
during the electron transport chain. Nicotinamide adenine  
dinucleotide (NAD) reduces to NADH when it accepts an elec-
tron, and both are essential cofactors in glycolysis, the citric acid 

cycle, and OXPHOS55. The ratiometric Peredox probe reports  
NADH:NAD+ ratios in live cells by incorporating the bacterial  
redox-sensing, transcriptional repressor Rex that competitively  
binds NADH and NAD+ and increases fluorescence upon  
binding to NADH56,57. In addition to correlating the redox state 
with glycolysis in bacterial cells58,59, neural cells60, neuroblas-
toma and epithelial cells56, and melanoma cells61, Peredox has  
been used to elucidate the role of key glycolytic and OXPHOS 
mediators in cancer cell invasion61.

Recently, Peredox was used to interrogate the role of Citrin, 
the mitochondrial transporter, in increasing cancer cell inva-
sion by measuring the relative levels of NAD+ and NADH 
during energy production in cells where the transporter was  
silenced61. While NAD+ and NADH levels were both found 
to decrease in cells lacking Citrin, levels of glycolysis and  
OXPHOS similarly decreased, suggesting that Citrin aids in  
providing intermediates for both energetic pathways. However,  
Peredox is not the only probe that takes advantage of the  
competitive binding of Rex. Similar variations of the construct 
have been used to highlight glycolysis as a determinant of cell 
migration in development. A Rex probe paired with yellow  
fluorescent protein reported that neural crest migration depends 
heavily on glycolysis and is abrogated in cells utilizing  
OXPHOS62. This has been echoed in recent studies, where 
increased glycolysis and its intermediates were linked to  
increased migration29,63–68. These probes allow visualization 
of the inherent metabolic plasticity of cells and how migra-
tory phenotypes are altered when cells utilize different energy  
pathways.

Figure 1. The PercevalHR probe can be used to image ATP:ADP ratios in various microenvironments. (A) Heat map of PercevalHR/
pHRed probe in MDA-MB-231 cell migrating in a microfabricated collagen microtrack (scale bar = 50 µm). (B–E) Heat map of PercevalHR/
pHRed probe in MDA-MB-231 cells in 3D collagen densities of B) 0.5 mg/mL, C) 1 mg/mL, D) 2 mg/mL, and E) 5 mg/mL (scale  
bar = 50 µm).
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2-NBDG probe: visualizing glucose uptake
Glucose fuels glycolysis, releasing ATP and other factors that  
feed into OXPHOS. 2-NBDG is a modified, fluorescent glucose  
analog that is effectively taken up by cells, but not utilized  
during glycolysis, and thus serves to report glucose uptake in  
cells69. This probe has been used as an indicator of glycolysis 
to study cancer cell migration in particular, as cancer cells are  
known to exhibit increased glucose uptake and glycolysis to  
support increased proliferation. Increased 2-NBDG fluores-
cence has been correlated with increased migration in cells62 
and directly related to an increase in ATP hydrolysis9. Not only  
has 2-NBDG been used in ex vivo live tissues successfully70  
but also, in future work, it could be used to track glucose 
uptake and therefore relative glycolytic rates ex vivo and in vivo  
during migration through highly relevant microenvironments  
to investigate dynamic metabolic plasticity.

Visualizing H2O2 gradients
Cells can respond to various environmental cues to regulate  
and drive migration. The “redox status” of cells, describing the  
relative levels of regulators of oxygen, can be determined by 
these cues and is regulated by the production of intermedi-
ates such as reactive oxygen species (ROS) like hydrogen  
peroxide (H

2
O

2
)71. H

2
O

2
 serves as an important second  

messenger since it is an oxidizing agent during cell metabolism72.  
Multiple probes have been developed incorporating a fluo-
rescent protein with the H

2
O

2
-sensing protein OxyR to obtain  

real-time, live-cell tracking of H
2
O

2 
localization in the cell to  

gain insight on the redox state and H
2
O

2
 gradient72–74. The 

recently developed and most sensitive of these probes is HyPer 
7, which can detect very low concentrations of H

2
O

2
 while being  

pH stable72. Using this probe, protrusion formation and cell 
polarization was shown to rely significantly on the H

2
O

2
  

concentration at the leading edge of cells and the steepness 
of the H

2
O

2
 gradient from the protrusion to the cell body was 

found to directly correlate with the stability of the protrusion.  
This gradient, observed using a HyPer variant, has addition-
ally been reported to change based on mechanical environ-
mental cues, for instance confinement, to alter lamellipodia  
formation and induce migration toward available oxygen75. 
Though further work is required to understand exactly how this  
H

2
O

2
 gradient and signaling directs migration and cell  

polarization, the increased sensitivity of this probe, and others,  
has provided a unique avenue for further exploration.

While these probes correlate migratory events with real-time  
metabolic readouts, they also point to mechanisms by which 
cell migration is directly affected by intracellular bioenerget-
ics. In the future, the use of these probes in vivo could aid 
in unveiling migratory mechanisms of cells experiencing 
altered biochemical and mechanical cues that are often too  
complex to replicate in vitro.

Collective migration and leader/follower 
heterogeneities
Metabolism in collective migration and 3D culture models
Recently, metabolic heterogeneities in collective cell populations  
have gained increased interest. Collective cell migration,  
in contrast to single cell migration, relies not only on cues  
from the microenvironment but also on signaling and inter-
action with surrounding cells. Cells migrating en masse can 
show differential responses to surrounding cues76 and are 
thought to minimize energetic costs compared to single cells,  
effectively preserving energy for cells to navigate more chal-
lenging environments9,77–79. One could speculate that collectively 
migrating cells utilize different strategies to achieve cell–cell  
communication and collective invasion, as cells may experi-
ence metabolic rewiring and/or swap positions due to leader  
cell energy depletion to efficiently invade31,80 (Figure 2).  
Glycolytic regulation of ATP/ADP ratios in cells has also been 

Figure 2. Dynamic leader/follower switching during collective migration allows energy-depleted leader cells to be replaced with new 
leader cells at collective cell front. Cues from the microenvironment such as collagen density may alter energy utilization and migratory 
behavior. Matrix metalloproteinases, potentially activated because of acidification of the surrounding microenvironment during glycolysis, 
can help to degrade the extracellular matrix.



Faculty Reviews 2021 10:(8)Faculty Opinions

reported to play a key role in cytoskeletal remodeling, cell  
migration, and leader cell competitiveness during events like  
vessel sprouting81. Thus, ATP generation and trafficking in  
the cell is essential to a variety of collective processes.

Metabolic plasticity in collective migration may allow cells 
to meet dynamically changing energy needs within a hetero-
geneous microenvironment that presents cells with varying  
obstacles. For example, when cells encounter denser micro-
environments and energy demands are increased, ATP has  
been shown to be generated through the OXPHOS pathway 
via mitochondrial trafficking to the leading edge of individu-
ally migrating cells, opposing the traditional Warburg theory8.  
In these high-density, energy-demanding environments, cells 
typically switch from single cell to collective migration78,  
suggesting that collective migration may provide some protec-
tion from energy depletion and migratory advantage. Simi-
larly, increased substrate stiffness has been shown to result 
in higher collective cell migration speed, persistence, and  
area of multicellular protrusions82,83. Because stiffness gradients  
within the ECM can also affect the directionality and  
coordination of collective cell movements84,85, it is likely that 
varying stiffnesses result in an altered metabolic response in  
collective cells. As cell clusters may simultaneously experi-
ence heterogeneous stiffness and stress distributions due to 
the organization of the microenvironment85, determining how  
cells meet these localized energy demands and employ differ-
ent energy production strategies is integral in probing collective  
cell behavior.

As increasing interest in collective cell energetics emerges, 3D  
culture models have gained attention as tools for investigat-
ing mechanisms of collective cell migration in relation to  
disease progression, especially in tumor metastasis86–92. Among  
the various collective migration models available, spheroids 
and organoids have been specifically used to investigate the 
relationship between collective cell migratory ability and envi-
ronmental cues93–97. These highly relevant tools have been  
used in attempting to unveil potential mechanisms for how cell 
heterogeneity, migratory modes, and the microenvironment 
all contribute to a dynamically changing metabolic profile of  
migrating cells31,32,80,98–102.

Environmental cues like peroxide gradients or hypoxia can be 
formed in 3D culture models that can be used to specifically  
probe leader/follower dynamics in the context of the cellular 
redox state. When human apurinic/apyrimidinic endonuclease-1  
(APE1), a key regulator of ROS production and redox state, 
was inhibited in breast cancer cells, collective migration was  
significantly inhibited, suggesting that ROS generation and 
regulation plays an important role not only during single cell 
migration but also in collective invasion and migration103.  
Given these data, it is possible that the redox status of individual 
cells during collective cell migration contributes to the meta-
bolic differences between leader and follower cell populations 

and using HyPer and other peroxide probes may provide more 
information when used in a collective context. At high doses,  
H

2
O

2
 treatment has been shown to modulate junction proteins 

in collective cells and effectively inhibit migration in vari-
ous cancer cell lines104–106. Additionally, hypoxia gradients have  
been shown to induce collective-to-amoeboid transition in  
cancer cells, in which single cells in collective masses are able 
to escape the leading edge and switch to an amoeboid migratory  
mode107. This suggests that even within collective masses, cells 
react on an individual level to changing hypoxic gradients and 
ROS modulation to more efficiently navigate their external  
environment. Future use of peroxide and ROS-related probes 
in models like spheroids or organoids should reveal how leader/
follower cells may rely on various oxygen levels to fill their  
roles during collective migration.

Leader/follower dynamics
Observing the metabolic plasticity of collectively migrating 
cells has led to a recent focus on the distinction between the  
independent roles of leader/follower cells. The formation 
of phenotypically unique leader cells from follower cells is  
reportedly dependent on dynamic collective stresses in  
follower cells that can in some instances pull leader cells into  
position108. As energy utilization in this mechanism is still not 
fully understood, molecular probes and fluorescent labeling  
have been employed to determine how the differences between 
these two distinct cell groups are established and affected 
by metabolic requirements. For instance, cells expressing  
GFP-labeled keratin-14 in primary breast tumor organoids 
were found not only at the leading edge of collective cells to 
direct migration but also in follower positions that can engage  
in leader/follower switching events in response to both micro-
environmental cues and intracellular energy needs31,109,110.  
Utilizing RFP-tagged and CycleTrak-labeled MDA-MB-231s,  
it has been shown that cells guided by environmental cues may 
compete for a dynamically changing leader cell position to  
minimize energetic costs during ECM invasion31,77. Thus, prob-
ing individual cell behavior with various fluorescent biomark-
ers has further clarified the metabolic determinants of different  
subpopulations during collective migration; moreover, these  
findings have suggested that the regulation of leader/follower 
cell metabolic profile by the surrounding microenvironment is  
critical to collective migration.

Metabolic and phenotypic heterogeneities in leader/
follower cells
Molecular probes are a powerful tool for dissecting the proc-
esses of collective migration, especially in the context of bioen-
ergetics and cancer. Unlike Seahorse, which requires large cell  
populations29,51,111, molecular probes allow for metabolic  
profiling of individual cells in collective migration, highlight-
ing the spatial and temporal heterogeneities in leader/follower  
dynamics. The PercevalHR probe has been used to observe avail-
able energy in leader cells during collective cancer cell inva-
sion in vitro through dense collagen, which is directly related to 
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leader cell lifetime and leader/follower positions31. Using the  
2-NBDG probe, it has been separately reported that leader cells 
exhibited higher glucose uptake than follower cells, suggest-
ing increased glycolysis31, while another reported the prefer-
ential usage of OXPHOS by leader cells32. Though it is clear 
that collective cell populations maintain complex metabolic  
heterogeneity, how cells utilize different metabolic pathways 
during collective migration remains unclear. These real-time 
cell tracking techniques not only shed light on cell metabolism  
during migration but also, more importantly, point to the 
need for further investigation into leader versus follower cell  
behavior.

To understand the needs of individual leader and follower  
cells during migration, researchers have taken advantage of the 
ability to physically sort heterogeneous subpopulations based 
on their distinct phenotypic, genotypic, and metabolic profiles  
using tools such as photoactivation and spatiotemporal  
genomic and cellular analysis (SaGA)31,112. These techniques 
employ the use of photoconvertible tags to identify and mark 
individual cells in collective populations that can then be 
sorted and expanded into discrete subpopulations. By creating  
separate populations characterized by mutations affecting inva-
sive capability113, highly invasive leader cells were shown to rely 
on focal adhesion kinase–fibronectin signaling to promote inva-
sion, while follower cells instead are recruited to leader cells 
via irregular VEGF-based vasculogenic signaling112. Further  
definition of unique subpopulations can also be determined  
using single-cell sequencing, probing the metabolic heteroge-
neities in bulk expression profiles to link metabolic gene expres-
sion during in vitro cell migration with in vivo metastasis114–117.  
By specifically studying these populations, a fuller understand-
ing of their interactions and roles in collective cell migration 
can be gained, particularly in the context of invasive diseases  
like cancer.

Recently, it has been shown that cells can be sorted without the 
use of specific probes or photoactivation but rather based on 
autofluorescence of the metabolic intermediates NAD(P)H and  
FAD66,118–120. High levels of NAD(P)H autofluorescence may 
serve as a useful biomarker for increased OXPHOS119, though 
it may be difficult to fully parse the contributions of NADH and  
NADPH to metabolism and whether these changes specifi-
cally point to mitochondrial respiration or glycolysis57. None-
theless, autofluorescence has provided a probe-free avenue for 
exploring the metabolic preference in cells that could lend to  
easier characterization of migratory metabolism in the future.

As studies continue to investigate the metabolic activity of  
leader/follower cell populations, conflicting reports have emerged 
regarding the utilization of glycolysis and/or mitochondrial  
respiration during collective migration. In cancer, leader cells 
have been shown in some instances to rely on glycolysis, as  

demonstrated by increased ATP/ADP ratios and increased 
glucose uptake31, while others show a dependence on 
OXPHOS32, as shown by increased sensitivity of leader cells to  
mitochondrial-targeting treatment. During glycolysis, the 
tumor microenvironment is acidified owing to the increase in 
lactate production by cells52,121, which has been linked to the  
activation of matrix metalloproteinases122,123, important mediators  
of matrix degradation. This evidence supports the idea that 
leader cells rely more heavily on glycolysis, potentially to aid in  
matrix remodeling for migration, and further highlights how  
leader/follower phenotypic heterogeneity may be sustained or 
partially altered by the microenvironment. As future studies  
continue to reveal distinct leader/follower profiles, these oppos-
ing reports may be resolved with further investigation into how  
leader/follower dynamics and complex microenvironmental  
cues regulate migratory metabolism.

Conclusions
In very recent work, cell migration research has focused on  
understanding the role of metabolic heterogeneities in cell 
migration. Studies have narrowed from visualizing intracellular  
energetics in single cell and collective groups of cells to sort-
ing cells into specific populations and characterizing the pheno-
typic and genotypic differences in these subpopulations. This is  
made feasible through the use of photoactivation and cell sort-
ing, with characterization made simple using molecular probes 
that allow visual and quantitative comparison of metabolic  
processes in migrating cells. However, tools and techniques for 
monitoring and quantifying energy production and consump-
tion in real time in vivo are still lacking and will be essential in 
understanding cellular energy status of migrating cells in highly  
complex and relevant environments. Additionally, in primary 
or patient-derived cell lines where cells are more fragile and 
last shorter time periods in vitro, molecular probes requir-
ing several passages for transduction and even selection can  
be technically difficult to utilize. Therefore, the development 
of a less-invasive tool to visualize and quantify intracellular 
energy status in these cells will be particularly useful in future  
cell migration work.

Recent research has revealed that individual cell populations 
hold key heterogeneities that independently contribute to the  
migration of collective cell groups as a whole, with meta-
bolic intermediates playing an essential role in determining the  
function and role of these cells. Whether these heterogenei-
ties are inherent in the cell or dependent on surrounding  
conditions has yet to be fully explored and is of key interest in  
future work. As it is still unclear which metabolic pathways 
are prioritized by specific cell subpopulations, further inves-
tigation into these questions is essential to fully understand 
the mechanisms of both single and collective cell migration, 
especially in the context of a complicated disease-developing  
environment.
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