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ABSTRACT

The availability of robust classification algorithms for the identification of 
high risk individuals with resectable disease is critical to improving early detection 
strategies and ultimately increasing survival rates in PC. We leveraged high quality 
biospecimens with extensive clinical annotations from patients that received treatment 
at the Medstar-Georgetown University hospital. We used a high resolution mass 
spectrometry based global tissue profiling approach in conjunction with multivariate 
analysis for developing a classification algorithm that would predict early stage PC 
with high accuracy. The candidate biomarkers were annotated using tandem mass 
spectrometry. We delineated a six metabolite panel that could discriminate early stage 
PDAC from benign pancreatic disease with >95% accuracy of classification (Specificity 
= 0.85, Sensitivity = 0.9). Subsequently, we used multiple reaction monitoring mass 
spectrometry for evaluation of this panel in plasma samples obtained from the same 
patients. The pattern of expression of these metabolites in plasma was found to 
be discordant as compared to that in tissue. Taken together, our results show the 
value of using a metabolomics approach for developing highly predictive panels 
for classification of early stage PDAC. Future investigations will likely lead to the 
development of validated biomarker panels with potential for clinical translation in 
conjunction with CA-19-9 and/or other biomarkers.
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INTRODUCTION

Pancreatic ductal adenocarcinoma (PDAC) 
represents 90% of pancreatic neoplasms and the fourth 
leading cause of cancer death in the United States [1, 2]. 

Due to the retroperitoneal location of the pancreas, these 
tumors are difficult to detect; moreover progression of 
pancreatic cancer is often asymptomatic until late stages 
of the disease [3–7]. Surgical resection offers the only 
opportunity for cure, however, since early diagnosis 
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is uncommon, only 20% of patients are candidates for 
surgery while the majority of patients present with 
advanced disease. The median survival for advanced or 
metastatic pancreatic cancer is less than 5% at 5 years [8]. 
In contrast, the subsets of patients diagnosed with stage I 
disease or incidentally discovered PDAC have improved 
survival relative to symptomatic surgical patients [9]. 
Therefore, early detection is likely to improve outcomes. 

Interestingly, classic mutations that are highly 
prevalent in PDAC such as the KRAS, TP53, SMAD4, 
and CDKN2A are known to regulate signaling pathways 
that impact central metabolic processes [10, 11]. 
Moreover, the unique physiology of pancreatic tumor 
microenvironment (TME) comprises a dense stroma that 
facilitates tumor growth despite high oxidative stress, 
inflammation, vasculature through metabolic adaptation 
[12, 13]. The TME creates a metabolically favorable niche 
for tumor cell proliferation and migration, by maintaining 
a highly immunosuppressive environment, which is 
partly regulated by metabolic alterations [14–16]. Taken 
together, the strong association of metabolic perturbations 
with pancreatic cancer pathophysiology makes a strong 
case for identifying metabolic changes that could then be 
used as specific biomarkers. In addition, this information 
could be used for identifying molecular targets that are 
druggable and thus actionable [17, 18].

Although several biomarker studies using “omics” 
approaches have been reported, they are yet to yield a 
reliable signature that could be used in the clinic to drive 
PDAC treatment decisions [19–34]. Carbohydrate antigen 
19-9 (CA19-9) is the only biomarker in clinical use and 
is primarily indicated for monitoring response to therapy 
or recurrence of disease. In a pooled analysis, CA 19-9 
was found to have a sensitivity of 79% and specificity of 
82% [35]. CA 19-9 levels are affected by a variety of other 
conditions, including obstructive jaundice, pancreatitis, 
and inflammatory diseases. Mass screenings conducted in 
Japan and Korea in the 1980s with CA 19-9 and ultrasound 
were determined to be ineffective for detecting cancer in 
asymptomatic individuals [36, 37]. Although imaging 
modalities are useful in diagnosing pancreatic cancer in 
symptomatic individuals, these tests are limited by their 
invasive nature, lack of effectiveness, and cost, and do not 
have a role in screening asymptomatic patients [38]. 

Pancreatic cancer tumorigenesis is a prolonged 
process, requiring at least a decade to develop invasive 
pancreatic ductal adenocarcinoma [39]. This time window 
offers an opportunity for early detection of pancreatic 
cancer prior to the development of advanced or metastatic 
disease. Since PDAC is a relatively low prevalence cancer 
(10/100,000 individuals in US), the underlying goal for 
developing a predictive or an early detection panel for 
PDAC is to augment screening of high risk cohorts rather 
than the general population. Precursor lesions (PLs) 
to pancreatic cancer include pancreatic cystic lesions 
and pancreatic intra-epithelial neoplasia (PanIN) [40]. 

Two well described PLs which form pancreatic cysts 
are intraductal papillary mucinous cystic neoplasms 
(IPMNs) and mucinous cystic neoplasms (MCNs). Cystic 
neoplasms with high risk features for progression to or 
association with malignancy are considered for resection 
[41]. Non-invasive PLs of the pancreas can give rise to 
invasive pancreatic carcinoma over a relatively long lag 
time during which patients often remain asymptomatic. 
Molecular profiling of pancreatic tissue obtained from 
patients with benign pancreatic disease, pre-malignant or 
malignant lesions of the pancreas, offers an information 
rich matrix for discovering specific bio-signatures with 
potential application for early detection of pancreatic 
cancer whose performance can then be evaluated in 
plasma for developing minimally invasive assays.

Thus, the overall goal of this study was to identify 
specific metabolite signatures in tissue that are highly 
associated with precursor pancreatic lesions and early 
stage invasive pancreatic cancer as compared to the benign 
group. We hypothesized that certain tissue metabolite 
profiles would be shared between early stage pancreatic 
cancer patients (stages IA, IB, IIA) and the high risk cohort 
(PL) when compared to the benign group and the disease 
control group (colorectal cancer (CRC)). We further 
posited that targeted, quantitative blood based evaluation 
of molecular fingerprints of early stage pancreatic cancer, 
calculated originally via matched tissue metabolomics/
lipidomic profiles, using an untargeted approach, may 
have direct clinical applicability. 

Therefore, we used high resolution mass 
spectrometry based metabolomics, an emerging field that 
provides new information on biological perturbations 
based on changes in abundance of multiple endogenous 
metabolites. Since endogenous metabolism represents 
the endpoint of cellular processes and are hence a direct 
readout of the phenotype or the physiological status. 
Technological advances in mass spectrometry (MS), 
in combination with multivariate statistical methods 
provide a promising approach for developing molecular 
fingerprints of the diseased state. 

Comparative metabolomics profiling was performed 
for tissue derived from patients diagnosed with benign 
pancreatic diseases (benign, n = 15), patients diagnosed 
with cysts with possible malignant potential, representing 
a high risk cohort for pancreatic cancer (PL group, n = 20)  
and surgically excised tumor tissue from patients that 
were diagnosed with pancreatic cancer (early stage PDAC 
group, n = 19). Tumor tissue from patients with invasive 
adenocarcinoma of the colon (CRC group, n = 28) was 
used as a cancer disease control group. The tissue and 
matched plasma samples were obtained from a clinical 
cohort that received treatment at MedStar Georgetown 
University Hospital and banked in the Indivumend 
bio-repository (Figure 1). A shortlisted panel of these 
putative markers was annotated in tissue and subsequently 
evaluated in plasma samples obtained from the same 
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patients using targeted mass spectrometry. The underlying 
idea of this combinatorial approach was to interrogate the 
tissue metabolome in a global and unbiased fashion and 
subsequently test the clinical applicability using a targeted 
approach in matched plasma samples. Tissue metabolomics 
yielded several metabolites that showed dysregulation 
in early stage PDAC when compared to benign or CRC 
groups. A panel of six metabolites resulted in a classifier 
that could stratify early stage PDAC and benign cases with 
>95% accuracy (AUC = 0.95), while the same classifier 
had a lower predictive value for classifying CRC cases, 
thus emphasizing the specificity of the biomarker panel. 
These findings demonstrate the feasibility of developing 
early detection panels for accurate classification of PDAC; 
however, when tested in pre-malignant cases, this panel 
demonstrated diminished efficacy.

RESULTS

Clinical cohort characteristics

We leveraged pristinely collected and extensively 
annotated post-surgical samples form Indivumed 
repository at the Georgetown University Hospital. The 
clinical cohort used in this study consisted of a local 
population of patients with clinical presentation of benign 

(n = 15), precancerous lesions (PL) (n = 20) or early stage 
(IA, IB, IIA) PDAC (n = 19). The benign pancreatic 
disease group included patients with a clinical diagnosis 
of pancreatitis and pancreatic cystic neoplasms that have 
a benign natural history. While a history of pancreatitis 
is a known risk factor for the development of PDAC, 
pancreatitis is not a neoplastic process. Pancreatic cystic 
neoplasm included in the benign pancreatic disease cohort, 
such as serous cystadenomas, are almost never malignant 
and do not require imaging frequent surveillance in 
clinical practice. PL included patients who underwent 
surgical resection for IPMN (n = 14), MUC (n = 3), 
or other (n = 3) and were judged to be at high risk for 
progression or association of invasive disease. Criteria for 
resection was based on commonly used consensus clinical 
practice guidelines [42]. Although PLs exhibit a spectrum 
of clinical behaviors, this patient cohort was enriched 
for cystic pancreatic neoplasms with clinical, radiologic, 
and/or cytologic features associated with progression to 
invasive pancreatic cancer. CRC was used as a disease 
control group to test biomarker specificity (n = 28). The 
clinical characteristics are detailed in Supplementary 
Table 1. The average age of the cohort was 58.6 years 
with almost uniform gender distribution. A total of 14 
patients including six PDAC and five benign cases also 
had a diagnosis of Type II or Type I diabetes mellitus 

Figure 1: Demographic and clinical characteristics of the cohort used for metabolomics analyses. 
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(DM), while a total of 11 patients had jaundice as a co-
morbidity in benign (n = 2) and PDAC (n = 9) (Figure 
1 and Supplementary Table 1). The PDAC, benign and 
PL cohorts did not receive any chemotherapy or radiation 
treatment prior to surgery. 

Predictive biomarkers of early stage PDAC

As described above, we used pancreatic tissue 
as the most direct and specific matrix for biomarker 
identification, as it is likely to have the highest 
concentrations of disease specific markers. We have 
previously reported on the feasibility of this approach 
for discerning biomarkers of PDAC [43]. We used a 
high resolution mass spectrometry based untargeted 
metabolomics profiling approach to delineate candidate 
markers that would augment stratification of these 
diagnostic groups. UPLC-ESI-TOF-MS analysis in 
the aqueous extract (AE) yielded 1532 features in 
the positive mode and 1866 in the negative mode. 
The organic extract (OE) yielded 1277 features in the 
positive mode and 1358 features in the negative mode. 
We selected the positive mode OE as a representative 
dataset for data visualization using a partial least squares 
discriminate analysis (PLS-DA) model (Metaboanalyst 
v3.0) for discriminating PDAC, PL, CRC and benign 

groups (Figure 2) with a 5 component R2 value of 0.78 
and Q2 value of 0.45. The four diagnostic groups showed 
maximum separation along two components (Component 
1 = 60.1% and Component 2 = 10.5%) providing good 
support to the model. The CRC and the PDAC showed 
a clear group separation, while the PL group clustered 
between the benign and the PDAC groups. In addition, 
a PLS-DA plot was generated for the data including the 
quality control samples (Supplementary Figure 1) with 
a 5 component R2 value of 0.87 and Q2 value of 0.66 
to show a good clustering of QC, which demonstrates 
minimal variability during the run. Students T-test was 
used to identify 379 candidate biomarkers between 
benign, PDAC, and PL of which 85 were annotated 
using tandem mass spectrometry. R2 and Q2 values for the 
binary comparison of the representative data (OE positive 
mode) were also generated (Supplementary Table 2). 
Remarkably, lipids were found to be the pre-dominant 
class of metabolites that showed differential abundance 
in the PL and PDAC groups as compared to the benign 
group (Figure 3) and in the CRC and PDAC groups as 
compared to the benign group (Supplementary Figure 2). 
Pathway analysis for metabolites found dysregulated in 
PDAC and CRC (as compared to the benign group), was 
performed to identify biochemical perturbations that are 
shared between the two malignancies (Supplementary 

Figure 2: Partial least squares discriminant analysis (PLS-DA) plot showing interclass separation between the different 
diagnostic groups (pancreatic disease (benign), colorectal cancer (CRC), pancreatic lesions (PL), and pancreatic 
ductal adenocarcinoma (PDAC), based on overall tissue metabolite profile.
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Figure 3). Our results showed that metabolites associated 
with inflammation, phospholipid metabolism, Ca2+ flux, 
and cell junction signaling pathways were impacted in 
CRC and PDAC.

Following feature selection of significantly 
dysregulated metabolites between PDAC and benign 
pancreatic disease group (Supplementary Table 3), we 
used the SVM based ROC analysis (Metaboanalyst 3.0), 
for developing robust classification algorithms, predictive 
of early stage pancreatic cancer with high accuracy. This 
led to the development of a six metabolite panel that 
could distinguish benign cases from those with early stage 
PDAC, with high accuracy (AUC = 0.95, SP = 0.85 and 
SN = 0.9) (Figure 4). The six metabolite panel consisted 
of 5-hydroxytryptophan, LysoPE(18:2), PC(16:0/16:0), 
PC(18:0/22:4), PE(17:0), and SM(d18:1/16:0) (Table 1). 
These metabolites are found to be significantly 
associated with early stage PDAC as compared to the 
benign pancreatic disease group. Furthermore, each of 
the metabolites showed a linear trend comparing from 
the benign to the PL and finally to the PDAC groups 
(Figure 5), implicating their role in defining disease 
progression. This change was not significant in the CRC 
group (AUC = 0.45) (Supplementary Figure 4), thus 
establishing specificity for the PDAC group. We used this 
panel construct a ROC curve to compare the PL and benign 
groups. This resulted in an AUC of 0.462 (Supplementary 
Figure 5), suggesting that classifiers built with early stage 
diagnostic groups of PDAC did not perform with the same 
efficacy in the high risk cohort with pre-malignant lesions. 

There is a misalignment of markers in tissue and 
blood

Since our goal was to delineate a specific metabolite 
panel using tissue metabolomics followed by validation in 

matched plasma samples, we next used multiple reaction 
monitoring mass spectrometry for targeted quantification 
of the 6 metabolites in plasma samples obtained from the 
same set of patients diagnosed with benign pancreatic 
disease group, PL or early stage PDAC. As discussed 
previously, CRC was used as a disease control group 
to test biomarker specificity. Of the six metabolites we 
obtained reproducible results for quantitative evaluation 
of three metabolites PC(16:0/16:0), PC(18:0/22:4), and 
SM(d18:1/16:0) while the PE(17:0) levels in the plasma 
samples were lower than the lower limit of quantification 
(LOQ). Further, we found that the relative abundance 
in plasma for the assayed metabolites in the respective 
comparative groups was not concordant with that observed 
in tissue, for most part (Supplementary Table 4). 

Shared metabolite expression patterns in cancer

We leveraged the inclusion of CRC in our study 
design to identify metabolites that exhibit a common 
trend in the two malignancies as compared to the benign 
group. Our analyses helped delineate several metabolites 
that showed significant differences between benign cases 
as compared to the PDAC as well as in the CRC cohort 
(Supplementary Table 5). This included a decrease in 
tissue levels of arachidonic acid and eicosanoids in tumor 
tissue, with a concomitant increase in prostaglandin 
E2 (Supplementary Figure 6). We also observed an 
increase in Cox 2 staining of the pancreatic tumor 
tissue as compared to matched normal tissue which was 
suggestive of diversion of arachidonic acid pathway 
towards the production of pro-inflammatory mediators 
known to be associated with malignant progression 
(Supplementary Figure 7). Seven metabolites were found 
to be dysregulated for the PDAC, CRC, and PL groups 
(Supplementary Table 6). In addition, we identified 

Figure 3: Heat map illustration of dysregulated metabolites in pancreatic lesions (PL) and pancreatic ductal 
adenocarcinoma (PDAC) gro ups as compared to the benign pancreatic disease group.
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metabolites that were shared in PDAC and PL tissue 
samples as compared to the benign groups (Supplementary 
Table 7) and those found uniquely significant in PL 
(Supplementary Table 8) could be used for pre-malignant 
classification. ROC analysis using these significantly 
dysregulated metabolites yielded an AUC of 0.836 for a 
12 metabolite panel for classifying PL from benign using 
a metabolite fingerprinting approach since the identities 
of the metabolites was unknown when searched against 
publicly available data bases. (Supplementary Figure 8).

DISCUSSION 

Pancreatic cancer is rarely detected when the 
disease is localized and amenable to curative treatment, 
representing a major challenge to improving outcomes. 
Over two thirds of patients with PDAC are initially 
diagnosed with advanced disease (stage III or IV) at 
presentation. Advanced disease is associated with poor 

outcomes, with a median survival of less than 1 year with 
few patients alive at 5 years [44]. Mutational analysis 
suggests that the development of metastatic disease is a 
late event, requiring at least 10 years, thus providing a 
window of time for early detection [39]. However, early 
detection of pancreatic cancer remains a major barrier 
towards improving clinical outcomes of the disease. 
A worldwide expert consortium has advocated for 
pancreatic cancer screening strategies aimed at detecting 
asymptomatic precursor lesions and early stage pancreatic 
cancer as a means to improving outcomes [45]. Molecular 
based phenotyping approaches have great potential to 
aid in early detection efforts for curable lesions of the 
pancreas [46].

We leveraged the unique clinical characteristics 
of our clinical cohort to delineate molecular patterns 
that were associated with early stage pancreatic cancer 
and precursor pancreatic lesions that were amenable 
to potentially curable surgical resections. A colorectal 

Table 1: Six metabolite panel performance measures across different comparative groups

PDAC PL CRC

Metabolite name m/z Fold change 
(PDAC/Benign) p-value Fold change 

(PL/Benign) p-value Fold change 
(CRC/Benign) p-value

5-hydroxytryptophan 221.0332 ↓ 0.44 7.85e-5 0.89 0.46 0.81 0.1
LysoPE (0:0/18:2) 478.2947 ↓ 0.24 1.27e-4 0.6 0.2 0.58 0.14
PC(16:0/16:0) 734.5696 ↑ 2.09 2.51e-5 1.68 0.08 1.24 0.82
PC(18:0/22:4) 838.6341 ↑ 1.93 9.35e-5 0.84 0.96 1.56 0.87
PE (17:0/0:0) 466.2952 ↓ 0.33 0.0049 0.81 0.84 0.58 0.12
SM(d18:1/16:0) 703.574 ↑ 1.92 1.16e-4 1.18 0.78 0.93 0.37

Figure 4: ROC curve (A) and predicted class probabilities for six metabolite panel (B) showing high classification accuracy between 
PDAC and Benign.
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cancer cohort was used as a cancer disease control 
group to eliminate non-specific biomarkers. CRC was 
selected as a cohort because the histology is similar to 
PDAC and both cancers arise in the gastrointestinal 
track. Benign pancreatic diseases include clinical entities 
with no malignant potential or patients with benign 
pancreatic disease group, an inflammatory condition of 
the pancreas. Several previous studies have used healthy 
controls to identify biomarkers associated with PDAC 
[47–49]. However existing biomarkers, including CA19-
9 are often elevated in the setting of benign pancreatic 
diseases, limiting their clinical utility [50]. By developing 
biomarkers which are able to differentiate PDAC from 
benign pancreatic disease, this approach could offer 
improved specificity. 

We used high resolution mass spectrometry based 
untargeted metabolomic profiling of tissue to identify and 
quantify candidate biomarkers that could discriminate 
early stage PDAC from the benign cohort and CRC with 
high accuracy. A six metabolite panel was developed that 
accurately distinguished PDAC from benign pancreatic 
diseases in pancreatic tissue (AUC = 0.95). There was 
a linear trend when comparing the relative intensities of 
metabolites going from the benign group to the PL group 
and finally to the PDAC group, suggesting a role for these 
metabolites in progression to invasive carcinoma. The six 
metabolite biomarker panel did not yield high predictive 
power for classification of the CRC group (AUC = .45), 
emphasizing specificity for classification of early stage 
PDAC. Additionally, this panel did not discriminate the 

Figure 5: Six metabolite panel shows a shared pattern in the PL and PDAC group as compared to benign. 
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PL from the benign group (AUC = 0.46), suggesting that 
a biomarker panel developed for early stage PDAC group 
may not demonstrate the same accuracy when tested for 
pre-malignant classification. This underscores the need 
for studies that use pre-diagnostic biospecimens for 
development of classification algorithms that would help 
predict early onset of PDAC in clinically asymptomatic 
patients. 

The six metabolite panel consisted of LysoPE 
(0:0/18:2), PC(16:0/16:0), PC(18:0/22:4), PE (17:0/0:0), 
SM(d18:1/16:0) and 5-hydroxytryptophan. Several 
groups have reported the importance of lipids as powerful 
discriminators between PDAC and normal controls [51], 
[18]. 5-hydroxytryptophan is an intermediate in serotonin 
biosynthesis; decreased levels in PL and PDAC could 
reflect increased conversion to serotonin which has been 
implicated in tumor growth and progression [52, 53]. 
Taken together, our results show markers that can be early 
markers of disease onset and progression and need further 
validation for exploring potential clinical utility. 

Additionally, we found that several metabolites 
significantly differed between the PDAC and CRC groups 
as compared to the benign group. Pathway analysis 
suggested dysregulation of metabolites mediating 
inflammation, Ca2+ flux and cell junction signaling, that 
may augment cell proliferation, invasion and angiogenesis 
which are known hallmarks of carcinogenesis [54]. These 
changes suggest that there are underlying commonalities 
associated with malignancy which could be useful as 
a pan-cancer approach wherein delineation of shared 
molecular patterns helps detect cancer, instead of organ 
of origin [55]. 

Next, we used targeted mass spectrometry for 
quantification of these six metabolites in plasma samples 
from the same cohort. We found that although some of 
these metabolites were detectable in plasma samples 
with a high signal to noise ratio, the relative abundance 
for most metabolites in plasma were not concordant 
with results from the discovery experiments performed 
with tissue samples. These findings emphasize that 
although tissue is a specific matrix for interrogating local 
metabolic changes in tumor, the findings cannot always 
be extrapolated directly in blood, possibly because the 
signal gets averaged out in circulation. More recently, 
studies from other laboratories have also shown that 
there is a misalignment of markers between tissue and 
blood [56]. While tissue is an information rich matrix 
to understand molecular underpinnings that define local 
disease progression, bio-fluids are matrices of choice for 
developing minimally invasive, biomarker panels that 
could be directly used for large scale validation studies 
with diverse cohorts to test clinical utility.

Due to the relative low prevalence of pancreatic 
cancer in the general population, widespread screening 
may not be practical. An effective early detection 
program will likely require identification of individuals at 

significantly elevated risk. Individuals at greater than 5% 
lifetime risk for developing PDAC include those with a 
family history of PDAC and/or germline mutations carriers 
which have been associated with significantly increased 
risks for PDAC [57]. Other non-genetic risks factors 
including active tobacco abuse, heavy alcohol use, obesity, 
and diabetes can be used to help identify additional 
individuals at higher than average risk of pancreatic cancer 
[58]. Although we were able to delineate a specific panel 
with the tissue specimens, implementation of this panel 
in the clinic would require invasive sampling procedures 
like tissue biopsy. Thus this method would not be ideal 
as a screening test even for high risk individuals since 
the prevalence of pancreatic cancer is low (10/100,000). 
Furthermore, the overall goal was to validate this panel in 
matched plasma samples to develop a minimally invasive 
assay; however we found the metabolite abundance to 
be discordant. Hence, ongoing investigations from our 
laboratory will focus on developing plasma/serum based 
biomarker panels that after suitable external validation 
could be used for clinical efficacy studies.

METHODS

Sample collection 

Collection of the biospecimens was approved by 
MedStar Georgetown University Hospital IRB and all 
patients signed informed consent. The tissue samples  
(n = 82) were obtained from the Indivumed repository 
at Georgetown University and are pristinely collected 
with extensive clinical annotations. Samples were 
obtained under fasting conditions of at least 12 hours. The 
samples were further classified into 4 subgroups: benign, 
precursor lesions (PL), CRC, and PDAC. The clinical 
details are summarized in Figure 1. These samples were 
collected using very stringent and consistent protocols for 
collection, samples processing and storage. All banked 
plasma samples were collected between 2010 and 2015 
and stored at –80° C and underwent one freeze thaw 
before analysis. We have checked inter-day variability for 
these metabolites on a QTOF instrument and determined 
that the signal drops on the fifth day when samples are in 
the autosampler. When stored at –80° C, the metabolites 
are stable over time.

Metabolite extraction

 Sample preparation schema is detailed in 
Supplementary Figure 9 which is a slightly modified 
version of the protocol described by Want et al. [59]. 
Briefly, tissue samples (100 micron sections) were 
homogenized using Powergen-125 (Roche), for three 
cycles of 30 seconds each with 500 µL of prechilled 
50% methanol containing internal standards (10 µL of 
debrisoquine and 50 µL of 4-NBA (1 mg mL−1). The tissue 
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samples were kept on ice during homogenization. The 
homogenized samples were centrifuged for 15 minutes 
at 4° C. The supernatant was carefully removed followed 
by protein precipitation which was performed by adding 
100 µL of ACN, vortexed briefly and kept on ice for 20 
minutes and centrifugation at 14 K for 15 minutes at 4° 
C. The supernatant was removed carefully vacuum dry, 
resuspended in 50% methanol and considered as aqueous 
extract. An aliquot of 2 µL from each sample was pooled 
together and used to condition the column and to run in 
between sample injections to test the sensitivity, retention 
time shifts or change in mass accuracy. The residual pellets 
after aqueous extraction were sonicated for 90 seconds 
with dichlorometahane in Methanol (3:1) containing 
internal standards (ceramide [5 pmole µL−1] and LPA 10 
pmol µL−1) in glass vials. We used glass vials to avoid 
plastic contamination by dichloromethane or chloroform. 
The tissue homogenate was centrifuged at 14 K for 
15 minutes at 4° C. The proteins were precipitated by 
adding 100 µL of ACN as described previously. The 
supernatant was dried under vacuum and resuspended in 
85% methanol in IPA and considered as organic extract. 
An aliquot of 2 µL from each sample was pooled together 
to make the QC’s. The remaining solid pellet was used for 
the protein estimation for normalization of MS raw data. 

UPLC-TOFMS data acquisition 

The data for aqueous and organic extracts were 
acquired separately. An aliquot of the aqueous extract 
(2 µL) from each sample was resolved on Acquity HSS 
T3 1.8µM, 2.1 × 100 mm column (Waters Corporation). 
A gradient of mobile phase consisting 100% methanol 
containing 0.1% formic acid (Solvent A), 100% water 
containing 0.1% formic acid (Solvent B) was resolved for 
12 minutes at a flow rate of 0.4 ml/min. The data were 
acquired on an ESI-QTOF instrument (Xevo G2 QTOF, 
Waters Corp, USA) operating in either positive or negative 
electrospray ionization mode. The capillary voltage was 
set at 3.0 kV in positive mode and 2.8 in negative mode 
(another parameters were same in both the modes), 
sampling cone voltage was 30 V, source temperature was 
120° C and desolation gas flow was 750 L h−1. Accurate 
mass was maintained by introduction of LockSpray 
interface of Leucine-enkephalin (556.2771 [M + H]+ or 
554.2615 [M − H]−) at a concentration of 2 pg mL−1 in 
50% aqueous acetonitrile and a rate of 2 ml min−1. Data 
were acquired in centroid mode from 50–1200 mass-to-
charge ratio (m/z) in MS scanning. 

The organic extract was resuspended in 85% 
methanol in IPA and resolved onto a reverse-phase 50 × 
2.1 mm Acquity 1.7 µm BEH C18 column (Waters Corp.) 
using an Acquity UPLC system (Waters Corp.). A gradient 
of mobile phase comprising 100% H2O containing 0.1% 
formic acid (Solvent A), 100% ACN containing 0.1% 
formic acid (Solvent B) and 90% IPA in ACN containing 

0.1% formic acid (Solvent C) was resolved for 13 minutes 
at a flow rate of 0.4 ml/min. The data were acquired on 
a G2-QTOF mass spectrometer operating in positive or 
negative electrospray ionization mode. The capillary 
voltage was set at 3.0 kV in positive mode and 2.8 in 
negative mode (another parameters were same in both 
the modes), sampling cone voltage was 30 V, source 
temperature was 120° C and desolvation gas flow was 
750 L h−1. Accurate mass was maintained by introduction 
of LockSpray interface of Leucine-enkephalin (556.2771 
[M + H] +or 554.2615 [M − H] −) at a concentration of  
2 pg mL−1 in 50% aqueous acetonitrile and a rate of  
2 ml min−1. Data were acquired in centroid mode from 50–
1200 mass-to-charge ratio (m/z) in MS scanning. The raw 
data files were converted into netCDF files using Masslynx 
and markers were extracted using XCMS (Scripps). The 
output intensity data were normalized to that of internal 
standards, as well as to the total protein concentration. 
Accurate mass based database search was performed to 
assign putative identifications to the peaks of interest. The 
identity of metabolites of interest was confirmed using 
tandem mass spectrometry (Supplementary Table 9).  
Quantitative analysis of metabolites in plasma 
samples was performed using stable isotope dilution-
multiple reaction monitoring mass spectrometry using 
AbsoluteIDQ p180 kit (Biocrates, Innsbruck, Austria). The 
data were pre-processed using TargetLynx v3.0 (Waters 
Corporation, USA) and processed with the MetIDQ 
software (Biocrates). Statistical analyses were performed 
within the Metaboanalyst v3.0.

Statistical analysis

Following data pre-processing and ion annotation, 
the initial abundance values of the measured metabolites 
were log transformed in order to stabilize variance, 
followed by pareto scaling to achieve empirical 
distribution of intensities across samples. Each data set 
from the two extracts and their respective ionization mode 
was treated independently. Differential expression between 
various patient groups was assessed using independent 
(unpaired) sample Student’s t-test. False discovery rate 
was controlled by the method of Benjamini and Hochberg 
at 5% significance level. Statistical analyses were 
performed using in-house R scripts while MetaboAnalyst 
v3.0 [60] was used to perform biomarker analyses and 
generate figures. After tandem mass spectrometry based 
validations, the significantly dysregulated metabolites 
from the 4 datasets were merged for biomarker analyses. 

For selection of candidate biomarkers of early stage 
pancreatic cancer, we selected featured metabolites that 
best distinguished PDAC and patients with PLs, from those 
with benign pancreatic disease. CRC was used as a cancer 
disease control group to eliminate generic biomarkers 
of cancer, thus augmenting the selection of biomarkers 
that are specific to pancreatic cancer. The classification 
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performance of the biomarker panel was assessed using 
the area under the ROC (receiver operating characteristic) 
curve (AUC). The ROC curve can be understood as a plot 
of the probability of classifying correctly the positive 
samples against the rate of incorrectly classifying true 
negative samples. We used biomarker analysis function 
of MetaboAnalyst v3.0 for plotting ROC curves and for 
predictive accuracy plots for all comparisons. ROC curves 
were generated by using Linear SVM as the classification 
method and with t-statistics as the feature ranking method. 
The procedure was repeated multiple times to calculate 
the performance and confidence interval of each model. 
Ingenuity pathway analysis tool was used for network 
analysis of metabolites that were commonly dysregulated 
in the two malignancies (CRC and PDAC) when compared 
to the benign pancreatic disease group.

CONCLUSIONS

The overall goal of our study was to develop a non-
invasive screening test for early stage pancreatic cancer in 
asymptomatic individuals who are potentially eligible for 
curative therapies. In conclusion, we delineated a panel of 
metabolites highly predictive for early stage classification 
of pancreatic cancer using tissue metabolomics. This study 
creates a foundation for future biomarker studies involving 
larger sample sizes in high risk individuals. This biomarker 
panel could then be used for increased surveillance of 
individuals deemed at high-risk of developing PDAC thus 
augmenting early detection.
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