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Abstract: Amphibian skin secretion is an ideal source of antimicrobial peptides that are difficult to
induce drug resistance to due to their membrane-targeting mechanism as a new treatment scheme. In
this study, a natural antimicrobial peptide Temporin-1CEh was identified by molecular cloning and
mass spectrometry from the skin secretions of the Chinese forest frog (Rana chensinensis). Through
the study of the structure and biological activity, it was found that Temporin-1CEh was a helical
peptide from the Temporin family, and possessed good anti-Gram-positive bacteria activity through
the mechanism of membrane destruction. Seven analogues were further designed to obtain broad-
spectrum antimicrobial activity and higher stability in different physiological conditions. The results
showed that T1CEh-KKPWW showed potent antibacterial activity with significantly increasing
the activity against Gram-negative bacteria in vitro and in vivo with low haemolysis. In addition,
T1CEh-KKPWW2 showed high sensitivity to the pH, serum or salts conditions, which applied a
branched structure to allow the active units of the peptide to accumulate. Even though the haemolytic
activity was increased, the stable antibacterial activity made this novel analogue meet the conditions
to become a potential candidate in future antimicrobial and antibiofilm applications.

Keywords: antimicrobial activity; temporin; branched peptide; Galleria mellonella larva model

1. Introduction

Nowadays, the occurrence of multiple drug resistance of pathogens is increasing, and
even some pathogens can evade the treatment of all clinically used antibiotics [1]. The se-
vere situation of multidrug drug resistance makes it urgent to develop new antibiotics [2,3].
After decades of exploration and research on the natural peptide, more and more attention
has been paid to their antimicrobial potential. They have a broad spectrum of antimicro-
bial activity, including gram-positive and gram-negative bacteria, fungi and viruses [4].
Despite the differences in sequence and secondary structure, they usually have less than
50 amino acid residues in length and carry positive charges [5]. At the same time, some
peptides share an amphiphilic character with a hydrophilic surface and a hydrophobic
surface [6]. The bacteria and fungi develop resistance to antibiotics through the reduction
of drug permeability to their biomembranes, an efflux of antibiotics molecules from the
cell, modification of antimicrobial targets, or enzymatic hydrolysis and degradation [7–12].
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However, an antimicrobial peptide (AMP) inhibits the growth and infection of pathogens
through physical destruction or osmosis of the bacterial cell membranes [7]. Such a special
antibacterial mechanism makes an AMP and its analogues become candidates to replace
the use of traditional antibiotics.

Even so, few AMPs have been approved for clinical use due to considerable draw-
backs on specific pathogens, significant haemolysis, high production costs, susceptibility
to protease degradation, and decreased activity in the presence of physiological concen-
trations [8,9]. A balance should be found between hydrophobicity, charge number, helix
structure, amphiphilicity, side chain groups and other important factors of AMPs to max-
imise antibacterial activity and minimise haemolysis [9–11]. A number of strategies exist
today to deal with the problem of susceptibility, such as the introduction of a ring or
branched structure to promote steric hindrance and inhibit protease hydrolysis, or the use
of the substitution of certain sites with D-type amino acids or unnatural amino acids [12].
Another strategy is the nanoencapsulation of AMPs [13]. Based on the study of a large
number of structure–activity relationships of AMPs, modifying the natural peptide se-
quences to make them overcome the existing obstacles has become an effective method.
The Chinese Forest Frog, Rana chensinensis, was used as the research object. Its dried skin,
possessing anti-inflammation activity, as well as oviductus ranae are traditional Chinese
medicines [14,15]. In addition, it has been found that the natural proteins and peptides
extracted from the skin secretions of Rana chensinensis have antibacterial, anticancer, an-
tioxidant and anti-apoptotic activities [16–19]. In this study, the skin secretion of a natural
peptide named Temporin-1CEh was identified from the skin secretion of the Chinese For-
est Frog by using a combination of ‘shot-gun’ cloning and LC-MS/MS. Several modified
strategies including branched structure were used to optimise their antibacterial activity.
All chemical synthesised peptides using solid-phase peptide synthesis (SPPS) were applied
in the secondary structure and bioactivity, including antibacterial activity in different con-
ditions against ESKAPE pathogens, anti-biofilm activity, permeability and haemolysis to
horse red blood cells, as well as in vivo study.

2. Materials and Methods
2.1. Acquisition of Skin Secretion

Three adult Rana chensinensis frogs were obtained from commercial sources and the
skin secretion obtaining process was described previously [20]. The study was performed
according to the guidelines in the UK Animal (Scientific Procedures) Act 1986, project
license PPL 2694, issued by the Department of Health, Social Services and Public Safety,
Northern Ireland. Procedures had been vetted by the IACUC of Queen’s University Belfast
and approved on 1 March 2011.

2.2. Shot-Gun Cloning of Biosynthetic Precursor

The shot-gun cloning was performed to isolate the prepropeptide encoding RNA, as
described before [21]. In the 3′-RACE reaction, a nested universal primer (NUP) and a
degenerate primer specially designed according to the highly conserved 5′-untranslated
region of previously characterised peptide precursor cDNAs from closely-related Rana
species (5′-ACTTTCYGAWTTRYAAGMCCAAABATG-3′, Y = C + T, W = A + T, R = A + G,
M = A + C, B = T + C + G) were used in a segment of the 5′-untranslated region. The
degenerate primer was designed relating to the 5′-untranslated high conserved region
of Rana-species.

2.3. Solid-Phase Peptide Synthesis

Temporin-1CEh and seven analogues were synthesised by using a Tribute automated
solid-phase peptide synthesiser (Protein Technologies, Tucson, AZ, USA), as described
previously [22]. Fmoc-Lys(Fmoc)-OH resin was used in the synthesis of T1CEh-KKPWW2.
The concentration of this resin was the same as the forward amino acid resin, and the
concentration of the later resins should be twice. The amino groups on the main chain
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and side chain of lysine are protected by the Fmoc group, and the two peptide chains
extend here during the synthesis process. The purification of these peptides was achieved
by using the Jupiter C18 semi-prep column and Jupiter C18 column (250 nm × 21.2 mm,
Phenomenex, UK) on a Cecil Adept CE4200 HPLC system (Cecil, Cambridge, UK). MALDI-
TOF mass spectrometry was used for peptide or HPLC fragment mass analysis using a
linear time-of-flight mass spectrometer (Voyager DE, PerSeptive Biosystems, Framingham,
MA, USA) in positive detection mode.

2.4. Liposomes Preparation

Appropriate amounts of dioleoylphosphatidylcholine (DOPC), dioleoylphosphatidyle
thanolamine (DOPE) and dioleoylphosphatidylglycerol (DOPG) (Avanti, Tonawanda, NY,
USA) were dissolved in chloroform to obtain stock solutions. The desired compositions
were mixed and then dried in a high vacuum evaporator until the lipid layer was formed
at the bottom of the bottle. The lipid residues were subsequently hydrated at 50 ◦C with
H2O. The resulting dispersions were extruded through a stack of two polycarbonate filters
(50-nm pore size; Millipore Corp., Bedford, MA, USA) using a Liposofast low pressure
homogeniser (Avestin, Ottawa, ON, Canada) to obtain large unilamellar vesicles after five
frozen-thaw cycles at 37 ◦C were performed. The concentration of total phosphorus was
determined by the ascorbic acid/ammonium molybdate method, and 3 mM of liposomes
was subjected to CD analysis [23,24].

2.5. Secondary Structure Analysis

The secondary structure of the peptides was examined by circular dichroism spec-
tropolarimeter (JASCO Inc., Easton, MD, USA) and a quartz cuvette with a 1-mm path
length following the previously described parameters setting [25]. Each sample was anal-
ysed at 20 ◦C with the following parameters: scan range of 190–250 nm, scanning speed
of 100 nm/min, 1 nm bandwidth, 0.5 nm data pitch and obtained using three accumu-
lations. Peptide samples were dissolved in different environments, including liposomes,
SDS/H2O (1/99, w/v) (simulated comparably negatively charged environment of prokary-
otic membrane), TFE/H2O (50/50, v/v) (simulated hydrophobic environment of microbial
membrane) and H2O, respectively.

2.6. Antimicrobial Susceptibility Assay

ESKAPE pathogens, encompassing six pathogens which exhibit multidrug resis-
tance and lead nosocomial infections, were used to determine the antibacterial activ-
ity of Temporin-1CEh and its analogues by using broth dilution method [26], including
Gram-positive bacteria, S. aureus (ATCC CRM 6538), MRSA (NCTC 12493) and E. faecalis
(NCTC 12697), Gram-negative bacteria, E. coli (NCTC 10418), P. aeruginosa (ATCC 27853)
and K. pneumoniae (ATCC 43816). A measure of 5 × 105 CFU/mL of bacterial suspension
including 2-fold dilution peptides (ranging from 1 µM to 512 µM) was incubated in 96-well
plates for 16–20 h at 37 ◦C. For the positive and negative control, 200 mg/L of final concen-
tration of norfloxacin and 1% DMSO were applied, respectively. The optical density of each
well was determined at 550 nm using a Synergy HT plate reader (Biotech, Minneapolis, MN,
USA) and the lowest concentration of peptide that resulted in no growth of the bacteria was
defined as the MICs. Subsequently, 10 µL of the solution in each clear well was dropped
on a Mueller–Hinton agar (MHA) plate and incubated at 37 ◦C for 16–20 h. The lowest
concentration without colony growth was considered as the MBCs.

2.7. Biofilm Susceptibility Assay

The anti-biofilm activities were tested on S. aureus and E. coli, as indicated previ-
ously [25]. For the positive and negative control, 20 mg/mL of vancomycin and 1% DMSO
were applied, respectively, in both assays. In addition, 0.1% Crystal Violet was used as the
biofilm colouring agent.
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2.8. Membrane Permeability Assay

In order to test the permeability percentage of Temporin-1CEh and its analogues
against S. aureus and E. coli, the SYTOX-GREEN nucleic acid stain was used in the assay
indicated before [11]. Tryptic soy broth (TSB) and Luria–Bertani (LB) broth were used as
the media for S. aureus and E. coli, respectively.

2.9. Assessing the Impact of Different Environments on Antimicrobial Activity

Mueller–Hinton broth (MHB) at pH 6.0 and 8.0 as well as MHB containing 10% of
Fetal Bovine Serum (FBS), 150 mM of NaCl, 1 mM of MgCl2 and 4 µM of FeCl3, respectively,
were prepared. In particular, the pathogens were diluted by the preprepared mediums to a
final concentration of 5 × 105 CFU/mL after growing to the logarithmic phase, and other
operations followed the MIC assay.

2.10. Haemolysis Assay

The erythrocytes from defibrinated horse blood (TCS Biosciences Ltd., Buckingham,
UK) were used to perform the haemolysis assay, as described previously [27]. Equal
volumes of PBS and 2% (v/v) of the non-ionic detergent, Triton X-100 (Sigma–Aldrich, St.
Louis, MO, USA) in PBS solution, were used as negative and positive controls, respectively.
HC50 was defined as the mean peptide concentration producing 50% haemolysis.

2.11. Assessing the Efficacy of the Peptide Temporin-1CEh, T1CEh-KKPW, T1CEh-KKPWW and
T1CEh-KKPWW2 against S. aureus and E. coli In Vivo

In this assay, the larvae of the wax moth (Galleria mellonella) were used as the infec-
tion model. The larvae (Livefood UK Ltd., Rooks Bridge, UK) were selected between
225 and 275 mg (9 larvae per group in a Petri dish). For the positive and negative controls,
50 mg/kg of vancomycin (25 mg/kg of ampicillin for E. coli) and PBS were employed. Final
concentration of S. aureus and E. coli cells injected was 5 × 105 and 5 × 106 CFU/larva,
respectively. The assay was performed as described before [28] and the number of alive
larvae was recorded every 12 h.

2.12. Statistical Analysis

Data were subjected to statistical analysis using Prism (Version 6.0; GraphPad Software
Inc., San Diego, CA, USA). Error bars in the graphs represent the standard error of the mean
(SEM) with experiments performed on more than three sets of replicates. The significance
was determined using Mantel–Cox test for survival curve of wax moth larva, indicated by
ns (none significant difference), * (p < 0.05), ** (p < 0.01) and *** (p < 0.001).

3. Results
3.1. Molecular Cloning of a Novel Peptide Precursor-Encoding cDNA

The sequences of nucleotide and translated open-reading frame (ORF) amino acids
of the precursor cDNA encoding the peptide Temporin-1CEh from the skin secretion
library of Rana chensinensis is shown in Figure 1. The peptide precursor of Temporin-
1CEh contains 64 amino acid residues. Through the bioinformatic alignment using the
NCBI-BLAST programme, the precursor peptide shows a high degree of similarity to
preproTemporin-1CEa and other six Temporin family prepropeptides from Rana frogs
(Figure 2). The topological structure of the precursor can be divided into five putative
domains: a highly conserved signal peptide region including 22 amino acid residues, a
“spacer” region with rich acidic amino acid residue, a characteristic—Lys-Arg—propeptide
convertase cleavage site, a mature peptide region and a C-terminal Gly which acts as an
amide donor for C-terminal amidation of mature peptides. For the precursors of Temporin-
1CEh and another six analogues, the number of amino acid residues of the ‘mature peptide’
region range from 12 to 15.
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(1) Signal peptide; (2) “spacer” peptide; (3) dibasic residue pro-peptide convertase cleavage site;
(4) mature peptide; (5) amide donor for C-terminal amidation of the mature peptide.

3.2. Identification of the Peptide from Rana chensinensis Skin Secretion

With the use of RP-HPLC and mass spectrometry followed later by analysis using
MS/MS fragmentation sequencing, Temporin-1CEh was identified in the skin secretion of
Rana chensinensis. The RP-HPLC chromatography of the skin secretions of Rana chensinensis,
annotated MS/MS spectrum of Temporin-1CEh and MS/MS fragmentation sequencing
analysis, are shown in Figure 3.



Pharmaceutics 2022, 14, 604 6 of 22Pharmaceutics 2022, 14, x FOR PEER REVIEW 6 of 22 
 

 

 
(a) 

 
(b) 

 
(c) 

Figure 3. (a) RP-HPLC chromatogram of skin secretion of Rana chensinensis. The arrow indicates 
the retention time of Temporin-1CEh. (b) Annotated MS/MS spectrum of Temporin-1CEh. (c) Pre-
dicted singly- and doubly-charged b-ions and y-ions arising from MS/MS fragmentation of Tempo-
rin-1CEh. The observed b- and y-ions are indicated in red and blue typefaces. 

  

361.9362
3
1+b 685.3662

12
2+b 771.4653

1142.3966
10
1+b

1255.2850
11
1+b915.1777

8
1+b

858.9146

500 1000 1500 2000
m/z

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

In
te

ns
ity

 [c
ou

nt
s]

     Extracted from: C:\Documents and Settings\User\Desktop\share\1977.raw   #230   RT: 4.05
     ITMS, CID, z=+2, Mono m/z=867.32000 Da, MH+=1733.63272 Da, Match Tol.=0.8 Da

#1 b(1+) b(2+) Seq. y(1+) y(2+) #2
1 148.07570 74.54149 F 15
2 247.14412 124.07570 V 1586.96292 793.98510 14
3 362.17107 181.58917 D 1487.89450 744.45089 13
4 475.25514 238.13121 L 1372.86755 686.93741 12
5 603.35011 302.17869 K 1259.78348 630.39538 11
6 731.44508 366.22618 K 1131.68851 566.34789 10
7 844.52915 422.76821 I 1003.59354 502.30041 9
8 915.56627 458.28677 A 890.50947 445.75837 8
9 1029.60920 515.30824 N 819.47235 410.23981 7
10 1142.69327 571.85027 I 705.42942 353.21835 6
11 1255.77734 628.39231 L 592.34535 296.67631 5
12 1369.82027 685.41377 N 479.26128 240.13428 4
13 1456.85230 728.92979 S 365.21835 183.11281 3
14 1569.93637 785.47182 I 278.18632 139.59680 2
15 F-Amidated 165.10225 83.05476 1

Figure 3. (a) RP-HPLC chromatogram of skin secretion of Rana chensinensis. The arrow indicates the
retention time of Temporin-1CEh. (b) Annotated MS/MS spectrum of Temporin-1CEh. (c) Predicted
singly- and doubly-charged b-ions and y-ions arising from MS/MS fragmentation of Temporin-1CEh.
The observed b- and y-ions are indicated in red and blue typefaces.
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3.3. Peptide Design following the Tests of Antimicrobial and Haemolytic Activity

All sequences of peptides are shown in Table 1. Temporin-1CEh exhibited broad-
spectrum antimicrobial activity against all tested ESKAPE strains, whilst it demonstrated a
more potent effect against Gram-positive bacteria than Gram-negative bacteria (Table 2).
However, the haemolysis rate of Temporin-1CEh reached 92.3% at the concentration of
256 µM (Figure 4). The calculated HC50 of Temporin-1CEh was 152.6 µM compared to
that of Temporin-1CEa which was 160 µM [29]. Several modified strategies were used to
optimise their antibacterial activity.

Table 1. Peptide sequences of parent peptide Temporin-1CEh and its analogues.

Peptide Sequence

Temporin-1CEh FVDLKKIANILNSIF-NH2
Temporin-1CEa FVDLKKIANIINSIF-NH2

T1CEh-t FVDLKKIANIL-NH2
T1CEa-t FVDLKKIANII-NH2

T1CEh-KK KKFVDLKKIANIL-NH2
T1CEh-KKP KKFVPLKKIANIL-NH2

T1CEh-KKPW KKWVPLKKIANIL-NH2
T1CEh-KKPWW KKWVPWKKIANIL-NH2

T1CEh-KKPWW2 (KKWVPWK)2KIANIL-NH2

Table 2. The MICs and MBCs of Temporin-1CEh and its analogues as well as Temporin-1CEa against
the S. aureus (ATCC CRM 6538), MRSA (NCTC 12493), E. faecalis (NCTC 12697), E. coli (ATCC 8739),
P. aeruginosa (ATCC 27853) and K. pneumonia (ATCC 43816), as well as the MICs of Temporin-1CEa
against S. aureus and E. coli [29].

Bacteria
Strains

MIC/MBC (µM)

Temporin-
1CEh

Temporin-
1CEa T1CEh-t T1CEa-t T1CEh-KK T1CEh-

KKP
T1CEh-
KKPW

T1CEh-
KKPWW

T1CEh-
KKPWW2

S. aureus 8/16 13.1 >512/>512 >512/>512 256/>512 32/64 8/16 4/4 4/8
MRSA 16/16 - >512/>512 >512/>512 >512/>512 256/256 16/64 32/256 8/16

E. faecalis 32/32 - >512/>512 >512/>512 64/>512 >512/>512 >512/>512 128/128 32/64
K.

pneumoniae 256/256 - >512/>512 >512/>512 128/128 >512/>512 16/16 4/4 4/8

P.
aeruginosa 128/256 - >512/>512 >512/>512 256/256 512/>512 32/64 16/16 8/16

E. coli 128/128 >100 >512/>512 >512/>512 8/16 128/128 8/16 4/4 2/2

Firstly, decreasing the haemolytic activity of Temporin-1CEh was the first goal. Four
amino acids including isoleucine and phenylalanine at the C-terminus of Temporin-1CEh
and Temporin-1CEa were removed in order to decrease the hydrophobicity obtaining
T1CEh-t and T1CEa-t. This similar operation in a previous study had ensured the helical
structure integrity of the central area [30]. Isoleucine and leucine, hydrophobic amino acids,
were retained in the C-terminus of both peptides in order to maintain the hydrophobicity
in this region to retain the ability of membrane interaction. In the test of their antimicrobial
and haemolytic activities, both peptides completely lost antimicrobial and haemolytic
activity. The C-terminus was not chosen as the later modification position because it was
discovered that this area lacks the selectivity between antimicrobial activity and haemolytic
activity, even anticancer activity, in previous and this study [26,27].

Secondly, two lysines were added onto the N-terminus to increase the antimicrobial
activity against Gram-negative bacteria (T1CEh-KK). This strategy has been used in the
modification of Temporin B in a previous study [31]. With the molecular dynamics simula-
tion of the interaction between the peptides and the mimic membrane of Gram-positive
and Gram-negative bacteria, Temporin B was found to disorder the stability of anionic
phosphatidylglycerol (PG). While the modified peptide, Temporin B KKG6A, was found to
disorder the stability of zwitterionic phosphatidylethanolamine (PE) which is the maintain
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component of the plasma membrane of Gram-negative bacteria. In addition, cationic lysine
can cluster the anionic lipids efficiently. As the results show, T1CEh-KK increased the
anti-Gram-negative bacteria, especially against E. coli, as well as maintained the low level
of haemolysis.
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Figure 4. The haemolytic activity of Temporin-1CEh and its analogues at gradient changed concen-
trations. Positive control and negative control are 1% Triton X-100 and PBS, respectively. Haemolysis
rates of positive control and negative controls were 100% and 0%, respectively. Error bars represent
the SEM of three replicates.

Thirdly, considering the proline at position 3 is a conserved motif in the Temporin
peptide family [32], the aspartic acid was substituted by proline (T1CEh-KKP). It can be
expected that the helicity of the N-terminus of the peptide will be broken because of the
lack of hydrogen on the α amino group, and the proline cannot achieve a hydrogen bond
with another amino acid. However, the increase of flexibility of the N-terminal peptide
regions can release the bioactivity potency of this region [33]. The replacement of aspartic
acid with proline influenced the helical structure of T1CEh-KKP, which caused a weakening
of antimicrobial activity. However, the haemolytic level of T1CEh-KKP was not changed.

What is more, according to a previous study, the indole side chain of tryptophan has a
unique interaction with the polar-nonpolar interface, making the peptide anchored in the
membrane interface region [34]. Phenylalanine at position 3 and leucine at position 6 of
T1CEh-KKP was replaced with tryptophan at a single or both positions (T1CEh-KKPW
and T1CEh-KKPWW) in order to increase the antimicrobial activity through applying the
special side-chain function and the increase of hydrophobicity. Both peptides showed
more potent antimicrobial activity against all tested ESKAPE strains through the use of
tryptophan. Except for E. faecalis, the minimum inhibitory concentration (MIC) of these
two peptides ranged from 4 to 32 µM. The haemolysis rates of these two peptides were
lower than 6%.

Finally, the lysine which the side chain protected by the Fmoc group was applied in
peptide synthesis to build a peptide with a branched structure. Compared with monomer
peptides, branched peptides showed higher bioactivity due to the local concentration of
bioactive units being increased [31,32]. In addition, the promotion of steric hindrance made
it more resistant to protease degradation, so the pharmacokinetic properties of polypeptides
were improved [35]. In this modified strategy, the lysine at position 8 of T1CEh-KKPWW
was the branch site and two chains with the same sequence were synthesised and extended
from here to N-terminus (T1CEh-KKPWW2). After the achievement of the branched
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structure, the MIC values of T1CEh-KKPWW2 showed a four-fold decrease against MRSA
and E. faecalis, as well as a twofold decrease against P. aeruginosa and E. coli, comparing
with that of T1CEh-KKPWW. Even though the haemolytic activity of T1CEh-KKPWW2
experienced an increase comparing with T1CEh-KKPWW (63% and 6% of haemolysis at
256 µM, respectively), the HC50 of T1CEh-KKPWW2 was 569.8 µM which was higher than
that of Temporin-1CEh.

3.4. Secondary Structure Analysis

As the circular dichroism (CD) spectra showed, all peptides formed random coil
structures in aqueous environments (Figure 5). However, they formed helical structures in
the 50% TFE and 1% SDS environments. Their CD spectra showed two negative peaks at
208 nm and 222 nm of the wavelength, which was the spectra feature of the helical structure.
Moreover, Temporin-1CEh formed an alpha-helix with both S. aureus (DOPC:DOPG = 1:1)
and E. coli (DOPE:DOPG = 3:1) liposome constitutions (Figure 6). Temporin-1CEh showed
a slight enhancement of helical content in the S. aureus-membrane-mimicking model com-
pared to the E. coli model as the calculated α-helicity were 65.3% and 45.5%, respectively.
The physicochemical characteristics of Temporin-1CEh and its analogues were shown
in Table 3.

Table 3. Physicochemical characteristics of Temporin-1CEh and its analogues. Each amino acid chain
is assigned a value, positive or negative, according to its hydrophobicity. These values are used to
weigh vectors for each residue as they are displayed around the helix. The summation of the vectors
is the hydrophobic moment. The sum of the hydrophobicity values divided by the number of the
residues. This value is hydrophobicity. Alpha-helicity was calculated from the data of CD value
for respective peptides in 50/50 TFE/H2O (v/v) environment by the Bestsel website [36]. It has not
found published data of α-helicity value of Temporin-1CEa.

Peptide Hydrophobicity
(H)

Hydrophobic
Moment (µH) Net Charge (z) α-Helicity (%)

Temporin-1CEh 0.661 0.518 1 47.8
Temporin-1CEa 0.668 0.524 1 -

T1CEh-t 0.634 0.481 1 33
T1CEa-t 0.643 0.490 1 40.2

T1CEh-KK 0.384 0.385 3 46.2
T1CEh-KKP 0.498 0.394 4 28.8

T1CEh-KKPW 0.534 0.400 4 40.4
T1CEh-KKPWW 0.576 0.440 4 30.2
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3.5. Membrane Permeabilisation Assays

By measuring the fluorescence intensity when SYTOX GREEN nucleic dye binds to
nucleic acid, Temporin-1CEh showed a 100% permeability rate at the MBC (16 µM and
128 µM, respectively) against S. aureus and E. coli (Figure 7). T1CEh-KKPW and T1CEh-
KKPWW showed a significant decrease in the permeability rates against both bacteria
at the minimum bactericidal concentration (MBC). With the application of a branched
structure, higher permeability rates of T1CEh-KKPWW2, when compared with that of
Temporin-1CEh, against S. aureus and E. coli could be found. The statistical analyses were
performed by using the two-way ANOVA test and shown in Tables S1 and S2.
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3.6. Antibiofilm Assays

S. aureus (ATCC CRM 6538) and MRSA (NCTC 12493) were employed to study the
ability of Temporin-1CEh, T1CEh-KKPW, T1CEh-KKPWW and T1CEh-KKPWW2 to inhibit
biofilm formation and eradicate mature biofilm. Four peptides inhibited 90% of biofilm
production of S. aureus and E. coli from 8 to 64 µM (Figure 8). However, all of them at all
tested concentrations could not destroy 90% of the mature biofilm. The minimum biofilm
inhibitory concentration (MBIC) and minimum biofilm eradication (MBEC) values of the
four peptides were shown in Table 4.
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Table 4. MBIC and MBEC of Temporin-1CEh, T1CEh-KKPW, T1CEh-KKPWW and T1CEh-KKPWW2
against S. aureus (ATCC CRM 6538) and E. coli (ATCC 8739). The peptide concentrations which
inhibited more than 90% of biofilm formation or eradicated more than 90% of mature biofilm, are
defined as the MBIC and MBEC, respectively.

Bacteria
Strains

MBIC/MBEC (µM)

Temporin-1CEh T1CEh-KKPW T1CEh-KKPWW T1CEh-KKPWW2

S. aureus 64/>256 16/>256 8/>256 32/>256
E. coli - 16/>256 8/>256 8/>256

3.7. Assessing the Impact of Different Environments on Antimicrobial Activity

In order to investigate the effect from acidic and alkalic environments to the ionisation
balance of the cationic antimicrobial peptides, pH 6.0 and pH 8.0 environments were used in
this assay. In addition, the environment containing serum and different metal cations were
used to measure the effect of protein interaction and competitive inhibition, respectively.
The antimicrobial activity of Temporin-1CEh experienced a significant decrease in different
pH environments or the presence of different salt or FBS environments (Table 5). Compared
with the negative effect of pH 8.0, the antimicrobial activity of T1CEh-KKPW, T1CEh-
KKPWW and T1CEh-KKPWW2 exhibited a larger decrease at pH 6.0, where MIC values at
pH 6.0 were twice or more as much as those at pH 8.0. In addition, unlike T1CEh-KKPW
and T1CEh-KKPWW, the antibacterial activity of T1CEh-KKPWW2 was not affected by
10% of FBS or salt conditions.
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Table 5. MIC values of Temporin-1CEh, T1CEh-KKPW, T1CEh-KKPWW and T1CEh-KKPWW2
against six pathogens at pH 6.0, 7.0 and 8.0 MHB medium environment, as well as the MHB medium
respectively contain 10% of FBS, 150 mM of NaCl, 1 mM of MgCl2 and 4 µM of FeCl3. S. aureus
(ATCC CRM 6538), MRSA (NCTC 12493), E. faecalis (NCTC 12697), E. coli (ATCC 8739), P. aeruginosa
(ATCC 27853) and K. pneumoniae (ATCC 43816) were used in this assay.

Peptide Bacteria
MIC (µM)

pH 6.0 pH 7.0 pH8.0 MHB +
10% FBS

MHB + 150
mM NaCl

MHB + 1
mM MgCl2

MHB + 4
µM FeCl3

Temporin-
1CEh

S. aureus 128 8 128 128 128 128 128
MRSA 256 16 256 256 256 128 128

E. faecalis >512 32 >512 >512 >512 128 128
K. pneumoniae >512 256 >512 >512 >512 >512 >512
P. aeruginosa >512 128 >512 >512 >512 >512 >512

E. coli >512 128 >512 >512 >512 >512 >512

T1CEh-
KKPW

S. aureus >512 8 32 >512 >512 256 >512
MRSA >512 16 128 >512 >512 >512 >512

E. faecalis >512 >512 256 512 >512 >512 >512
K. pneumoniae 256 16 128 256 >512 16 16
P. aeruginosa 64 32 32 64 >512 >512 >512

E. coli 16 8 8 8 128 32 64

T1CEh-
KKPWW

S. aureus 32 4 4 128 16 32 64
MRSA 256 32 32 64 >512 >512 512

E. faecalis >512 128 64 128 >512 512 512
K. pneumoniae 32 4 8 64 256 16 8
P. aeruginosa 16 16 4 32 >512 >512 >512

E. coli 4 4 4 4 8 8 8

T1CEh-
KKPWW2

S. aureus 8 4 2 4 16 8 4
MRSA 16 8 2 8 8 8 4

E. faecalis 128 32 64 64 128 64 64
K. pneumoniae 8 4 4 16 16 8 8
P. aeruginosa 32 8 8 32 32 16 16

E. coli 2 2 2 4 2 4 2

3.8. Assessing the Efficacy of the Peptide against S. aureus and E. coli In Vivo

G. mellonella larvae were employed as a model to assess the effectiveness of Temporin-
1CEh, T1CEh-KKPW and T1CEh-KKPWW against Staphylococcus as well as T1CEh-KKPWW2
against Staphylococcus and Escherichia. Temporin-1CEh, T1CEh-KKPW and T1CEh-KKPWW
significantly reduced the mortality of infected larvae. However, there were no significant
differences among different peptide concentrations (Figure 9). T1CEh-KKPWW2 signifi-
cantly reduced the mortality of S. aureus infected larvae at a concentration of 20 mg/kg.
In addition, T1CEh-KKPWW2 in all tested concentrations reduced the mortality of E. coli
infected larvae and showed a positive correlation between peptide concentration and
survival rate.
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Figure 9. The survival curves of wax moth larvae infected by S. aureus and treated by peptide 
Temporin-1CEh, T1CEh-KKPW, T1CEh-KKPWW and T1CEh-KKPWW2, as well as infected by E. 
coli and treated by peptide T1CEh-KKPWW2. For the treatment of S. aureus infection, the positive 
and negative controls were 50 mg/kg of vancomycin and 0.9% NaCl solution, respectively. For the 
treatment of E. coli infection, the positive and negative controls were 25 mg/kg of ampicillin and 
0.9% NaCl solution, respectively. The statistical analyses were performed by using the Mantel–Cox 
test between the negative group and dose groups, as well as the significant difference was indicated 
as * (p < 0.05), *** (p < 0.001) and **** (p < 0.0001). The significant levels were indicated in parentheses 
behind the legend keys of each dose group. 
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skin secretion of Rana chensinensis which consists of 15 amino acids with C-terminal 
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Temporin-1CEa, was found whose amino acid at position 11 is isoleucine. 

Similar to Temporin-1CEa, Temporin-1CEh also possesses remarkable antimicrobial 
activity against Gram-positive bacteria, but is weak at the Gram-negative bacteria. A 
previous study showed that Temporin induces antimicrobial activity through membrane 
permeabilisation [38]. Based on this, we assumed that Temporin-1CEh could have 
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showed, Temporin-1CEh possessed a higher proportion of helix in S. aureus membranes 
than those of E. coli (Figure 6). The differences in the helical percentage resulted in the 

Figure 9. The survival curves of wax moth larvae infected by S. aureus and treated by peptide
Temporin-1CEh, T1CEh-KKPW, T1CEh-KKPWW and T1CEh-KKPWW2, as well as infected by E. coli
and treated by peptide T1CEh-KKPWW2. For the treatment of S. aureus infection, the positive and
negative controls were 50 mg/kg of vancomycin and 0.9% NaCl solution, respectively. For the
treatment of E. coli infection, the positive and negative controls were 25 mg/kg of ampicillin and 0.9%
NaCl solution, respectively. The statistical analyses were performed by using the Mantel–Cox test
between the negative group and dose groups, as well as the significant difference was indicated as
* (p < 0.05), *** (p < 0.001) and **** (p < 0.0001). The significant levels were indicated in parentheses
behind the legend keys of each dose group.

4. Discussion

It is difficult for bacteria to acquire resistance to antimicrobial peptides because of the
direct interaction between bacterial cell membranes and AMPs [37]. Therefore, AMPs as
alternative antibiotic candidates have attracted much attention. Temporin, as a large family
of antimicrobial peptides, have short sequences which makes their structures and functions
easier to be studied [33]. Here, we identified a novel Temporin peptide from the skin
secretion of Rana chensinensis which consists of 15 amino acids with C-terminal amidation,
named Temporin-1CEh. It was noticed that a highly similar peptide, Temporin-1CEa, was
found whose amino acid at position 11 is isoleucine.

Similar to Temporin-1CEa, Temporin-1CEh also possesses remarkable antimicrobial
activity against Gram-positive bacteria, but is weak at the Gram-negative bacteria. A
previous study showed that Temporin induces antimicrobial activity through membrane
permeabilisation [38]. Based on this, we assumed that Temporin-1CEh could have different
behaviour when interacting with the different cell membranes. As CD spectra showed,
Temporin-1CEh possessed a higher proportion of helix in S. aureus membranes than those
of E. coli (Figure 6). The differences in the helical percentage resulted in the differences
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of antimicrobial potency of Temporin-1CEh against Gram-positive bacteria and Gram-
negative bacteria. Another assumption is that the initial interaction of AMPs approaching
Gram-positive bacteria and Gram-negative bacteria is different because of the differences of
both membrane structures [39]. The electrostatic interactions between cationic AMPs and
anionic LPS molecules, as well as the consumption to disrupt both outer and cytoplasmic
membranes, weakened the antimicrobial activity of the peptides against Gram-negative
bacteria [5,40].

For the bioactivity optimisation of Temporin-1CEh, T1CEh-t and T1CEa-t experienced
a significant decrease in calculated helicity in the 50% TFE environment (Table 3) and lost
their antimicrobial as well as haemolytic activities. This situation resulted from the removal
of hydrophobic amino acids and the loss of the aromatic residues of phenylalanine which
can help the peptides anchor to the cell membrane [34]. However, the difference of the
amino acids at position 11 of both peptides did not cause the difference in their bioactivities.

As the same situation found in the study of Temporin B KKG6A [31], T1CEh-KK
experienced an improvement in antimicrobial activity, especially for the inhibition of the
growth of E. coli. In addition, the substitution by proline leads to the weakening of the
antimicrobial ability of T1CEh-KKP except for against S. aureus. However, it was found that
α-helical AMPs that possess hinge conformations showed stronger antimicrobial selectivity
against Gram-negative bacteria than the linear AMPs [41,42]. The proline at position
14 of melittin was proved to contribute the binding to the membrane as well as the lytic
activity [43]. Besides, some peptides that possessed Pro-hinges, such as Buforin II and
Anal 3-Pro, penetrated the membranes of bacteria by creating small holes [44,45]. It could
be found that the effect by proline to T1CEh-KKP and these peptides with large peptide
lengths were different. Buforin II formed a helix–hinge–helix structure, and its helicity
percent was 43% in a 50% TFE environment, while that of T1CEh-KKP was 28.8% [44].
The destruction of the helical structure affects the antibacterial activity of T1CEh-KKP
(Tables 2 and 3), which was inconsistent with a previous report of [Pro3]-Temporin L
which had the same number of amino acids [8]. The high hydrophobicity might result
in [Pro3]-Temporin L to maintain the antimicrobial activity. In this case, tryptophan was
used to increase the hydrophobicity of the peptide and provide the ability to anchor in
the membrane. As a result, T1CEh-KKPW and T1CEh-KKPWW significantly showed the
comprehensive promotion against Gram-positive and Gram-negative bacteria. At the same
time, both peptides showed lower than 10% of a haemolytic rate at 256 µM, maintaining
a low haemolytic level with previous modified peptides (Figure 4). In other words, with
the insertion of tryptophan, the hydrophobicity was improved without an increase in
haemolysis, which implied that hydrophobic interaction with the C-terminus could make
more of a contribution to haemolytic activity.

For the further analysis of permeability and antibiofilm ability, the rate of killing
of T1CEh-KKPWW against S. aureus and E. coli was positively related to the peptide
concentration from 4 to 64 µM. This membrane-breaking antibacterial mechanism provides
the peptide with a good ability to inhibit the biofilm formation showing the MBIC against
S. aureus and E. coli at 8 µM (Table 4). However, after the formation of the biofilm, the biofilm
would resist treatment with the T1CEh-KKPWW, which revealed the large gap between its
MBIC and MBEC. The mechanism of biofilm resistance to the antimicrobial peptide is not
extensively studied [46]. Polysaccharide intercellular adhesin (PIA), a cationic molecule
composed of poly-N-acetyl glucosamine, was discovered from extracellular polymeric
substances (EPSs) [47]. This molecule provides the electrostatic repulsion for the pathogens
to action the treatment from antimicrobial peptides, such as the resistance of S. epidermidis
and S. aureus to dermicidine, LL-37 and human β-defensins [48].

In a previous report, high concentrations of salts, acidic pH and serum could cause a
decrease or loss of antimicrobial activity for AMPs [49]. At the same time, considering an
in vivo antibacterial activity test, it is worthwhile to consider the antibacterial activity test
of peptides under different physiological conditions. The antimicrobial activity of T1CEh-
KKPW and T1CEh-KKPWW against ESKAPE pathogens experienced different degrees of
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influence and the effect of the pH 6 environment was significantly greater than that of pH
8. The acidic environment will inhibit the cationic group on the peptide and then affects
the charge–charge interaction in the initial binding step between peptides and bacteria. In
addition, T1CEh-KKPWW exhibited a good antimicrobial ability in the environment con-
taining serum which might cause proteolytic digestion [49]. Furthermore, the antimicrobial
activity of T1CEh-KKPWW experienced a dramatic decrease in different concentrations
of salt, especially against MRSA, E. faecalis and P. aeruginosa. This phenomenon can be
explained that the cations (Na+, Mg2+ and Fe3+) might cause the competitive inhibition to
the binding between cationic peptides and bacterial membranes [50].

In order to improve the antibacterial ability of T1CEh-KKPWW in different physiolog-
ical conditions, a branched structure was used as a modification strategy obtaining peptide
T1CEh-KKPWW2. T1CEh-KKPWW2 showed a slight decrease in the antimicrobial activity
against ESKAPE pathogens, showing only two- to four-fold weakening of the MIC values.
This improvement allowed T1CEh-KKPWW2 to prevent the cation competitive inhibition
comparing with T1CEh-KKPWW. It was noticed that the permeability of T1CEh-KKPWW2
at high concentrations showed decreasing trends, which might be due to the binding
between peptides and nucleic acids. Previous studies have shown that the peptide LL-37
prevented the degradation of DNA from NETs, purified neutrophil and calf thymus cells
derived from bacterial pathogens [51]. In particular, the result directly showed that the
fluorescence intensity of the group containing DNA and LL-37 was significantly lower than
that only containing DNA.

In addition, the phenomenon of aggregation can be found in T1CEh-KKPWW2 at
a high concentration, achieving hydrogel. The aromatic stacking which may cause com-
plicated π−π interactions played a role in the self-assembly in many amyloid-related
proteins [52,53]. At the same time, the increase of hydrophobicity which resulted from
the accumulation of a hydrophobic amino acid contributed to the aggregation between
peptide molecules [54,55]. Too strong an aggregation ability may result in the premature
aggregation of the peptide before they are attached to the cell membrane [56–58]. This can
explain the decrease on the permeability and antibiofilm ability at high concentrations of
T1CEh-KKPWW2 (Figures 7 and 8).

The application of branched structure most directly leads to the accumulation of the
functional unit to the peptide. Net charges and the hydrophobicity increase of T1CEh-
KKPWW2 not only promoted its antimicrobial and antibiofilm activity, but also increased
its haemolysis. The same situation could be found in the bioactivity evaluation between
branched peptide SB056 and its linear peptide [59]. However, the other two well study
branched peptides, G3KL and B2088, were found to have low cell toxicity [45–47]. There-
fore, peptide sequences play a critical role in haemolysis and cell toxicity rather than the
branched structure.

Additionally, the Galleria mellonella larvae model demonstrated the potential antimi-
crobial efficacy of selected peptides in vivo [60]. Temporin-1CEh, T1CEh-KKPW and
T1CEh-KKPWW showed good anti-Staphylococcus activity in vivo, and all treatment groups
exhibited statistical differences compared with the negative control group. However, the
reason for no improvement of mortality with increasing doses is not clear. It might be
related to the rapid degradation of peptides in vivo. In addition, T1CEh-KKPWW2 showed
better anti-Escherichia activity in vivo than anti-Staphylococcus activity in vivo.

In summary, we reported the study on the characterisation of a novel temporin peptide,
the design of the N- and C-terminal domains modified analogues and assessed the influence
on their bio-efficacy with in vitro and in vivo models. It revealed that increasing the net
charge at the N-terminal domain could improve the selectivity, whilst the hydrophobic
interaction with amino acid residues ensures the membrane permeabilisation. The balance
of both features is recognised as a key that could be favourable for developing the new
therapeutic approaches in the treatment of infectious diseases.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/pharmaceutics14030604/s1, Table S1: Two-way ANOVA analysis of
permeability of Temporin-1CEh and its analogues against S. aureus. The significance was presented by
the symbol ns (non-significant difference), * (p < 0.05), ** (p < 0.01), *** (p < 0.001) and **** (p < 0.0001);
Table S2: Two-way ANOVA analysis of permeability of Temporin-1CEh and its analogues against
E. coli. The significance was presented by the symbol ns (non-significant difference), * (p < 0.05),
** (p < 0.01), *** (p < 0.001) and **** (p < 0.0001).
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