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Abstract

Depth is usually considered the main driver of Lake Trout intraspecific diversity across lakes

in North America. Given that Great Bear Lake is one of the largest and deepest freshwater

systems in North America, we predicted that Lake Trout intraspecific diversity to be orga-

nized along a depth axis within this system. Thus, we investigated whether a deep-water

morph of Lake Trout co-existed with four shallow-water morphs previously described in

Great Bear Lake. Morphology, neutral genetic variation, isotopic niches, and life-history

traits of Lake Trout across depths (0–150 m) were compared among morphs. Due to the

propensity of Lake Trout with high levels of morphological diversity to occupy multiple habi-

tat niches, a novel multivariate grouping method using a suite of composite variables was

applied in addition to two other commonly used grouping methods to classify individuals.

Depth alone did not explain Lake Trout diversity in Great Bear Lake; a distinct fifth deep-

water morph was not found. Rather, Lake Trout diversity followed an ecological continuum,

with some evidence for adaptation to local conditions in deep-water habitat. Overall, trout

caught from deep-water showed low levels of genetic and phenotypic differentiation from

shallow-water trout, and displayed higher lipid content (C:N ratio) and occupied a higher tro-

phic level that suggested an potential increase of piscivory (including cannibalism) than the

previously described four morphs. Why phenotypic divergence between shallow- and deep-

water Lake Trout was low is unknown, especially when the potential for phenotypic variation

should be high in deep and large Great Bear Lake. Given that variation in complexity of

freshwater environments has dramatic consequences for divergence, variation in the com-

plexity in Great Bear Lake (i.e., shallow being more complex than deep), may explain the

observed dichotomy in the expression of intraspecific phenotypic diversity between shallow-

vs. deep-water habitats. The ambiguity surrounding mechanisms driving divergence of Lake
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Trout in Great Bear Lake should be seen as reflective of the highly variable nature of eco-

logical opportunity and divergent natural selection itself.

Introduction

Processes of diversification within and among species are variable, ranging from micro- to

macro-evolution, with divergence primarily occurring in allopatry (non-overlapping geo-

graphic areas), and to a lesser degree in sympatry (without geographical separation), peripatry

(an isolated peripheral geographic area), or parapatry (adjacent geographic area). Diversifica-

tion patterns can involve coevolution, or parallel, convergent, or divergent evolution, with the

processes varying within and across taxa. Trying to unravel these complexities has inspired

biologists for decades to investigate population diversification, local adaptation, and speciation

[1–4].

Patterns of diversity expressed by freshwater fishes have been of particular interest and

often show phenotypic-environmental associations. The complexity (e.g., variable bathymetry)

and isolation (e.g., land-water boundaries, glacial history) of freshwater habitats are often

linked to phenotypic diversification within a species rather than convergence to a single phe-

notype [5–7]. Indeed, strong links between ecological and evolutionary processes, through

phenotypic plasticity and adaptive evolution, predict the exploitation of differential resources

in novel discrete niches by individuals in complex habitats [8, 9]. Within lacustrine systems,

however, divergent selection related to resource use within discrete ecological niches is con-

strained by variation that occurs naturally along littoral, pelagic, and profundal niche axes

[10–12].

The profundal zone is regarded as the least favorable habitat within a lake due to low tem-

perature and light conditions, low density of food resources, and sometimes unfavorable water

chemistry [13, 14]. Nevertheless, most reported examples of Lake Trout (Salvelinus namay-
cush) intraspecific diversity occur along a depth gradient that includes the profundal zone [15–

17]. Lake Trout in large, bathymetrically complex North American lakes, such as Lake Supe-

rior, Great Slave Lake, and Lake Mistassini, vary phenotypically as a result of the vertical parti-

tioning of resources and selective pressure(s) that leads to ecological differentiation among

morphs [18–20]. Indeed, differences in depth and associated foraging opportunities within

these lakes seem to function as “islands” that have promoted and maintained rapid post-glacial

adaptive divergence [21–24]. In these North American lakes, Siscowet, humper, and red fin

phenotypes are recognized as morphs using deep-water (> 80 m), whereas the lean morph in

these large deep lakes occupy shallower habitats (< 80 m) [15].

In general, deep-water morphs have been characterized by deeper bodies and caudal

peduncles and higher buoyancy (lipids), in contrast to shallow-water morphs that are charac-

terized by a streamlined body, smaller fins, and a larger head, reflecting locomotion-related

traits associated with trophic differentiation [15]. Although the common theme of Lake Trout

diversification has focused on isolation by geographic distance in large lakes and within deep

waters, examples of diversification in small lakes or shallow-waters habitats have also been

documented [25–28]. Overall, these reports confirm high levels of plasticity and diversification

in Lake Trout, a characteristic not always recognized [29, 30].

A striking example of Lake Trout intraspecific diversity is the shallow-water (� 30 m)

morphs in Great Bear Lake, Canada (S1 Fig). Within this zone, four morphs differ in head,

body, and fin morphology [25, 31]. Morph 1 is characterized by a small head and intermediate

A deep-water Lake Trout morph?
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fins. Morph 2 has the largest head and jaws but the smallest fins. Morph 3 has the longest fins

and a robust body shape, while Morph 4 has a thick curved lower jaw and smallest caudal

peduncle among the morphs. Morph 4 is a specialist in pelagic habitat whereas Morphs 1–3

have more general feeding habits with varying degrees of omnivory along a weak benthic-

pelagic shallow-water gradient [27, 32]. Consistent with predictions from trophic polymor-

phism theory, Morph 1 and 2 differed in adult growth rates, age- and size-at-maturity, and sur-

vival rates, whereas Morphs 3 and 4 were intermediate in life-histories [33]. The four morphs

were only weakly genetically differentiated and appear to have diverged in sympatry [34].

This pattern of intraspecific diversity, independent of obvious habitat partitioning within

the shallow-water zone, is uncommon for polymorphic fishes [35–37]. The pronounced mor-

phological heterogeneity across shallow-water morphs seem somewhat disconnected from

expected underlying genetic or trophic mechanisms causing divergence. Lake Trout differenti-

ation within Great Bear Lake, however, could be associated with a depth gradient but has

never been investigated. Great Bear Lake is one of the largest and deepest freshwater lakes in

North America (surface area = 31 790 km2, maximum depth = 446 m; [38]. Consequently,

Great Bear Lake should be sufficiently complex to evolve and sustain diversity across a vertical

resource-axis (i.e., niche availability and niche discordance) [39].

To explore the full extent of Lake Trout intraspecific diversity within Great Bear Lake, we

investigated whether a deep-water morph co-exists along with four shallow-water morphs pre-

viously described. We compared morphology, neutral genetic diversity, trophic ecology, and

life-history of Lake Trout caught from depths up to 150 m within Great Bear Lake. We investi-

gated whether Lake Trout genetic and phenotypic variation were partitioned along a depth

gradient consistent with Lake Trout differentiation elsewhere. Despite being one of the world’s

major freshwater bodies, this study is the first to report on Lake Trout in the deep-water habi-

tat of Great Bear Lake.

Materials and methods

Study area and data collection

Great Bear Lake is an oligotrophic Arctic freshwater system, in northeastern Northwest Terri-

tories (N66˚ 06’ W120˚ 35’) [40]. Great Bear Lake is divided into five semi-isolated ˝arms˝. For

this study, Dease Arm, within the southern Arctic ecozone along the northern shore of Great

Bear Lake, was sampled from mid-July to mid-August 2015. By focusing on one arm and year,

we aimed to focus on Lake Trout variation expressed through a cline of depth, while minimiz-

ing spatial and temporal variations [6, 8, 41, 42]. This protocol was approved by Department

of Fisheries and Ocean Canada, Freshwater Institute Animal Care Committee Science Labora-

tories (FWI-ACC-2015-036). Once the fish are brought into the boat (from net) they are either

already dead or are immediately euthanized by a hit in the head.

Multi-mesh gill nets (12.7 to 140 mm stretch mesh) were set with a typical soak time of 24

hours. Sampling locations were distributed among random depth-stratified sites. Three depth

zones were defined: 1) shallow (0–20 m), 2) intermediate (21–50), and 3) profundal zone (51–

150) based on productivity levels and the putative deep-water Lake Trout morph distribution

[20, 40]. At each sampling station, nets were set on the bottom (0–20 m, 21–50 m, 51–150 m),

mid-water (21–50 m, 51–150 m), and just below the surface (0–20 m, 21–50 m). To increase

sample size, catch from all meshes and nets were combined when they were defined by depth

zone as a categorical variable. For each depth zone, catch-per-unit-effort was calculated as the

number of fish caught per 100 m of gill net per 24 hours. Seven, nine, and 10 nets were

recorded for 0–20 m, 21–50 m, and 51–150 m, respectively. CPUE data were log10 transformed

and an Analysis of Variance was used to evaluate if CPUE was significantly different among

A deep-water Lake Trout morph?
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three depth strata. Lake Trout CPUE did not differ among the three depth strata (F2,23 = 0.12,

p = 0.89) (S2 Fig).

A lateral (left side) full-body digital image was taken of each fish, with extended caudal, pel-

vic, and pectoral fins and pinned dorsal and anal fins [43]. For each fish caught, tissues, struc-

tures, and traits were sampled for determination of biological characteristics related to life-

history, including otoliths, fork length, somatic weight, sex, and stage of maturity (i.e., juvenile,

mature, and resting categories; see [25]. Lake Trout from Great Bear Lake do not display sexual

differences in morphology and life history [25, 44]; thus, sexes were pooled. A dorsal muscle

sample was removed and frozen at -20 ˚C for stable isotope analysis and a fin clip was stored

in 95% non-denatured ethanol for genetic analysis.

Assignment to groups: Depth, morphology, and composite groups

Due to the propensity of Lake Trout with high levels of morphological diversity to occupy mul-

tiple habitat niches, classification of individuals can be challenging [22, 27, 45]. Lake Trout can

display variation as a cline rather than strong discontinuity among morphs [22, 45]; thus, our

grouping method aimed to accommodate the potential for a gradient of phenotypic variation.

To account for all variability expressed among Lake Trout from sampling depths of 0–150 m

within Great Bear Lake, assignment of individual Lake Trout to groups was based on three sep-

arate independent procedures. We used two grouping methods that are commonly used in

intraspecific diversity delineation and a novel one (S3 Fig). Grouping was based on three pro-

cedures, using either 1) depth zone, 2) morphology, and 3) a suite of composite variables,

including depth (as a continuous variable) and morphology, and also genetics, stable isotopes,

and life history traits (S3 Fig).

The first assignment procedure grouped fish by depth-at-capture, using a categorical depth

strata: 1) shallow (0–20 m), 2) intermediate (21–50 m), and 3) profundal zone (51–150 m).

Categorical classification by depth has been used previously due to the importance of depth as

a driver of Lake Trout diversification (see [22]). Morphological, genetic, isotopic, and life his-

tory variables were then compared among groups based on depth-at-capture grouping

procedure.

The second approach grouped individuals based on morphological data, using the R statis-

tical software package FactoMineR, a hierarchical clustering analysis based on principal com-

ponents to determine group membership of individuals [46]. Morphological data with

principal component and cluster analysis has been commonly used to determine the number

of Lake Trout groups co-existing within a system [18, 19, 21, 25, 31]. Morphological data were

represented by first principal component (PC1) scores from principal component analyses

(PCA) of body shape, head shape, and linear measurements of 130 Lake Trout, using Inte-

grated Morphometrics Programs (IMP) (description below). Morphology, genetics, isotopes,

and life history were then compared among groups defined by morphology procedure.

The third approach, termed here as “composite”, assigned individuals to groups based on

all collected ecological data, using FactoMineR to assign individuals to groups. Habitat was

measured as depth-at-capture (continous variable). Morphological data included first two

principal components of PCA for each morphological variable to capture the full extent of var-

iation (i.e., body shape, head shape, and linear measurements). Genetic data included the first

two principal components of a PCA using 21 microsatellite loci, and trophic data included sta-

ble isotopes (muscle δ13C and δ15N). Finally, life-history data included parameters obtained

from back-calculated otolith data: von Bertalanffy adult growth parameter, juvenile growth

rate, and maximum adult length. These composite data were available for 105 of the 130 Lake

Trout. Morphology, genetics, isotope data, and life history were then compared among groups

A deep-water Lake Trout morph?
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defined by the composite procedure. Details on morphology, stable isotopes, life-history, and

genetic analyses are provided below.

Morphology

Analyses of digital images, combining classical with geometric morphometrics, were per-

formed only on adult Lake Trout (based on gonad devlopment and length over 450 mm, see

[25]) due to the difficulty of classifying juveniles into morphs [18, 19, 25]. Twenty three land-

marks (pre-determined homologous points) were selected to measure body shape and fourteen

linear measurements were selected based on their relationship to foraging (e.g., jaw size) and

swimming (e.g., fin lengths and caudal peduncle depth) [47–49]. Landmarks used in this study

were comparable to those used previously for assessing Lake Trout intraspecific diversity in

Great Bear Lake (see [25, 31]). We also used 20 semi-landmarks to measure variation in head

shape that were not well captured by landmarks. Semi-landmarks are non-homologous points

that can be used to capture and analyze shape information on curved areas of lacking distinct

landmarks [50, 51].

Landmarks and semi-landmarks were digitized in x and y coordinates using TPSDig2 soft-

ware (http://life.bio.sunysb.edu/morph). Subsequently, digitized landmarks and semi-land-

marks were processed in a series of Integrated Morphometrics Programs (IMP) (http://www2.

canisius.edu/;sheets/morphsoft) (methods and programs described in [51]. All morphological

measurements were size-free, using centroid sizes or residuals from regressions on standard

length for linear measurements [51]. Principal component analyses (PCA) of morphological

data (body and head shape used PCAGEN; IMP software, and linear measurements using

PC-ORD) for both 130 and 105 individuals were performed on all morphological data to cap-

ture the maximum amount of variation with the fewest number of variables for subsequent

grouping analysis (procedures described in [25].

Morphological characteristics among groups within each grouping procedure. To visu-

alize morphological variations among groups, PCAs of the 130 and 105 individuals used above

in FactoMineR, were displayed with classified individuals from each grouping procedure

assignments, groups were defined with confidence ellipse. To assess the validity of group

assignments in these morphological variations, canonical variate analyses (CVA) followed by

Jackknife validation procedures were used to test how well linear measurements, body and

head shape grouped individuals with CVAGen V. 8 from the IMP software (http://www3.

canisius.edu/~sheets/).

Genetic data

Genomic DNA was extracted from fin tissue using Qiagen DNeasy Extraction Kits (Qiagen,

Inc., Valencia, California) following the manufacturer’s protocols. Twenty-one microsatellite

loci were amplified in four multiplexes [34]. PCR products were run on an ABI 3130xl Genetic

Analyzer (Applied Biosystems, Foster City, California) using the LIZ 600 size standard and all

allelic data were edited and scored by eye using GeneMapper (version 4.0, Applied

Biosystems).

Genetic characteristics among groups within each grouping procedure. Variation at

microsatellite loci was used to determine if genetic differentiation could be resolved among

Lake Trout groups established by the three grouping procedures (depth, morphology, and

composite groups; S3 Fig). The program Microchecker v.2.2.3 [52] was used to test each locus

for the presence of genotyping errors due to null alleles and allelic dropout. Descriptive statis-

tics of genetic variation (number of alleles [NA], expected heterozygosity [HE; Nei’s unbiased

gene diversity], observed heterozygosity [HO], and the fixation index [FIS]) within groups for

A deep-water Lake Trout morph?
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each grouping procedure (i.e., depth, morphological and composite) were compiled using the

‘diveRsity’ package in program R [53]. Allelic richness (AR) and private allelic richness (PAR)

were calculated using HP-RARE [54]. Departures from Hardy-Weinberg equilibrium and

linkage disequilibrium were evaluated using the program GENEPOP v. 4.0 [55]. Tests involv-

ing simultaneous comparisons were evaluated with a nominal α of 0.05 and then with an

adjusted α obtained via the false discovery rate procedure [56], as suggested by Narum [57].

Genetic structure was examined among Lake Trout groups using several different methods.

Global estimates of FST (i.e., theta [θ]) [58] for each grouping procedure were generated in

FSTAT and 95% confidence intervals (CIs) of the estimates were calculated following 10 000

permutations. Pairwise estimates of FST between groups within a procedure were calculated in

ARLEQUIN v. 3.1 [59], significance was tested following 10 000 individual permutations. We

used the hierarchical Bayesian clustering program STRUCTURE v. 2.3 [60] to identify poten-

tially distinct genetic clusters within groups (e.g., by depth, morphology, or composite). Simu-

lations were performed varying K from 1 to 10, with 20 iterations per value of K. Each run

incorporated a burn-in of 500 000 iterations followed by 500 000 Markov chain–Monte Carlo

(MCMC) iterations. We assumed an admixture model, correlated allelic frequencies, and

grouping based on depth, morphology, or composite, as location information as priors [61].

To infer the most likely number of clusters, we used STRUCTURE HARVESTER v. 0.6.91

[62], a program that combines the results of independent runs and compiles the results based

on lnP(D) and the post hoc ΔK statistic of Evanno et al. [63]. The program CLUMPP v. 1.1 [64]

was used (under the LargeKGreedy algorithm) to determine alignment of replicate runs and

admixture plots were visualized using DISTRUCT v.1.1 [65].

Isotopes

Samples analyzed for isotopes were freeze dried, ground to a fine powder, and weighed. Sam-

ples were analyzed using a continuous flow isotope ratio mass spectrometer (Thermo- Delta 5

Plus) equipped with a Costech elemental analyzer at the Department of Fisheries and Ocean’s

Freshwater Institute in Winnipeg. Stable isotope results were expressed in delta (δ) notation

defined as the deviation from a standard reference material in parts per thousand (‰). δ13C

results are relative to Vienna Pee Dee Belemnite (VPDB) while δ15N results are relative to

atmospheric nitrogen and were calculated using equation that follows:

dX ¼ ½ðRsample=RstandardÞ � 1� � 1000

where X is 13C or 15N, Rsample is the ratio (13C/12C or 15N/14N) in the sample while Rstandard

is the same ratio in the standard. Standard deviations of repeated measurements of certified

reference materials (USGS 40 and 41) were <0.1‰ for δ13C and <0.16‰ for δ15N. The stan-

dard deviation of repeated measurements of an in-house standard was <0.1‰ for δ13C and

for δ15N. Data were normalized using Laboratory Information Management System for Light

Stable Isotopes (LIMS-LSI) [66]. Due to high C:N ratios (>3.5) indicating high-lipid content,

the fish δ13C values were lipid-corrected following Post et al. [67].

Isotopic characteristics among groups within each grouping procedure. Niche region

dimensions of Lake Trout (grouped by depth, morphotype, and composite variables) were

obtained using the probabilistic method available in the nicheROVER R library [68]. This

approach estimates parameters of the multivariate normal distribution, allowing isotopic niche

dimentions to be defined as probability regions in multivariate space. Uncertainty in niche

regions is accounted for using a Bayesian inference famework [68]. Ellipses representing 95%

probability niche regions were generated using the posterior expectation of the bivariate nor-

mal distribution estimated using the Bayesian approach in nicheROVER [68]. C:N ratios were

A deep-water Lake Trout morph?
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also regressed against δ13C (‰) (not lipid-corrected values), individuals were grouped by

depth-at-capture to investigate an indirect representation of lipid content (index of buoyancy)

according to the depth structure found elsewhere [18–20, 67, 69–71]. A polynomial trend line

was fitted for the overall data and was tested for differences from 0.

Life-history

One otolith from each fish was embedded in epoxy, and a thin transverse section (400 μm) was

cut, mounted on a glass slide, polished, and imaged for age and growth assessment [72].

Annuli were counted by two independent readers using criteria described by Casselman and

Gunn [73]. Age estimates were used to inform demarcation of growth increments, measured

from the nucleus to the maximum ventral radius of the otolith, and radial measurements at

each annulus were used to back-calculate length-at-age using the biological intercept back-cal-

culation model [74]. The biological intercept (sagittal otolith radius = 0.137 mm; age-0 Lake

Trout length = 21.7 mm; [72] was based on equations describing relationships between length,

age in days, and sagittal otolith width of age-0 Lake Trout [75].

Growth in length with age was modeled using two parameterizations of the Von Bertalanffy

length-age model, which express growth in terms of five, rather than only three, life history

parameters [76, 77]:

Lt ¼ L1ð1 � e� Kðt� t0ÞÞ þ ε

Lt ¼ L1 � ðL1 � L0Þð1 � e� ðo=L1Þ�tÞ þ ε

These length-age models described back-calculated length Lt (mm) at age t (years) as a

function of age at length = 0 (t0 = years), length at age = 0 (L0 = mm; length at emergence from

the egg), early annual growth rate (ω = L1 × K = mm/year; [78], instantaneous growth rate

(K = 1/year) at which Lt approaches the theoretical maximum length (L1 = mm), and residual

error (ε). Parameters were estimated using nonlinear mixed-effect models (package ‘nlme’ in

R) [79], with a fixed population effect, random individual effects, and depth zone, morphologi-

cal, or composite group as a fixed factor, to compare average growth curves among depth,

morph, or composite groups [80]. Mixed-effects models described the within-group correla-

tion of longitudinal, auto-correlated, and unbalanced data, such as back-calculated growth his-

tories [81].

Life-history characteristics among groups within each grouping procedure. To com-

pare life-history parameters among groups for each grouping procedure (i.e., depth, morphol-

ogy, and composite), log-likelihoods (LL) of models (i) with 1–3 fixed growth parameters (L1,

K, t0) and depth, morph, or composite groups (df = number of parameters) were ranked using

Akaike’s Information Criterion (AIC = −2 × LL + 2 × df), AIC differences (Δi = AICi − AICmin),

and AIC weights (wi ¼
eð� 0:5DiÞPR

r¼1
eð� 0:5Dr Þ

) to express the relative likelihood that a particular model

was the best model among those considered [82].

Phenotypic divergence characteristics among groups within each grouping

procedure

Among- (PST) and within-group (rii) phenotypic variance was estimated for morphological

traits for each procedure by calculating genetic relationship matrices (R-matrix estimates) in

program RMET 5.0 [22, 83, 84]. Phenotypic distances were adjusted for sample size in RMET,

and a heritability score of 1.0 was used to provide a conservative estimate for PST [85, 86].

Because heritability was set to 1.0, our Pst estimates were conservative and prone to false

A deep-water Lake Trout morph?
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negatives (Type II Errors) [22]. GPSTs were either based on the residuals of the leading princi-

pal component (PC) axis, combining all traits for body and head shape and linear measure-

ments, or on specific traits, life-history measures (ω, K, and L1), and C:N ratio (as an indirect

measure of lipids and buoyancy).

Results

Assignment to groups: Depth, morphology, and composite groups

Based on depth of capture, 130 adult Lake Trout were categorized into three depth-range

groups: 44 fish were caught in 0–20 m water, 55 fish were in 21–50 m, and 31 fish in 51–150

m.

Based on the first principal components scores of morphology based on body shape, head

shape, and linear measurements, three groups were determined by FactoMineR among the

130 adult Lake Trout (S4 Fig). The three morphs found in this new dataset corresponded to

previously described Lake Trout morphs 1, 2, and 3 from Great Bear Lake [25]. From FactoMi-

neR, hierarchical clusters of Lake Trout, overlaid on the first two principal component vari-

ables, explained 75.0% for PC1 and 16.1% for PC2 of the morphological variation (S4 Fig).

Based on composite grouping procedure (depth-at-capture, morphology, genetics, isotopes,

and life-history), four groups were determined by FactoMineR among 105 Lake Trout (S4

Fig). The first three groups corresponded approximately to morphs previously described by

Chavarie et al. [25], identified as Comp 1 (looks like Morph 3), Comp 2 (looks like Morph 1),

Comp 3 (looks like Morph 2), and the last group consisted mostly of individuals caught in the

deep-water strata identified as Comp 4. This fourth group comprised 24 individuals of the 105

(22.9%), and reflected grouping differences between the two data sets (morphology vs. com-

posite). Another difference between grouping approaches was that 26 of 105 (24.8%) individu-

als classified as Morph 2 (piscivore) strictly using morphological data were classified as Morph

1 (generalist) using the composite grouping procedure. From FactoMineR, the hierarchical

clusters of Lake Trout individuals overlaid on the first two principal components explained

24.6% (PC1) and 18.2% (PC2) of the variation (S4 Fig 4). The two principal component vari-

ables from the composite grouping explained a total of 42.8%, considerably less than the mor-

phological grouping procedure (91.1%).

Morphological characteristics among groups within each grouping

procedure

The principal components 1 and 2 for the 130 individuals accounted for 39.8% and 30.5% of

the variation in linear measurements, respectively, 38.7% and 18.6% for body shape, and

47.5% and 25.8% for head shape (Fig 1). The PCA from 130 individuals, using classification

from depth and morphological grouping assignments, were represented in Fig 1. Nearly the

same amount of variation was explained for individuals for the PCA using 105 of the 130 indi-

viduals (composite groupings procedures vs. from depth and morphological grouping proce-

dures) (Fig 1). In this case, principal components 1 and 2 accounted, respectively, for 40.7%

and 29.6% of the variation in linear measurements, 39.0% and 20.0% for body shape, and

46.0% and 27.4% for head shape (Fig 1).

On the basis of groups established by morphology, CVAs showed group discrimination as

follows: body shape CV1: λ = 0.01, CV2: λ = 0.6; P< 0.05, and head shape CV1: λ = 0.09, CV2:

λ = 0.5; P< 0.05 (S5 Fig). Jackknife classification for body shape was 75.6% and 70.0% for

head shape. Linear measurement CVA also demonstrated discrimination among morphs with

a λ = 0.18, P< 0.05 and a jackknife classification of 80%.

A deep-water Lake Trout morph?
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On the basis of groups established by composite data (4th group corresponding to individu-

als caught in deep-water), group discriminations based on morphological characteristics were

as follows: body shape CV1: λ = 0.05, CV2: λ = 0.3; P< 0.05, and head shape CV1: λ = 0.05,

CV2: λ = 0.2; P< 0.05 (S5 Fig). However, the jackknife classifications were low with 53.3%

correct assignment of individuals based on body shape and 43.8% for head shape. The linear

Fig 1. PCA ordinations of Lake Trout linear measurements, body shape, and head shape. PCA ordinations of Lake Trout linear measurements, body shape, and

head shape, with percentages representing the variation explained by that component. Groups were identified by three separate procedures using either depth,

morphological, or composite data (see text in Methods). Each group is outlined by a 68.3% confidence ellipse. For the depth procedure, groups are represented as

follows: open circle = 0–20 m, light grey square = 21–50 m, and black diamond = 51–150 m. For morphological procedure, groups are represented as follows:

Morph 1 = white, Morph 2 = black, and Morph 3 = light grey. For composite assignments, groups are represented as follows: x = Comp 1, ? = Comp 2, star = Comp

3, and triangle = Comp 4 (deep-water individuals).

https://doi.org/10.1371/journal.pone.0193925.g001
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measurement CVA discriminated among composite groups (λ = 0.11, P< 0.05) and provided

a correct classification of 74.8%.

Genetic characteristics among groups within each grouping procedure

The locus Smm21 was identified as having null alleles and Sco218 was monomorphic. Both

were removed from subsequent analyses. Genetic variation was moderate among individuals

and the number of alleles averaged across all loci was 18.2 for depth, 15.4 for morphological,

and 12.9 for composite groupings (Table 1). Other descriptive statistics of genetic variation

were relatively similar within and among grouping procedures (Table 1). Deviations from

Hardy-Weinberg equilibrium expectations were detected in twelve of 63 comparisons for

depth (3 groups x 21 loci), six of 63 comparisons for morphology (3 groups x 21 loci), and four

of 84 comparisons (4 groups x 21 loci) for composite grouping procedure after false discovery

rate adjustments of alpha. Linkage disequilibrium was detected in 21 of 630 tests for depth,

five of 630 tests for morphological, and four of 840 tests for composite groupings subsequent

to adjustments of alpha based on the false discovery rate procedure.

Genetic differentiation within each grouping procedure was low. Global estimates of FST

were 0.004 (95% CI = 0.001–0.008) for depth, 0.004 (95% CI = 0.000–0.009) for morphological,

and 0.003 (95% CI = 0.000–0.006) for composite groupings (Table 2). Pairwise estimates of FST

within each group were also low (all pairwise values were < 0.01) and only significant in five

of a possible 15 comparisons across all grouping procedures subsequent to false discovery rate

adjustments of alpha (Table 2).

Bayesian clustering analyses based on the post hoc ΔK statistic of Evanno et al. [63] identi-

fied three genetic groups for depth, six genetic groups for the morphological grouping, and

four genetic groups for composite grouping (S1 Table). The number of genetic groups inferred

based on lnP(D) was one for every grouping procedure. The clearest genetic structure evident

based on admixture plots of inferred clusters from ΔK, was the differentiation of the deep-

water individuals (51–150 m) from the shallow-water individuals (0–20 m and 21–50 m) for

adults (Fig 2). Morph 2 also appeared somewhat differentiated compared to Morphs 1 and 3 in

the morphological grouping (Fig 2).

Isotopic characteristics among groups within each grouping procedure

The range of stable isotope values was wide among Lake Trout caught among depth zones (Fig

3). For adult Lake Trout, δ13C varied from -16.4 ‰ to -27.8 ‰ and δ15N ranged from 11.1‰

to 15.3‰. The isospace plot suggested considerable overlap in isotopic niches for all grouping

approaches, with differences in niche widths and positions of some deep-water group individ-

uals (Fig 3). Polynomial trend lines had R2 of 0.45 for adult Lake Trout (Fig 4), demonstrating

an indirect increase of lipid content (index of buoyancy) with depth.

Life-history characteristics among groups within each grouping procedure

Growth differed among groups categorized by depth, but growth differences were not clearly

attributable to either asymptotic length (L1), growth rate (K), or age at length = 0 (t0). The

four most likely models of growth variation within depths were 12–35% likely the best model

among those considered, without any single model being clearly the best model (S2 Table).

Instantaneous growth rate K and early growth rate ω were highest for trout caught at 0–20 m,

whereas asymptotic length L1 were highest for the 21–50 m group (Fig 5; S3 Table).

Growth differed among groups based on morphological data. The most likely model of

growth variation among morphs was 86% likely the best model, among those considered, and

included all three growth parameters (asymptotic length (L1), growth rate (K), and age at

A deep-water Lake Trout morph?
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length = 0 (t0)) (S4 Table). The instantaneous growth rate K, the early growth rate ω, and the

asymptotic length L1 were highest for Morph 2 (piscivorous morph) (Fig 5; S5 Table).

Growth differed among groups identified using the composite procedure. The most likely

model of growth variation among composite groups was 100% likely the best model, among

those considered, and included all three growth parameters (asymptotic length (L1), growth

rate (K), and age at length = 0 (t0)) (S6 Table). The instantaneous growth rate K and early

growth rate ω were highest for Comp 3, whereas asymptotic length L1 was highest for the

Comp 2 (Fig 5; S7 Table).

Phenotypic divergence characteristics among groups within each grouping

procedure

Great Bear Lake displayed high phenotypic divergence overall, whereas several phenotypic

traits varied within depth, morphological and composite groupings (Fig 6). Life-history

parameters (K and ω) displayed the most variation within groups organized by depth of

Table 1. Genetic variation at 21 microsatellite loci among groups of Lake Trout from Great Bear Lake established based on depth strata (�20 m, 21–50 m, 51–150

m), morphological data (Morph 1, Morph 2, Morph 3), and composite data (Comp 1, Comp 2, Comp 3, Comp 4). Columns indicate the number of alleles NA,

observed heterozygosity (HO), expected heterozygosity (HE), Allelic richness (AR), private allelic richness (PAR), and the fixation index (FIS).

Procedure Groups NA HO HE AR PAR FIS

Depth Zone � 20 m 18.19 0.77 0.81 13.63 1.72 0.05

21–50 m 19.57 0.77 0.81 13.72 1.87 0.05

51–150 m 15.00 0.76 0.80 12.82 1.35 0.04

Morphology Morph 1 15.62 0.75 0.80 13.16 1.43 0.06

Morph 2 17.29 0.77 0.81 13.39 1.82 0.04

Morph 3 13.14 0.77 0.83 13.14 1.68 0.08

Composite Comp 1 11.29 0.79 0.83 11.29 1.00 0.05

Comp 2 16.33 0.77 0.80 13.35 1.41 0.04

Comp 3 11.05 0.77 0.81 11.05 1.13 0.04

Comp 4 12.76 0.75 0.81 12.76 1.28 0.07

https://doi.org/10.1371/journal.pone.0193925.t001

Table 2. Pairwise FST based on variation at 21 microsatellite loci among Lake Trout from Great Bear Lake grouped by depth strata (�20 m, 21–50 m, 51–150 m),

morphology (Morph 1, Morph 2, Morph 3), and composite data (Comp 1, Comp 2, Comp 3, Comp 4). Significant results are represented as follows: � values are signif-

icant at α = 0.027 and 0.020 for 3 and 4 comparisons respectively subsequent to false discovery rate adjustments.

Procedure Groups

� 20 m 21–50 m 51–150 m

Depth Zone � 20 m

21–50 m 0.001

51–150 m 0.009� 0.006�

Morph 1 Morph 2 Morph 3

Morphology Morph 1

Morph 2 0.001

Morph 3 0.004 0.007�

Comp 1 Comp 2 Comp 3

Composite Comp 1

Comp 2 0.007�

Comp 3 0.003 0.001

Comp 4 0.005 0.008� 0.005

https://doi.org/10.1371/journal.pone.0193925.t002
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capture, while L1, head shape, and body shape varied the least (Fig 6). Phenotypic trait varia-

tions among the three groups identified by morphotypic data were influenced most by head

shape, linear measurements, and body shape, while life-history parameters (K and L1) and C:

N ratio had the lowest values (Fig 6). Finally, phenotypic divergence among composite groups

was driven by linear measurements, ω, and K, whereas L1 and C:N varied the least (Fig 6).

Fig 2. Admixture coefficient plots of the Bayesian clustering analysis for Lake Trout using STRUCTURE.

Admixture coefficient plots of the Bayesian clustering analysis for Lake Trout from Great Bear Lake using

STRUCTURE. Population structure was examined by groups defined by depth zone (0-20m, 21–50 m, 51–150 m),

morphological data (Morph1, Morph 2 and Morph 3), and the composite dataset (Comp 1, Comp 2, Comp 3, and

Comp 4). Each individual is represented as a vertical line partitioned into colored segments representative of an

individual’s fractional membership in any given cluster (K). The most likely number of genetic clusters based on the

ΔK statistic of Evanno et al. [63] was three, six and four for depth, morphology, and composite grouping respectively.

The most likely number of clusters based on the traditional statistic mean LnP(K) was K = 1 for each scenario.

https://doi.org/10.1371/journal.pone.0193925.g002
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Fig 3. Probabilistic (95%) niche ellipses based on δ13C ‰ and δ15N ‰ stable isotopes. Probabilistic (95%) niche

ellipses based on carbon (δ13C ‰) and nitrogen (δ15N ‰) stable isotopes for groups of Lake Trout in Great Bear Lake

classified by depth zone, morphology, and composite procedures (colors match Fig 2).

https://doi.org/10.1371/journal.pone.0193925.g003
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Discussion

Phenotypic divergence of Lake Trout between deep-water and shallow-water was weak in

Great Bear Lake, with no distinct morph inhabiting the deep-water zone, but our composite

dataset provided some evidence for adaptation to deep-water conditions (see [87–89] for other

examples). Lake Trout diversification previously has been strongly associated with depth parti-

tioning, and with Great Bear Lake having a maximum depth of 450 m, we expected intraspe-

cific diversity to be organized along a depth axis. However, depth alone was not a major

explanatory variable of Lake Trout diversity in Great Bear Lake, rather, an ecological contin-

uum existed. Ecological clines, eco-spatial structure of diversity, where tensions between

homogenizing and divergent evolutionary forces arise, can be components of the complex

nature of phenotypic evolution across diverse and heterogeneous landscapes such as Great

Bear Lake [90, 91]. Clines of intraspecific variation occur within freshwater ecosystems, where

abiotic (e.g., temperature, light, and oxygen composition) and biotic variables (e.g., trophic

resources, parasites, and predators) change in a predictable manner: 1) along a depth axis from

shallow to deep, and 2) along a benthic-limnetic axis [92].

Fig 4. Trend between C:N ratio and δ13C (‰) in individual Lake Trout from three depth strata. Trend between C:N ratio and δ13C

(‰) in individual Lake Trout from Great Bear Lake caught from three depth strata: open circle = 0–20 m, light grey square = 21–50 m,

and black diamond = 51–150 m. A polynomial trend line was fitted for the overall data. C:N ratios are an indirect representation of lipid

content (index of buoyancy).

https://doi.org/10.1371/journal.pone.0193925.g004

A deep-water Lake Trout morph?

PLOS ONE | https://doi.org/10.1371/journal.pone.0193925 March 22, 2018 14 / 28

https://doi.org/10.1371/journal.pone.0193925.g004
https://doi.org/10.1371/journal.pone.0193925


Fig 5. Length at age of Lake Trout captured in three depth zones. Length at age of Lake Trout captured in three

depth zones (0−20 m = � and dotted line; 21−50 m = gray � and dashed line; 51–150 m = and solid line) and classified

into three morphs (Morph 1 = � and dotted line; Morph 2 =● and dashed line; Morph 3 = gray � and solid line) and

four composite groups (Comp 1 = � and dotted line; Comp 2 = —and dashed line, Comp 3 = × and solid line; and

Comp 4 = gray▲ and long-dashed line) in Great Bear Lake.

https://doi.org/10.1371/journal.pone.0193925.g005
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Fig 6. Global phenotypic trait divergence (Pst). Global phenotypic trait divergence (Pst) ± SE for individual variable

for Lake Trout from Great Bear Lake based on groups established based on depth strata, morphological data, and

composite data.

https://doi.org/10.1371/journal.pone.0193925.g006

A deep-water Lake Trout morph?

PLOS ONE | https://doi.org/10.1371/journal.pone.0193925 March 22, 2018 16 / 28

https://doi.org/10.1371/journal.pone.0193925.g006
https://doi.org/10.1371/journal.pone.0193925


How often can clines of intraspecific variation exist without any geographic isolation? Isola-

tion-by-distance is not an essential component in generating and maintaining intraspecific

diversity within a lake, but variation can be facilitated by a number of variables, including bar-

riers induced by differing habitat use [93, 94]. Large deep lakes, such as Great Bear Lake, are

more likely to provide reproductive isolating barrier(s) through isolation by geographic dis-

tance and lake bathymetry than small lakes simply because of their size (but no information

currently exists about Great Bear Lake spawning habitat and behavior) [17, 22–24, 95, 96].

Indeed, when examining a large lake that sustains high Lake Trout diversity (e.g., Lake Supe-

rior), depth was a more important axis of genetic divergence than genetic differences among

morphs [22]. Overall, high levels of gene flow were inferred among Lake Trout groups in

Great Bear Lake; only deep-water Lake Trout showed low levels of genetic differentiation

when compared based on depth-at-capture (i.e., 51–150 m versus 0–20 and 21–50 m). Thus,

Lake Trout in Great Bear Lake appeared vary slightly along the depth gradient but divergence

also occurred along other niche axes (different degrees of omnivory along a weak benthic–

pelagic gradient in shallow-water habitats) [27], i.e., diversification was not solely associated

with depth.

Ecological opportunity associated with the depth gradient of Great Bear Lake may be pro-

moting adaptive diversification, as evidenced in differences in a suite of ecological and mor-

phological characteristics. Potential evidence of adaptation to deep- vs. shallow-water habitat

was found in the relationship between C:N ratio and depth. Individuals captured in deep-

water habitat showed a higher C:N ratio linked with a higher lipid content (i.e., adaptive or

not) than trout caught in shallow-water, a characteristic generally associated with buoyancy

[67, 69–71]. Variation in buoyancy of Lake Trout has been associated with adaptation to deep-

water habitats observed across North American lakes [18, 19, 21, 23]. High fat content

enhances buoyancy, enables diel vertical migration, and can improve foraging efficiency in

deep-water habitat [15, 97–99]. Phenotypic divergence in linear measurements (e.g., fin

lengths) were also displayed when groups were defined by composite variables, which also

may be related to variation in swimming tactics and foraging strategies associated with deep-

vs. shallow-water habitats. Each morphological characteristic (i.e., body shape vs. head shape

vs. linear measurements) can have different degrees of plastic responses depending on the

strength and duration of exposure to heterogeneous environments [42, 100–102]. Indeed, lin-

ear measurements have been demonstrated to be highly plastic and to vary in Great Bear Lake

compared to body and head shape [25]. Finally, phenotypic divergence in life history was also

observed in relation to depth, especially in back-calculated growth rates of juveniles and adults

(ω and K, respectively), and were important parameters in the composite grouping that identi-

fied the deep-water individuals.

Diversifying forces are generally caused by a mismatch between a population’s niche-

related traits and newly encountered ecological conditions [26, 39, 92]. Although isotopic

niche overlap was evident among groups, Lake Trout caught in the deep zone of Great Bear

Lake seemed to have a higher trophic level than their shallow-water counterparts. Higher tro-

phic level might result from an increase in piscivory (possibly including cannibalism due to its

high observed level within the system) or a different isotopic enrichment signal linked with

depth [27, 32, 103]. Deep-water morphs of Cisco (Coregonus artedi), deep-water Sculpins

(Myoxocephalus quadricornis and Cottus cognatus), and Mysis inhabit Great Bear Lake [104];

together with juvenile and adult Lake Trout; these represent the differing foraging opportuni-

ties for deep-water Lake Trout. In the shallow-water habitat, however, more abundant and

diverse prey sources (e.g., littoral fish, macroinvertebrates) are available to Lake Trout as forag-

ing opportunities and are suspected to reflect higher productivity and diversity than in the

deep water [27, 32, 40]. The trophic niche associated with the deep-water habitat of Great Bear
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Lake may not provide many opportunities for further specialization or diversification as com-

pared to other North American lakes [105]. Great Bear Lake has extremely low productivity

[38], especially in the deep-water habitat, once described as a “biological wasteland” by Miller

[106]. The differences between adaptive landscapes surrounding a species might be too weak

to prevent a major diet divergence despite our assumption that shallow- and deep-water habi-

tats are different. Similarly, low productivity combined with a lack of unique spatial and tem-

porally distributed energy sources would be consistent with the level of intraspecific diversity

expressed within the shallow-water habitat, where three generalist morphs coexist without

strong evidence that this intraspecific diversity is resource-induced [27]. Benthic primary and

secondary production is known to be an important energy source in Arctic lakes, which in

many Arctic lakes is focused in littoral areas [107]. Most cases of polymorphism in freshwater

fishes have been described as a function of the discretness between habitats and foraging

opportunities (e.g., shallow-profundal or littoral-benthic: [108–110], but fine spatial scales can

also influence functional diversity [9, 22, 45, 89, 111–113].

Why is phenotypic divergence between shallow- and deep-water Lake Trout in Great Bear

Lake lower than expected is unknown, especially when the potential for phenotypic variation

seems high (e.g., [45], and given that depth partitioning is associated with Lake Trout diversity

elsewhere). Several reasons may explain our observations: 1) high gene flow (discussed above),

2) divergent selection might be relative weak (discussed above), 3) more evolutionary time

might be necessary [114], and 4) our sample size may have been too small.

Continuous reaction norms of phenotypic plasticity along a gradient often reveal more

complex patterns than between two discrete environments [115]. Although Lake Trout can be

found across all depths, phenotypic diversity was inconsistently expressed along the depth gra-

dient in Great Bear Lake. Intraspecific diversity of Lake Trout from Great Bear Lake, from

high diversity in shallow-water to low diversity in deep-water habitats, could reflect unequal

selection intensity along the depth continuum, thereby resulting in the expression of pheno-

typic plasticity across a landscape [90]. In Great Bear Lake, the deep-water environment may

be more homogenous and predictable than the shallow-water environment, and thus pheno-

typic diversity decreased with increasing depth [116–119]. Outcomes depend, in part, on costs

and developmental limitations to plasticity, influencing the expression of plasticity as a

response to particular ecological conditions, which can lead to dramatic fitness benefits, com-

pared with a lack of a plastic response [119–122].

Given that variation in complexity of freshwater environments has dramatic consequences

for divergence [92, 123], variation in the complexity in Great Bear Lake (i.e., shallow being

more complex than deep) [40], may explain the observed dichotomy in the expression of intra-

specific phenotypic diversity between shallow- vs. deep-water habitats. If phenotypic variation

is not genetic but strictly environmental in origin, observed intraspecific differences might

ultimately be trivial in terms of the ongoing process of adaptation [123]. However, if variation

has a genetic component whose expression is triggered by the environment, then phenotypes

can be refined by selection. Complete divergence becomes possible, especially if shifts become

more extreme along the same environmental dimension or across multi-dimensions [124–

126].

The final question regarding the Lake Trout of Great Bear Lake is whether the gradient of

incipient divergence we observed has had enough time to fully differentiate into evolutionary

units or if a stable “intermediate” pattern exists between monomorphic and polymorphic [18,

127]. The level of niche divergence associated with depth within this system was lower than in

other lakes in North America, with such patterns usually strong enough to be determined even

within small sample sizes [23]. The low FST values we observed may indicate: 1) a short time

since inception of divergence because phenotypic variations were accumulated by deep-water
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Lake Trout over ~350 generations [34], 2) high gene flow that prevents accumulation of adap-

tations [128, 129], or 3) large effective population sizes, rendering drift negligible in promoting

differentiation among groups. Whether the observed variation with depth reported here is

“stable” or is an initial divergent step that with enough time will fully differentiate evolutionary

units is unknown, but it is inherently hard to make any conclusions from studies such as ours

as to what a “real” initial stage of divergence is [130]. Nonetheless, when looked at patterns

described in salmonid species inhabiting other post-glacial colonized ecosystems, including

small lakes, the formation of highly distinct sympatric populations is often rapid [131–133].

Thus, the novelty of Great Bear Lake, herein, relies in its size and bathymetric complexity of

this system but minimal apparent cline of diversification, despite the propensity of salmonids

to vary rapidly, especially with depth.

One of the points of contention about understanding mechanisms driving intraspecific eco-

logical divergence is the extent of variability displayed among species and systems [124]. Intra-

specific diversity represents multiple evolutionary outcomes that can either promote or

constrain progress toward ecological speciation, and may not always result in easily identifi-

able differentiation stages [92, 116, 119]. Cryptic population structures are difficult to uncover

and more common than previously thought [87, 89, 134, 135]. Great Bear Lake deep-water

Lake Trout could be a cryptic example of divergence, because individuals displayed variation

in association with the profundal habitat, whereas their morphological differentiation was not

defined sufficiently to be identified as a distinct evolutionary unit. The debate around diversifi-

cation sequence, i.e., what diverges first, morphology or ecology, highlights the mosaic nature

of speciation [125] and reminds us how difficult it often is to classify and disentangle diver-

gence events.

Conclusion

Rates of speciation for some freshwater fishes are among the highest known for vertebrates,

but spatial and temporal distribution of energy and physical habitats, limits the number of spe-

cies or morphs that can co-exist [92, 136]. However, we do not understand the extent and rela-

tive importance of different variables that constrain or promote diversity [137]. Ecological

opportunity cannot be the entire story of diversification, because the presence of ecological

opportunity has not always led to adaptive radiation, which raises the question whether adap-

tive radiation can occur in the absence of ecological opportunity [3]. In Great Bear Lake, intra-

specific diversity of Lake Trout, with its high phenotypic variation not strongly associated with

either horizontal or vertical ecological partitioning axes [27], does not represent the usual pat-

tern of divergence observed within Lake Trout elsewhere or salmonids in general. This lack of

correspondence to the ecological theory of adaptive radiation [36, 138, 139] joins examples

across a variety of taxa that counter the long-standing hypothesis that specialized morphology

corresponds to a specialist diet. Possibly, such situations might be more frequent than previ-

ously thought [140]. Multiple niche axes along different environmental gradients appear to

structure Lake Trout diversity within Great Bear Lake. If multiple selection axes exist in Great

Bear Lake, the question then arises as to whether they favor divergence or counteract each oth-

er’s influences? Opportunities to study examples when phenotypic variation is high (fish are

really plastic, see e.g., [31, 45, 114]) are useful in understanding the origin and fate of incipient

stages of speciation. The ambiguity surrounding the mechanism(s) driving divergence in Lake

Trout of Great Bear Lake should be seen as part of the highly variable nature of ecological

opportunity and divergent natural selection itself [100, 124].
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Supporting information

S1 Table. Mean log-likelihood values (LnP[K]) for different hypothesized numbers of

genetic populations (K) of Lake Trout in Great Bear Lake. Also shown is the mean value of

ΔK, the ad hoc statistic of Evanno et al. [63] used to summarize the second-order rate of change

in LnP(K). The bold values represent the most likely number of genetic groups for each statis-

tic for each clustering scenario. NA = ΔK cannot be calculated for these values of K.

(DOCX)

S2 Table. Length-age models within three depth strata strata (Depth) in Great Bear Lake.

Length-age models for Lake Trout captured within three depth strata (Depth) in Great Bear

Lake. Each model is specified to compare growth among Lake Trout at different depths of cap-

ture (Depth), and varying growth parameters (t0, L1,K), along with the number of parameters

(df), log-likelihood (logLik), Akaike Information Criterion (AIC), Akaike difference (Δi), and

Akaike weight (wi).
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S3 Table. Growth parameter estimates within three depth strata in Great Bear Lake.

Growth parameter estimates for Lake Trout captured within three depth strata in Great Bear

Lake (SE = standard error; LL = lower 95% confidence limit; UL = upper 95% confidence

limit).
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S4 Table. Length-age models for three Lake Trout morphs captured in Great Bear Lake,

Northwest Territories. Length-age models for three Lake Trout morphs (Morph) captured in

Great Bear Lake, Northwest Territories. Each model is specified to compare growth among

Lake Trout morphs (Morph) and varying growth parameters (t0, L1,K), along with the num-

ber of parameters (df), log-likelihood (logLik), Akaike Information Criterion (AIC), Akaike

difference (Δi), and Akaike weight (wi).
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S5 Table. Growth parameter estimates for three Lake Trout morphs captured in Great

Bear Lake. (SE = standard error; LL = lower 95% confidence limit; UL = upper 95% confi-

dence limit).
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S6 Table. Length-age models for four Lake Trout composite groups captured in Great Bear

Lake. Each model is specified to compare growth among Lake Trout composite groups and

varying growth parameters (t0, L1,K), along with the number of parameters (df), log-likeli-

hood (logLik), Akaike Information Criterion (AIC), Akaike difference (Δi), and Akaike weight

(wi).
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S7 Table. Growth parameter estimates for four lake trout composite groups captured in

Great Bear Lake. (SE = standard error; LL = lower 95% confidence limit; UL = upper 95%

confidence limit).
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S1 Fig. The four shallow-water morphotypes of Lake Trout from Great Bear Lake.
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S2 Fig. Catch-per-unit-effort of adult Lake Trout captured among depth strata in Great

Bear Lake. Catch-per-unit-effort (median and quartiles) of adult Lake Trout captured among

A deep-water Lake Trout morph?

PLOS ONE | https://doi.org/10.1371/journal.pone.0193925 March 22, 2018 20 / 28

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0193925.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0193925.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0193925.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0193925.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0193925.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0193925.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0193925.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0193925.s008
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0193925.s009
https://doi.org/10.1371/journal.pone.0193925


depth strata in Great Bear Lake. No CPUE differences were found among the three depth

strata for catch of adult Lake Trout (F2,23 = 0.12, p = 0.89).
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S3 Fig. Systematic design of each grouping procedure used in this study, based on depth

strata, morphology, and composite variables. Each grouping method used a different suite of

variables to assign individuals to a group. After groups were identified, subsequent analyses

followed for patterns in morphology, genetics, isotopes, and life-history parameters among

groups with each procedure. See text for more detail.

(DOCX)

S4 Fig. Hierarchical clusters of Lake Trout individuals sampled in Dease Arm (0–150 m)

overlaid on the first two principal component axes (PCA) using FactoMineR [46], in A)

based on morphological grouping and in B) based on composite grouping. Grouping by the

morphological procedure: Morph 1 = red circle, Morph 2 = green circle, and Morph 3 = black

circle, and by the composite procedure: Comp 1 = green circle, Comp 2 = blue circle, Comp

3 = black circle, and Comp 4/deep-water individuals = red circle. PCA variables are defined as

follow: PC1BS and PC2BS first two-axis PCA scores of body shape from landmarks, PC1HS

and PC2HS = first two-axis PCA scores of head shape from semi-landmarks, PC1LM and

PC2LM = first two-axis PCA scores of linear measurements, PC1GEN and PC2GEN = first

two-axis PCA scores of genetic data, Delta C 13 = δ13C, Delta N 15 = δ15N, K = von Bertalanffy

growth parameter (adult), ω = juvenile growth rate, L1 = maximum adult length, depth-at-

capture.
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S5 Fig. CVA of Lake Trout linear measurements, body shape, and head shape. Groups were

identified by FactoMineR [46] based on morphological and composite group assignment. Each

group is also outlined by a 68.3% confidence ellipse. For the depth procedure, groups are rep-

resented as follows: open circle = 0–20 m, light grey square = 21–50 m, and black dia-

mond = 51–150 m. For morphological procedure, groups are represented as follows: Morph

1 = white, Morph 2 = black, and Morph 3 = light grey. For composite assignments, groups are

represented as follows: x = Comp 1, ? = Comp 2, star = Comp 3, and triangle = Comp 4 (deep-

water individuals).
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