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OBJECTIVE — To derive a 5-year cardiovascular disease (CVD) risk equation from usual-
care data that is appropriate for people with type 2 diabetes from a wide range of ethnic groups,
variable glycemic control, and high rates of albuminuria in New Zealand.

RESEARCH DESIGN AND METHODS — This prospective open-cohort study used
primary-care data from 36,127 people with type 2 diabetes without previous CVD to derive a
CVD equation using Cox proportional hazards regression models. Data from 12,626 people from
a geographically different area were used for validation. Outcome measure was time to first fatal
or nonfatal cardiovascular event, derived from national hospitalization and mortality records.
Risk factors were age at diagnosis, diabetes duration, sex, systolic blood pressure, smoking
status, total cholesterol–to–HDL ratio, ethnicity, glycated hemoglobin (A1C), and urine albu-
min-to-creatinine ratio.

RESULTS — Baseline median age was 59 years, 51% were women, 55% were of non-
European ethnicity, and 33% had micro- or macroalbuminuria. Median follow-up was 3.9 years
(141,169 person-years), including 10,030 individuals followed for at least 5 years. At total of
6,479 first cardiovascular events occurred during follow-up. The 5-year observed risk was
20.8% (95% CI 20.3–21.3). Risk increased with each 1% A1C (adjusted hazard ratio 1.06 [95%
CI 1.05–1.08]), when macroalbuminuria was present (2.04 [1.89–2.21]), and in Indo-Asians
(1.29 [1.14–1.46]) and Maori (1.23 [1.14–1.32]) compared with Europeans. The derived risk
equations performed well on the validation cohort compared with other risk equations.

CONCLUSIONS — Renal function, ethnicity, and glycemic control contribute significantly
to cardiovascular risk prediction. Population-appropriate risk equations can be derived from
routinely collected data.
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E thnic and socioeconomic disparities
in cardiovascular disease (CVD) out-
comes exist around the world. Lo-

cally derived or ethnic-specific CVD risk
equations to guide management may be
appropriate to help redress these dispari-
ties. Including glycemic control, albu-
minuria, current management, and
socioeconomic status in risk equations

may also improve prediction and out-
comes, particularly for people with type 2
diabetes, a group at high risk of CVD (1).

The Framingham equation has been
extremely useful for assessing CVD risk
for the past 40 years worldwide (2). How-
ever, it does not include renal function,
albuminuria, or ethnicity, which are of-
ten potent predictors of CVD (3– 6). Al-

though it includes diabetes as a
dichotomous variable, risk increases
continuously with increasing glycemia
(7,8). The UK Prospective Diabetes Study
(UKPDS) risk equations, also widely
used, include glycemia and diabetes du-
ration but not measures of renal function
or treatment and only two ethnic catego-
ries (9). Several other CVD equations ex-
ist, many derived regionally, but few have
included measures of glycemia, renal
function, and ethnicity together to im-
prove risk prediction (6,10 –13). The
Strong Heart Study equation includes al-
buminuria but includes diabetes only as a
dichotomous variable and is specific to a
single ethnicity (14). The DECODE equa-
tion did not include renal function or eth-
nicity, although it provided “multiplying
factors” based on nationality (15). The
Swedish National Diabetes Register was
used to produce a prediction equation for
5-year CVD risk but without renal func-
tion or ethnicity (16). Other variations in-
clude the Systematic Coronary Risk
Evaluation (SCORE) equation, which did
not include diabetes, ethnicity, or renal
function (17); a stroke prediction equa-
tion for Hong Kong Chinese with type 2
diabetes (18); and a “clinical grouping”
approach from Norway in which people
were placed into broad groups by a count
of basic risk factors (one of which was
self-reported diabetes) (19).

This study demonstrates how rou-
tinely collected data can be used to derive
an appropriate risk equation to use when
making treatment decisions within a spe-
cific population, which may lead to more
equitable outcomes. This study aimed to
derive a 5-year CVD risk equation for
people with type 2 diabetes that included
these important prognostic risk factors
such as glycemia, albuminuria, and ethnic
groups relevant to New Zealand.

RESEARCH DESIGN AND
METHODS — The Diabetes Cohort
Study (DCS) is a prospective open cohort
using routinely collected data from a na-
tional primary-care annual review pro-
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gram called “Get Checked,” which
commenced in New Zealand in 2000. De-
tails of the program and data collection
are published elsewhere (7). Each indi-
vidual has an encrypted unique identifier
that allowed linkage to national hospital-
ization and mortality databases to identify
cardiovascular events between 1988 and
2008. We split the dataset into two co-
horts: a derivation cohort from the north
of New Zealand and a validation cohort
from the south of New Zealand.

Participants were included if they had
type 2 diabetes as determined by their pri-
mary-care physician, had commenced the
“Get Checked” program between 2000
and 2006, and had all risk variables re-
corded during the first assessment or
within 2 years. Participants were ex-
cluded if they had been admitted to hos-
pital for CVD prior to their first study
assessment, as identified from national
hospital admissions data since 1988.

Minimum required risk variables in-
cluded age, sex, duration of diabetes,
smoking status (current, previous, or
never smoked), systolic and diastolic
blood pressure, fasting total cholesterol
and HDL, A1C, urine albumin-to-
creatinine ratio, BMI, ethnicity, and social
deprivation score (20). Information on
blood pressure–lowering and lipid-
lowering medications was also collected
where available. Ethnicity is self-assigned
according to national categories (21).
Those used in this analysis were Euro-
pean, Indo-Asian (Indian), East Asian,
Maori (the indigenous people of New Zea-
land), Pacific Islander, and “other,” in-
cluding Middle Eastern, Latin American/
Hispanic, African, and others.

The primary outcome measure for the
CVD risk equation was time to first re-
corded fatal or nonfatal CVD event (isch-
emic heart disease, cerebrovascular
accident/transient ischemic attack, or pe-
ripheral arterial disease). Events identi-
fied from national hospital and mortality
database diagnoses were coded according
to the ICD-9 and ICD-10 (online appen-
dix Table 1, available at http://care.
diabetesjournals.org/cgi/content/full/
dc09-1444/DC1). Participants were fol-
lowed until first admission, death, or until
the censor date of 20 December 2007,
whichever came first. To allow compari-
son with the UKPDS coronary heart dis-
ease (CHD) equation, we also derived a
CHD equation applying the same out-
come definition as the UKPDS (7,22).

Model derivation
Cox proportional hazards regression
models were used to estimate the coeffi-
cients and hazard ratios associated with
the potential risk factors for first CVD
event in the derivation dataset (23). The
Efron approximation was used to handle
ties. The inclusion of variables in the
models was determined using both
Akaike information criteria to compare
the fit of models and significance of the
variable when included in the model. For
continuous variables, we investigated the
nonlinearity of the association between
the variable and the outcome using frac-
tional polynomials. The need for transfor-
mations to reduce the influence of
extreme values was also explored. For a
small percentage of missing clinical data,
we substituted data from a previous check
within 2 years. Sensitivity analyses were
carried out using only data without im-
puted values. Kaplan-Meier curves were
used to compare survival functions for
participants included in the analysis and
those not included due to missing vari-
ables. The assumptions of proportional
hazards were checked using log-log plots
of survival for each category of the ordinal
and nominal covariates and by plotting
the scaled Schoenfield residuals against
time then testing for a nonzero slope (23).
Interactions between sex, ethnicity, and
other risk variables were checked. We
used coefficients from the Cox propor-
tional hazards model as weights for the
probability of CVD event in 5 years and
the baseline survivor function to obtain
the risk equations (11). Analyses were un-
dertaken using STATA 10.0 and SAS 9.2.

The initial equation was derived from
a model using clinical and demographic
variables known to be predictive of CVD
events. A second equation was derived in-
cluding CVD medications to assess med-
ication status effect on the ability of the
equation to predict outcomes. For this,
we included those individuals with blood
pressure–lowering and lipid-lowering
medications recorded. The interactions
between the use of medication and blood
pressure and lipid profiles, respectively,
were tested for inclusion in the models.
Models for the prediction of CHD were
similarly developed both with and with-
out CVD medications. Within the deriva-
tion cohort, we evaluated the fit of the
new models using the measure of ex-
plained variation for censored survival
data (R2) proposed by Royston, and con-
cordance using Harrell’s C.

Validation of new equations
We tested the performance of the equa-
tions on the southern New Zealand co-
hort by assessing the calibration and
discrimination. Calibration was assessed
by comparing the observed number of
people with events within prespecified
risk groupings with the number predicted
by the models (24).

To assess discrimination, the ability
of the equation to distinguish between in-
dividuals who do or do not have a subse-
quent CVD event, we calculated the area
under the receiving operating curve
(ROC) curve (C statistic) (12). We also
compared the 5-year risk predictive abil-
ity of our equation with that of Framing-
ham and our CHD risk equation with that
of the UKPDS equation using ROCs, area
under the graph, and calibration plots
(24).

RESULTS — Data were collected from
71,570 people with type 2 diabetes be-
tween January 2000 and December 2006.
Of these, 62,032 (86.7%) had the mini-
mum dataset present from at least one as-
sessment, of whom 48,211 (77.7%) had
no previous CVD. An extra 524 people
(1.1%) were included in the cohort after
inserting previous clinical values for miss-
ing data (0.6% of variables). The equation
derivation cohort included 36,127 partic-
ipants from north New Zealand (Fig. 1).

Baseline characteristics of partici-
pants are presented in Table 1. Data on
medication were available for 29,573
(81.9%) subjects, of whom 16,941 (57%)
were prescribed blood pressure–lowering
medication and 12,233 (42%) were pre-
scribed lipid-lowering medication. Those
without medication status recorded did
not differ substantially from those who
did on any major clinical variable but
were more likely to be of Pacific Island
ethnicity (28 vs. 18%) and from the low-
est socioeconomic quintile (47 vs. 39%).

Median follow-up in the derivation
cohort was 3.9 years (range 0–8), equiv-
alent to a total of 141,169 person-years,
and included 10,030 individuals (28%)
who were followed for at least 5 years.
There were 6,479 first CVD events during
follow-up, with a 5-year observed risk of
20.8% (95% CI 20.3–21.3).

Model derivation
Final variables included in the models
were age, sex, duration of known diabe-
tes, systolic blood pressure, smoking sta-
tus, total cholesterol–to–HDL ratio,
ethnic i ty , A1C, and albumin-to-
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creatinine ratio. The inclusion of BMI, so-
cioeconomic deprivation index, and
diastolic blood pressure did not signifi-
cantly improve the fit of the model as
measured by the Akaike information cri-
teria and were therefore not included in
the final models. The assumptions of the
proportional hazards were satisfied for
the model. Hazard ratios for each contrib-
uting variable for the CVD model are pre-
sented in Table 2. Those for the other
derived equations are available on re-
quest. A sensitivity analysis without im-
puted values did not change results. The
CVD and CHD 5-year risk equations and
measures of fit are presented in online ap-
pendix Table 2. Harrell’s C varied from
0.67 to 0.71 and R2 ranged from 0.20 to

0.28. Hazard ratios were similar for men
and women, and no significant interac-
tions were found between sex and any
risk factor, so separate equations for men
and women were not derived. Although
significant interaction was found between
ethnicity and some risk variables, partic-
ularly age and duration of diabetes, the
inclusion of ethnicity as a risk variable
overcomes this problem to a certain de-
gree, and for clinical reasons we have
elected to use one equation. For the mod-
els that included medication status, use of
blood pressure–lowering medication and
its interaction with systolic blood pres-
sure were included in the model. Inclu-
sion of lipid-lowering medication use did
not improve the fit of the model.

Calibration and discrimination of
models using the validation
(southern) cohort
The areas under the ROC curves (C sta-
tistics) were 0.68 for both equations for
CVD risk and 0.69 for both CHD equa-
tions (online appendix Fig. 1). The cali-
bration of the CVD risk equation is
presented in online appendix Fig. 2.
These graphs compare the mean pre-
dicted risk with the mean observed risk at
5 years for each decile of predicted risk in
order. The differences between predicted
and observed risk were small in all deciles
of risk, with the predictive model consis-
tently underestimating risk by 1–5%. The
main differences between the northern
and southern cohorts at baseline were in
ethnic composition, socioeconomic de-
privation, and age (online appendix Table
3). The CVD incidence rates were very
similar: 46 per 1,000 person-years for
northern and 43 for southern cohorts (in-
cidence rate rat io 1.07 [95% CI
1.02–1.12]).

Comparison with the Framingham
and UKPDS risk equations
The area under the ROC curve indicates
that our CVD risk equation compares fa-
vorably with the Framingham equation
(C statistic: 0.68 [95% CI 0.67–0.70] vs.
0.63 [0.62–0.65], P � 0.0001) for this
diabetic population and our CHD risk
equation performs better than the UKPDS
CHD equation (C statistic: 0.69 [0.67–
0.71] vs. 0.63 [0.61–0.65], P � 0.0001)
(online appendix Fig. 1). There was little
difference in performance between our
equations with and without medications in-
cluded. Compared with observed events,
the DCS equation underestimated risks by
1.4–6.3%, while the Framingham equation
underestimated risks by 5.5–17.3% in the
southern validation cohort (online appen-
dix Fig. 2). The ability of the new risk equa-
tion to discriminate CVD risk in this specific
population is best illustrated using the mul-
tiple clinical scenarios, as compared with
predictions using the Framingham and
UKPDS equations (Table 3 and online ap-
pendix Table 4).

CONCLUSIONS — The DCS equa-
tions, which include measures of glyce-
mia, renal function, and ethnicity, used
routinely collected data from a diverse
primary-care population to allow locally
and ethnically relevant CVD risk predic-
tion and management. After controlling
for traditional risk factors, being Maori
(who suffer the greatest health outcome

Figure 1—Flow diagram of participants through the study for CVD equation derivation.
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inequalities in New Zealand) or Indo-
Asian, or having micro- or macroalbu-
minur ia (33% of th i s cohor t ) ,
substantially increased the risk of a CVD
event, and risk increased with rising A1C.
Inclusion of lipid-lowering medication
status was not significantly predictive of
CVD risk, although blood pressure–
lowering medication was predictive.

This equation was derived from a
large free-living and multicultural popu-
lation with type 2 diabetes, with large
numbers of CVD events compared with
previous and more recent studies (25)
and validated on a separate cohort. The
study is recent (2000–2008) and reflects
the population and management changes
that have occurred since previous equa-
tions were derived, mainly during the
1950s to 1990s.

CVD events and deaths were obtained
from national hospital and mortality da-
tabases using a unique identifier for each
patient with high rates of complete data

and linkage. Events were not adjudicated
by study investigators, but hospital cod-
ing of events has improved significantly
over the last decade, and it could be ar-
gued that hospitalization codes are a more
rigorous way to collect events than
searching primary-care records, which
may well underestimate the number of
events and therefore risk (11,25). This
potential undercounting of real events
may explain why a recent study con-
cluded that the Framingham and UKPDS
equations tend to overestimate CVD risk
in people with diabetes (25), whereas we
found the opposite, especially in those
with other risk factors such as poorly con-
trolled glycemia or renal impairment.

This cohort represents people with
type 2 diabetes without previous CVD
who are seen routinely in New Zealand
primary care. There were high rates of
smoking, renal impairment, and poorly
controlled glycemia, with many partici-
pants from ethnic groups with relatively

high CVD rates. This may explain why the
CVD rates were higher than those found
in previous cohorts such as the Framing-
ham or in selected trial populations such
as in UKPDS. Misclassification of baseline
CVD status is unlikely to bias our equa-
tion, as the same definition of CVD was
used to exclude those with previous CVD
and to identify new events. Treatment dif-
ferences are unlikely to explain the high
CVD event rates in this cohort, as CVD
preventive treatment rates in this cohort
were similar to those found internation-
ally, and medications that may be linked
to increased CVD, such as thiazo-
lidinediones, are rarely used in New Zea-
land. The equation tended to slightly
underestimate risk in the southern co-
hort. This may have been due to differ-
ences in variables not included in this
model, as there are demographic differ-
ences between the two regions. The fol-
low-up period was limited with a
maximum follow-up of 8 years and me-
dian of 3.9 years. However, �10,000 par-
ticipants were followed for at least 5 years,
so the model is likely to be valid for 5-year
CVD risk prediction.

The predictive ability of our equa-
tions (using C statistic, R2, and Harrell’s
C) was lower than that reported in initial
validation of other equations (6,9–12).
This may be because this was a very di-
verse population from real clinical prac-
tice, because people with type 2 diabetes
are a high-risk population where predic-
tion is difficult, or because of the quality
of routinely collected data or hospital
coding of events. The main advantage of
the new equation is the improvement in
discrimination and calibration for this
specific population, particularly with re-
spect to high-risk ethnic groups and those
with renal impairment, when compared
with using predictions from the Framing-
ham and UKPDS equations.

Many countries recognize the need to
reduce health inequalities as a national
health policy priority. Ensuring that eth-
nic population groups have high-quality
care is critical to reducing inequalities.
Many countries will have similar at-risk
minority groups, often with poor glyce-
mic control and high rates of renal impair-
ment who may have their CVD risk
underestimated by current risk equa-
tions. It may be appropriate for each
country to derive risk equations for their
own populations to improve targeted risk
management. On the basis of our data,
especially Table 3, we do not think it use-
ful to consider all those with diabetes to

Table 1—Characteristics at baseline of the derivation cohort

Characteristic Total cohort
Cohort with

medications recorded
Cohort without

medications recorded

n 36,127 29,573 6,554
Age (years) 59.2 (50.4–69.3) 60.3 (50.8–69.7) 58.2 (48.7–67.9)
Age at diagnosis (years) 54 (45–64) 55 (45–64) 53 (43–62)
Diabetes duration (years) 3 (1–7) 3 (1–7) 3 (1–7)
Women 18,527 (51) 15,125 (51) 3,402 (52)
Ethnicity

European 16,194 (45) 13,942 (47) 2,252 (34)
Maori 6,493 (18) 5,268 (18) 1,225 (19)
Pacific Islander 7,303 (20) 5,441 (18) 1,862 (28)
Indo-Asian 1,896 (5) 1,467 (5) 429 (7)
East Asian 1,960 (5) 1,615 (5) 345 (5)
Other ethnicity 2,281 (6) 1,840 (6) 441 (7)

Lowest socioeconomic
quintile* 14,562 (40) 11,463 (39) 3,099 (47)

BMI (kg/m2) 30.8 (26.9–35.6) 30.7 (26.8–35.5) 31.2 (27.2–36.3)
Systolic blood pressure

(mmHg) 137.4 � 18.7 137.5 � 18.6 136.9 � 18.8
Diastolic blood pressure

(mmHg) 80.9 � 10.6 80.8 � 10.6 81.4 � 10.9
Total cholesterol (mmol/l) 5.33 � 1.12 5.32 � 1.11 5.37 � 1.13
HDL cholesterol (mmol/l) 1.32 � 0.47 1.33 � 0.48 1.30 � 0.43
Total cholesterol–to–HDL

ratio 4.39 � 1.49 4.35 � 1.47 4.43 � 1.47
A1C (%) 7.2 (6.4–8.6) 7.2 (6.4–8.5) 7.4 (6.5–9.0)
Current smoker 5,433 (15) 4,361 (15) 1,072 (16)
Previous smoker 7,553 (21) 6,070 (21) 1,483 (23)
Microalbuminuria† 8,970 (25) 7,229 (24) 1,741 (27)
Macroalbuminuria† 2,973 (8) 2,344 (8) 629 (10)

Data are median (interquartile range), means � SD, or n (%). *Socioeconomic status is measured using
NZDep (20). †Microalbuminuria indicates a urine albumin-to-creatinine ratio of �2.5 mg/mmol in men or
�3.5 mg/mmol in women and �30 mg/mmol in both. Macroalbuminuria indicates a urine albumin-to-
creatinine ratio of �30 mg/mmol.
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be at uniform high CVD risk. Within this
population with type 2 diabetes, the
5-year risk ranged from less than 3% to
well over 30%. Being more discriminating
in our assessment and management may
also be both more cost-effective and allow

aggressively focusing on high-risk people.
Furthermore, being able to show patients
change in their absolute risk, using an ac-
curate risk equation, provides us with a
tool that may engage and motivate
patients.

Renal function, glycemic control, and
ethnicity are important risk factors and
should be included in locally relevant
CVD risk equations used to make treat-
ment decisions in people with diabetes.
More accurate risk prediction may im-
prove the quality of care received, avoid
delays in treatment for those in whom risk
was previously underestimated, and may
thus help address inequalities in health
outcomes.
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Table 2—Adjusted hazard ratios for first cardiovascular event

Variable Adjusted hazard ratio (95% CI) P value

A1C (per %) 1.06 (1.05–1.08) �0.001
Systolic blood pressure (per 10 mmHg) 1.03 (1.016–1.043) �0.001
Total cholesterol to HDL 1.02 (1.004–1.04) 0.01
Duration of diabetes (per year) 1.06 (1.056–1.064) �0.001
Age at diagnosis (per year) 1.04 (1.039–1.044) �0.001
Albuminuria �0.001

No albuminuria 1.0
Microalbuminuria* 1.24 (1.18–1.32)
Macroalbuminuria† 2.01 (1.86–2.17)

Sex �0.001
Male 1.0
Female 0.85 (0.81–0.89)

Smoking status �0.001
Nonsmoker 1.0
Previous smoker 1.11 (1.04–1.18)
Current smoker 1.26 (1.17–1.37)

Ethnicity �0.001
European 1.0
Indo-Asian 1.29 (1.14–1.46)
East Asian 0.91 (0.80–1.03)
Maori 1.23 (1.14–1.32)
Pacific Islander 1.07 (0.99–1.15)
Other 1.25 (1.14–1.37)

*Microalbuminuria indicates a urine albumin-to-creatinine ratio of �2.5 mg/mmol in men or �3.5 mg/
mmol in women and �30 mg/mmol in both. †Macroalbuminuria indicates a urine albumin-to-creatinine
ratio of �30 mg/mmol.

Table 3—DCS absolute 5-year CVD risk estimates of a 50-year-old man (nonsmoker, systolic blood pressure 140 mmHg, total cholesterol–
to–HDL ratio 4.5, and diabetes duration 5 years) compared with estimates using the Framingham 5-year CVD risk equation

Ethnicity A1C Albuminuria
Blood pressure–

lowering medication
Framingham 5-year

risk estimate
DCS 5-year risk
estimate (A)*

DCS 5-year risk
estimate (B)*

European 7 No No 9 11 10
European 8 Micro† Yes 9 14 14
European 9 Macro‡ Yes 9 23 23
Maori 7 No No 9 13 14
Maori 8 Micro Yes 9 17 19
Maori 9 Macro Yes 9 27 27
Pacific Island 7 No No 9 11 12
Pacific Island 8 Micro Yes 9 15 16
Pacific Island 9 Macro Yes 9 24 24
Indo-Asian 7 No No 9 14 15
Indo-Asian 8 Micro Yes 9 18 19
Indo-Asian 9 Macro Yes 9 28 29
East Asian 7 No No 9 10 9
East Asian 8 Micro Yes 9 13 14
East Asian 9 Macro Yes 9 21 22

Data are %, unless otherwise indicated. *(A) equation does not include medication status; (B) equation includes blood pressure–lowering medication status. †Micro
refers to microalbuminuria indicating a urine albumin-to-creatinine ratio of �2.5 mg/mmol in men or �3.5 mg/mmol in women and �30 mg/mmol in both; ‡Macro
refers to macroalbuminuria indicating a urine albumin-to-creatinine ratio of �30 mg/mmol.
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